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INTRODUCTION

Welcome to  The Cody Computer Book,  a  guide to
building and programming your own 8-bit computer.
The computer you'll build is inspired by the popular
home  computers  of  the  1980s—particularly  the
Commodore series—though it is not a direct clone of
or compatible with any of them. Rather, it tries to be a
somewhat-faithful  modern take on a computer from
that  era,  with  many  of  the  same  limitations  that
inspired  ingenuity  and  creativity  in  an  earlier  time.
Some  aspects  have  been  updated  and  others
simplified for ease of use, but in all cases we've tried
to preserve the aesthetic of the era. Most of all, we've
tried to make it approachable and fun.

If you follow the book, you'll build a computer with
a  period-appropriate  65C02  processor  running  at  1
megahertz  and  accessing  64  kilobytes  of  memory.
You'll  get  an analog NTSC video output  with blocky
character graphics and sprites, synthesized audio, and
serial  ports  for  loading  and  saving  programs—all
through  a  Parallax  Propeller  microcontroller  that
replaces  the  features  of  half  a  dozen  legacy  chips.
You'll  even build a fully-mechanical keyboard and a
toylike  3D-printed  case  inspired  by  the  keyboard
wedges of the 1980s, complete with joystick ports for
games and an expansion port for your own peripherals
or cartridges. Once it's up and running, you'll start to
program  in  Cody  BASIC  and  move  on  to  65C02
assembly.

While the computer itself belongs in the 1980s, the
spirit  is that of the 1970s—open hardware and open
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software  that  is  readily  accessible  to  the  end  user.
Unlike most modern reinventions of the classic home
computer,  the  entire  design  is  intended  to  be
constructable  by  a  single  person,  at  home,  using
techniques  and  tools  available  to  today's  maker
community.  All  the  parts  are  hobbyist-friendly,  and
even  the  more  obscure  ones  are  currently  in
production  from  historically  reliable  companies.  All
the  design  files,  including  its  own  custom  BASIC
dialect,  are  released  under  copyleft  licenses.  And
should  the  worst  ever  come  to  pass,  synthesizable
implementations of  all  the core components already
exist in the wild.

Building  the  Cody  Computer  isn't  an  incredibly
difficult project, but you'll need some basic skills and
access to a few things. You'll need to solder a couple of
circuit boards, one for the computer and one for the
keyboard, and you'll also need to be able to assemble
them into a 3D-printed case. All the design files you'll
need  are  provided  so  that  you  can  order  your  own
boards or make your own tweaks when 3D printing. A
large  section  of  this  book  is  devoted  to  build
instructions  to  help  you,  but  it  assumes  that  you
already know the basics.

We've  tried  to  make  it  easy  to  source  the  parts
without a lot of hassle.  The electronics should all be
available  through  a  single  order  from  Mouser,
including the keyboard switches, but you may find it
more  cost-effective  to  order  cheaper  keyswitches
through another  reseller  instead.  If  you've  built  any
projects like this at home, you'll know that sometimes
it helps to shop around. We're also assuming that you
have access to items such as PLA filament through the
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same  means  you'll  use  to  print  the  case.  The
remainder of the items you'll need are things that can
be sourced wherever you can find a hardware or craft
store.

You'll  have  to  install  some  software  to  finish
programming the Cody Computer once it's built. One
of  the  key  components  in  the  project,  the  Parallax
Propeller,  has software that you'll  need to use when
programming  the  Propeller's  firmware.  You'll  also
need to install  a terminal program so that the Cody
Computer  can  exchange  data  with  another  device.
Lastly,  if  you  want  to  get  into  assembly  language
programming, you'll need to have a 65C02 assembler
that  you're  familiar  with.  The  Cody  Computer
standardizes on the  64tass cross-assembler which is
also used to assemble the built-in Cody BASIC.

For the best chance of success you should already
have  some  significant  experience  with  electronics,
programming,  soldering,  and  3D  printing,  or  have
people around who can help you with the topics you
don't  know.  You'll  especially  need  that  knowledge
when something doesn't go well and you need to solve
a  problem.  If  you've  done any programming of  any
kind, built an intermediate electronics kit, downloaded
software to an Arduino, or set up some command-line
programs on your computer, you'll already have a lot
of  the  technical  background  you'll  need.  If  you've
screwed up all of those but were able to fix it yourself,
you're ready.

In  terms  of  tooling,  a  good  workspace,  a  good
soldering  iron,  and  a  reliable  if  standard  fused-
filament 3D printer are the most important items to
have  around.  You'll  also  need  to  have  a  means  of
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obtaining some double-sided circuit boards from the
design files, one for the keyboard and one for the main
board. You may have to order them from an offshore
supply  house  and  expect  to  have  some  spares,  or
perhaps go in with a friend who also wants to build a
copy.

Here's an anecdote to give you an idea of what to
expect:  All the 3D printing was done on a more-or-
less stock Creality Ender 3 Pro, mostly with Hatchbox
or Inland PLA filaments, and we went through a lot as
we tried different designs. For electronics, a standard
multimeter was used for most measurements, with a
Siglent  SDS1104X-E  oscilloscope  only  being  used  a
few times to  diagnose problems during prototyping.
We  ordered  our  boards  from  Aisler  throughout  the
project  because  of  their  out-of-the-box  support  for
KiCad,  but  they  should  be  manufacturable  by  other
board houses.

We  didn't  need  anything  especially  fancy  to
build the Cody Computer, nor did we get paid to
write any of this. When it came time to get some
of  the  tools  we  didn't  have  on  hand,  we
intentionally  picked  the  options  that  would  be
most  accessible  to  people  financially.  In  many
respects it's kind of amazing it actually works!

WHAT'S A HOME COMPUTER?

What  constitutes  a  home  computer  varies  a  lot
depending on the era. Because the Cody Computer is
channeling  the  early  1980s,  it's  worth  revisiting  the
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1970s and 1980s to  discuss  exactly  what  computers
were like at the time. As with other new technologies
being introduced to the marketplace for the first time,
there were many new systems being released from a
variety of manufacturers large and small,  much of it
forgotten  or  otherwise  lost  outside  of  collectors'
circles. It wasn't just a couple of famous companies and
their famous products. There were literally too many
to list here.

The  earliest  home  computers  resembled  a  tiny
version of the 1960s Batcomputer more than anything
else. The Kenbak-1 of the 1970s was made without any
microprocessors at all, instead built with what looked
like  a  small  city  of  individual  logic  chips  and
programmed via a front panel of buttons and switches.
Professional computers of the era were also built from
collections of chips like this, though those used more
powerful chips with a higher level of integration.

Machines  with  microprocessors,  such  as  the  MITS
Altair  and  the  IMSAI  8080  (famously  used  in
WarGames),  became  available  by  the  mid-1970s.
These  also  sported  a  blinking-lights-and-switches
appearance, with programs generally loaded manually
or by paper tape readers. Finding an external terminal
to talk to your computer became an adventure in itself.
Projects like the TV Typewriter were popular and led to
experimentation with input terminals and cheap video
output hardware.

A large number of the systems of that era came in
kit  form,  often  described  in  magazine  articles  that
functioned as build instructions or user guides. Single
board  computers  or  modular  systems  became quite
popular. Among those would be systems important in
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the history of  the 6502 microprocessor,  such as the
Jolt  and MOS Technology's  KIM-1;  that  latter  device
was  in  many  respects  the  first  of  the  Commodore
computers.

Taken  as  a  whole,  however,  these  machines  were
often more like a minicomputer for the home rather
than a home computer. Yet even in this era, much of
the  home  computer  culture  was  being  established.
Microsoft got its start by selling BASIC interpreters for
these systems, while the People's Computer Company
created  the  first  of  many versions  of  the  open Tiny
BASIC  instead.  Standards  for  saving  and  loading
programs emerged, such as the Kansas City Standard
for  storing  data  on  the  audio  cassettes  of  the  era.
Commercial operating systems such as CP/M became
available for many systems. And users began sharing
programs via magazines, mail, and computer clubs.

The concept of the home computer began to change
with systems like the Sol-20 and Apple 1,  including
the  keyboard  and  video  output  within  the  computer
itself.  By  1977,  the  Commodore  PET,  Apple  II,  and
Tandy  TRS-80  were  all  launched  to  the  public  as
complete systems.  Graphics capabilities were limited
and  the  game-system-inspired  Atari  800  wasn't
released  until  two  years  later.  At  this  point,  the
outlines of the stereotypical home computer became
apparent:  A  wedge-shaped  computer,  a  built-in
keyboard, support for cartridges and cassettes for data
storage,  joystick  or  controller  ports,  and output  to  a
dedicated monitor or home television.

By the 1980s, the line between home computer and
game system became blurry.  Existing game systems
received add-on keyboards and BASIC interpreters to
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resemble a home computer. The Nintendo was sold in
its native Japan as the Famicom, with keyboards, BASIC
cartridges, and disk drives made available. Computer
manufacturers  began  including  more  advanced
graphics and sound features in their products. By 1982,
the color-video ZX Spectrum was released in the UK,
and in the US, the Commodore 64 was released with
game-like  graphics  and  sound  capabilities.  Storage
devices  improved  as  floppy  drives  became  more
common than cassettes, particularly in the US market.

As the 1980s continued, more advanced computers
eclipsed the earlier 8-bit systems. The Amiga, Atari ST,
Macintosh,  and  the  IBM  PC  represented  the  next
generation  of  computer  technology.  Yet  companies
persisted  in  the  8-bit  market.  Amstrad  released  its
CPC  family  with  impressive  bitmap  graphics  for  its
day.  Handhelds  like  the  Atari  Lynx  and  Nintendo
Game  Boy  utilized  8-bit  6502  and  Z80
microprocessors.  The  65816,  a  16-bit  variant  of  the
6502,  was  used  in  the  Apple  IIGS (with  capabilities
often  surpassing  the  Macintosh  itself)  and  Super
Nintendo.  Despite those successes,  by the middle of
the 1990s, the 8-bit world was all but gone, save for
third-party  companies  and  aftermarket  add-ons  that
gave existing systems a new lease on life.

COMMODORE AS INSPIRATION

While not compatible with the Commodore series of
8-bit computers, much of the inspiration for the Cody
Computer  comes  from  that  lineage.  Commodore
produced one of  the most  influential  series  of  8-bit
computers.  Many  of  their  systems  were  known  for
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providing  an  exceptional  feature  set  at  a  low  price,
while  much of  the  company's  design and marketing
had been directed at  producing capable systems for
the  general  public  rather  than  computing  nerds  or
enthusiasts.

Along with their significance to the early history of
home computing,  you'll  find that  much of  the  Cody
Computer's  functionality  was  inspired  by  how
Commodore  did  things.  Not  everyone  has  firsthand
experience with one of  these systems,  so to provide
some historical  context,  we'll  briefly review some of
the  better-known  entries  in  the  Commodore  8-bit
family.

Commodore  actually  began  as  a  typewriter
company, moving by necessity into the new markets of
electronic  adding  machines  and  calculators  in  the
1960s  and  1970s.  Competition  in  the  market  was
brutal,  and  Commodore  began  acquiring  electronics
companies as part of its business strategy. One of the
acquisitions  was  MOS  Technology,  the  company
responsible for  the 6502 microprocessor.  As part  of
the purchase,  Commodore also gained access  to  the
engineering talent behind the company.

Realizing  the  potential  in  the  home  computer
market, Commodore began manufacturing computers
using its own chips starting in the late 1970s. Future
designs  would  continue  to  leverage  their  in-house
electronics  expertise  instead  of  relying  on  off-the-
shelf components. Commodore's sales pitch marketed
their  systems  as  friendly  computers  that  provided
amazing features for the price. Despite their successes,
changing  markets,  cutbacks  on  engineering,  and
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problematic  business  practices  proved  too  much  to
bear; Commodore went bankrupt in 1994.

KIM-1

The KIM-1 was a single board computer produced by
MOS  Technology  in  the  mid-1970s.  Its  primary
purpose was to serve as a reference system for their
6502 processor. Out of the box it had a keypad and
numeric  display  for  interaction  and  programming,
while  mass  storage  was  available  by  connecting  to
cassettes or paper tape.  Clones were made by other
companies  and  aftermarket  enhancements  included
video  output.  Many  of  the  starter  65C02  projects
you'll  find  on  the  Internet  are,  in  some  sense,  the
spiritual  successors  of  these  early  single  board
computers.

COMMODORE PET

The PET was Commodore's first real entry into the
computer  market.  Many  of  the  characteristics
associated with  Commodore's  computers  began with
this  model.  Featuring  a  6502  processor,  a  built-in
keyboard, cassette, monochrome monitor, and a copy
of  Microsoft  BASIC,  the  machine  was  intended  as  a
more  practical  computer  at  its  release  in  1977.  The
machine also supported the IEEE-488 bus,  providing
use of a variety of peripherals and storage devices.

Because  of  the  computer's  text-only  display,  a
graphical character set called PETSCII was invented to
make  games  and  entertainment  applications  more
feasible. The characters were prominently featured on
Commodore  keyboards  throughout  the  8-bit  era.

22



PETSCII  graphics  remain  one  of  the  most  uniquely-
identifiable  aspects  of  a  Commodore  computer
system, often finding their way into hobbyist graphics
and compact homebrew games.

VIC-20

After other research and development attempts at a
color PET successor, Commodore released the VIC-20
as a “friendly computer”  that  could be plugged into
your television set. The computer had expansion and
cartridge  slots,  both  of  which  were  heavily  used
because of the computer's minimal standard memory.
Commodore  replaced  the  PET's  IEEE-488  bus  with
their own serial version, the IEC bus. The VIC-20 had
an  optional  floppy  drive  but  datasettes  were  most
popular at this point.  BASIC was still standard and a
joystick was added for gaming.

The  VIC-20  also  set  a  precedent  for  powerful
peripheral  chips  made  custom  by  Commodore.  The
VIC-20 used the VIC chip for handling video, sound,
and  other  system  functions.  It  produced  two-color
character graphics at a moderate resolution and four-
color  character  graphics  by  halving  the  horizontal
resolution,  which  became  the  standard  approach  in
Commodore  systems.  Games  and  images  were
displayed  by  changing  the  colors  and  characters
themselves.  For  sound,  it  produced  three
programmable  square  wave  channels  and  a  single
noise channel.
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COMMODORE 64

The  best-known  of  Commodore's  computers,  the
Commodore 64 contained the famous VIC-II and SID
chips that made it  a compelling video game system.
Expansion  and user  ports  existed  for  cartridges  and
add-ons, and a stripped-down C64 variant was later
released as a console-like game system. Early models
of  the  C64  bore  a  strong  resemblance  to  the  prior
VIC-20. Datasettes were still very common but floppy
drives became standard for the machine in the United
States.

Much of the C64's unique character came from its
custom support chips. The VIC-II supported character
and bitmap graphics modes at higher resolution than
the VIC-20, but continued with the VIC's tradition of a
low-color  high-res  mode  and  a  multicolor  low-res
mode. It also supported up to eight sprites at a time,
including extra functions like collision detection. Raster
interrupts  allowed  programmers  to  change  graphics
content while the screen was actually being drawn.

The SID was also a breakthrough for its era, at least
within the home computing market. It was a sound chip
built  around  digital  synthesis  principles  rather  than
being a mere tone generator.  It  supported a total of
three different sound generators called voices, each of
which could produce at  least  four  different  types  of
sounds.  Based  on  the  principles  behind  music
synthesizers,  different  waveforms,  envelopes,  and
filters were available to craft audio output.
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COMMODORE PLUS/4

The Plus/4 began as a cheap computer to compete
with the ZX Spectrum and similar systems. Much like
the  VIC-20,  video,  sound,  and  other  functions  were
combined  into  the  single  TED  chip,  which  could
produce more colors but lacked many VIC-II and SID
features.  The  computer  also  shipped  with  a  faster
6502  processor  and  a  more  advanced  version  of
Commodore's BASIC.

Management  changes  at  Commodore  led  to  the
technology being repurposed into  an  entire  suite  of
business  computers  with  built-in  productivity
software,  marketed  as  the  successor  to  the
Commodore  64 and priced  to  match.  As  a  result  of
these  miscalculations,  the  entire  line  failed  in  the
American  market.  In  recent  years  developers  have
shown  the  system's  full  potential,  porting  existing
titles from the C64 and creating new ones—including
the well-known Pets Rescue platformer in 2019.

THE CODY COMPUTER DESIGN

Having  reviewed  the  systems  that  inspired  it,  it's
time to learn more about the Cody Computer's  own
design.  The Cody Computer's  overall  design is  quite
simple, based around a handful of computer chips and
some discrete components. It has a built-in keyboard
just  like  its  1980s  predecessors.  Instead  of  using
FPGAs and programmable logic, the design is limited
to  modern equivalents  of  the chips  that  would have
been available in the era.  When a modern option is
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unavailable, a close substitute was chosen instead. The
Cody Computer was never intended as a product to be
sold. It's really a DIY project that can be the jumping-
off point for your own designs even if you don't build
one as-is.

Like  many  retrocomputers,  the  Cody  Computer  is
built around the 65C02 microprocessor. It's a modern
variant of the traditional 6502 originally produced by
MOS  Technology,  then  Commodore,  and  finally  the
Western Design Center.  It  can run at speeds over 14
megahertz, but the Cody Computer runs it at a mere 1
megahertz for reasons of both simplicity and period
authenticity. It shares the same 6502 instruction set as
its 1970s and 1980s predecessors, but replaces many
of  the  original  6502's  illegal  instructions  with  new
ones for bit setting, bit testing, and storing registers on
the stack. Some bug fixes are also present. Otherwise
it shares the same simple but powerful 6502 design,
with a single accumulator register,  X and Y indexing
registers, 64 kilobytes of addressable memory space,
and a variety of powerful but easily comprehensible
addressing modes.

The Cody Computer also relies on the Propeller, a
very powerful and completely custom microcontroller
created  by  Parallax,  a  small  company  with  a  long
commitment  to  education,  hobbyists,  and  bespoke
engineering.  It  dates  to  the  early  2000s  and  has  a
total of eight separate processors, called cogs, that can
run up to 20 million instructions per second. Its hub
memory region contains 32 kilobytes of RAM and 32
kilobytes  of  ROM,  including  an  interpreter  for
Parallax's SPIN programming language. All of this is
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available  in  a  40-pin  DIP  package that  fits  with  the
overall aesthetic of the Cody Computer.

The Propeller is the Cody Computer's equivalent of
the VIC, TED, and other custom chips. Out of the eight
cogs, we devote five to video generation, one to sound
generation,  one to serial  communication,  and one to
managing the data and address bus for the 65C02. For
performance  reasons  the  Propeller  is  programmed
directly  in  PASM,  the  Propeller's  low-level  RISC
instruction  set,  rather  than  SPIN.  From  the  65C02's
perspective it doesn't matter, as the Propeller presents
itself as memory-mapped hardware.

MEMORY

The  Cody  Computer  can  address  a  total  of  64
kilobytes  of  memory.  The  lower  40  kilobytes  of
memory are all handled by a single AS6C1008 static
RAM chip. A single page of memory is mapped to a
65C22  Versatile  Interface  Adapter  for  input  and
output. The remaining 24 kilobytes of memory are all
handled by the Propeller chip itself.  16 kilobytes are
used  as  shared  RAM  for  video  and  simulated
peripherals.

Instead  of  a  separate  ROM  chip,  the  Cody
Computer's  ROM  is  actually  included  inside  the
firmware  used  by  the  Propeller,  and  when  memory
accesses hit the appropriate region, the ROM contents
are  returned.  The  top  8  kilobytes  of  RAM  store  the
Cody BASIC ROM and a copy of the character set. In
reality these are kept as 8 kilobytes in the Propeller
immediately after the shared RAM section.
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INPUT AND OUTPUT

Most of the Cody Computer's I/O is controlled by a
single  65C22  Versatile  Interface  Adapter  (VIA).  The
65C22  contains  two  bidirectional  8-bit  I/O  ports,  a
shift register, some additional handshaking pins, and
internal timers.

One  of  the  two  I/O  ports  is  used  to  scan  the
keyboard and joysticks, all of which are wired together
into the same matrix. Three pins are used to select one
of  eight  rows  (six  keyboard  rows  and  two  joysticks)
with  the  help  of  a  CD4051  1-of-8  switch,  with  the
remaining five pins used to read in the keys or joystick
buttons for that row.

The other I/O port and the shift  register are both
wired to a general-purpose expansion port where they
can  be  used  to  interface  with  other  devices.  The
65C22's handshaking lines are instead used to detect
whether  a  cartridge  containing  an  SPI  EEPROM  is
present.

SERIAL PORTS

The  Cody Computer  has  two  serial  ports,  both  of
which  can  operate  at  speeds  of  up  to  19200  baud.
They're  actually  implemented  as  a  dual  UART
peripheral  running in  a  single  cog on the  Propeller.
Both UARTs are hardcoded to support only an 8-N-1
protocol  (one start  bit,  eight  data bits,  no parity bit,
and 1 stop bit). Each UART is polling-based but utilizes
ring  buffers  to  reduce  the  need  for  65C02
intervention.
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It's assumed that the serial channels being used are
unlikely  to  be  prone  to  errors,  particularly  at  the
relatively  low  rates  supported  by  the  emulated
peripherals.  Some  checks  for  simple  errors  are
performed at the UART level, and data sent using the
standard  serial  protocol  contains  no  checksums  or
similar measures.

One of the serial ports is actually the same port as
the Prop Plug connection for programming the board.
This is intended to connect to another system (such as
a  terminal  application)  to  load  and  save  data  and
programs.  It  would  even  be  possible  to  build  a
Datasette-like device that could be interfaced via this
connection.  The  other  serial  port  is  routed  to  the
expansion  slot  alongside  the  pins  connected  to  the
65C22 VIA.

VIDEO

Video output is handled by the Cody Video Interface
Device (VID) peripheral implemented in the Propeller.
It  supports  a  character  graphics  mode  where  the
screen  is  divided  into  40  columns  and  25  rows  of
characters.  Each  character  has  four  horizontal  pixels
and  eight  vertical  pixels,  similar  to  the  Commodore
64's multicolor character mode. Each pixel can be one
of four colors, two of which are unique to the individual
screen location  and two of  which  are  shared by the
entire screen. There is also a similar multicolor mode
for  bitmapped  graphics.  High  resolution  character
graphics and bitmapped graphics modes allow a more
standard eight-by-eight pixel character region at the
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expense  of  some  of  the  more  game-like  graphics
features.

In  fact,  the VID has many game-focused features.
Up to 8 multicolor sprites can also appear on each line.
Smooth  scrolling  is  supported.  Additional  features
allow changing some of the data dynamically to allow
more  colors,  characters,  or  sprites  to  appear  on  the
screen.  These  allow  raster-interrupt-like  effects
through  the  use  of  built-in  video  chip  features.
However, some of these features are only available in
the normal multicolor modes and not the more limited
high-resolution graphics modes.

Video  generation  is  very  complex.  In  the  Cody
Computer,  most of  the Propeller's  internal resources
are  devoted  to  the  video  system.  One  of  the
Propeller's  cogs  is  devoted  to  generating  the  actual
NTSC video  signal  while  four  other  cogs  run  in  the
background to  generate  video data.  These cogs  take
the screen memory, color memory, character memory,
and sprite memory contents and generate pixel colors
that are included in the NTSC signal.

SOUND

Audio  is  produced  by  the  Cody  Sound  Interface
Device (SID),  a  simplified version of  the famous SID
from  the  Commodore  64.  This  peripheral  is  also
implemented using the Propeller and contains a rough
emulation of the SID in a single cog.  The peripheral
supports  three  voices  with  Attack-Decay-Sustain-
Release  (ADSR)  envelopes.  The  SID's  sawtooth,
triangle, pulse, and white noise waves are supported,
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and it also has a rudimentary attempt at features such
as ring modulation.

However, the Cody SID is not a full SID emulation.
Decay constants are linear instead of exponential and
filters  are  not  implemented.  Many  other  differences
also exist, and it's best to view the Cody SID as a SID-
like device with its own unique characteristics.

COMPARISONS AND CONTEXT

The Cody Computer is not compatible with any of
the Commodore lineage (though, to be fair, they were
rarely very compatible with each other).  In  terms of
inspiration and design decisions,  however,  there is  a
significant debt.  Much of  the overall  philosophy and
even  some  specific  details  are  very  similar.  During
development I sometimes considered it a “Commodore
Junior”, a simplified system that was also an homage
to  the  Commodore  64  in  particular.  I  also  took
inspiration from how much the Plus/4 engineers were
able  to  preserve  a  Commodore  feeling  despite
stripping so much of the C64 away.

For  example,  the  Cody  Computer  has  two  video
modes inspired by the C64 and Plus/4. Its character-
based graphics mode is influened by those machines'
multicolor  character  mode.  Similarly,  the  sprite
graphics  are  very  similar  to  the  VIC-II's  multicolor
sprites, even though they don't support features like
collision  detection  and  scale-doubling.  Built-in
support  for  additional  sprite  banks  is  likewise
influenced  by  sprite  multiplexing  routines  from  the
C64. Its bitmap mode is also very similar to those on
the C64 and Plus/4, falling somewhere between the
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VIC-II  and TED in terms of  its  limitations.  The high-
resolution  mode  is  also  very  similar  to  the
Commodore  line  and  may  make  it  easier  to  port
certain applications.

Audio  functionality  is  largely  copied  from  the
Commodore SID design. The Propeller uses a port of a
SID emulation library from the Arduino to mimic basic
synthesis  functions,  providing  waveforms  and  ADSR
functionality  very  similar  in  nature  to  the  SID  chip.
Many  other  features  including  combined  waveforms
and  filters  were  intentionally  not  implemented.  The
SID registers are mapped to the same locations as on
the C64, and there is at least a minimal level of C64
compatibility.

Two side-mounted joystick ports are available as on
later Commodore machines, but they're wired into the
keyboard  matrix  as  rows.  The  keyboard  itself  is  far
from  a  standard  Commodore  layout  and  actively
avoids  the  multi-labelled  PETSCII  hieroglyphics  of
times past. A dedicated expansion port exposes many
of the 65C22 VIA's I/O pins and a second UART from
the Propeller, but it does not expose the 6502 bus as
on  Commodore  machines.  No  dedicated  “user  port”
exists,  but  the  same  serial  port  used  to  exchange
programs is intended for something similar.

For  loading  and  saving  files,  standard  serial
communication  is  used like  a  very  simple  datasette.
For  the  Cody  Computer,  a  dedicated  mass  storage
device is not only excessive but ruins the retro spirit.
Instead,  the  intended  target  is  a  terminal  or  file
application  running  on  another  computer  or  phone.
However, it wouldn't be difficult to build a Datasette-
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like  device  that  could  interface  with  the  Cody
Computer over this serial port.

The  Cody  BASIC  provided  with  the  computer  is
closer to a tokenized Tiny Basic from the 1970s than to
a  1980s  Microsoft  BASIC.  It  supports  16-bit  integer
math rather than floating point,  has a limited set of
commands, and has a limited feature set. However, the
Cody  Computer's  extensions,  including  arrays  and
strings, were largely inspired by Microsoft BASIC from
the Commodore. Cody BASIC is also tokenized, though
it stores the programs as plain ASCII to make it easier
to  load  and  save  BASIC  programs  from  modern
computers.  Tokenization  happens  when  loading,
requiring some input delays by the sender so that the
tokenizer can keep up.

For compatibility reasons the software uses what is
essentially  an  extended  ASCII,  but  the  PETSCII
graphics characters are available. Cody BASIC does not
allow directly  entering the characters  into  the input,
but  the  character  codes  can  be  specified  in  CHR$
commands. Cody BASIC also understands a reserved
set  of  character  codes  that  work  as  control  codes,
including  clearing  the  screen,  changing  foreground
and background colors, and implementing a reverse-
field  effect.  So  in  most  respects,  Commodore-style
PETSCII  graphics  are  still  possible  even  in  a  BASIC
program, just done differently.

The Plus/4 approach of packing a huge amount of
functionality into the TED chip was a major inspiration
for using the Parallax Propeller as a similar device. The
Propeller's advanced capabilities then opened the door
to creating a more C64-like set of features. The low-
resolution  PETSCII  graphics  in  the  Cody  Computer's
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font were inspired by various 40-column extensions
written  for  the  VIC-20.  Having  grown  up  with  a
Commodore  64,  the  source  of  the  inspiration  was
never far away.

In fairness, many of the major decisions were taken
on the basis of what elicited the best response from
one small  dog.  I  wouldn't  have done it  like this.  My
original thought was to add a microcontroller or two
and create  a  modernized PET.  Instead the  real  Cody
preferred  SID  and  TED  music,  YouTube  videos  and
emulations of Commodore games, Propeller demos on
the TV, and so many other things I attempted to find
some way to work in.

In many respects,  he reminded me of myself as a
very young child working on computers, electronics, or
rockets with my father or uncle. My brain liked what it
saw and had a glimpse of the big picture, yet I found
myself  overwhelmed  by  all  the  strange  details  and
held back by tiny hands. And Cody was, in so many
ways, a small dog with the heart and mind of a very
young boy.

In  any  event,  thanks  to  my  four-legged
management,  what you see here is what we got.  Yet
Cody  demonstrated  better  acumen,  wisdom,  and
aesthetics through his smiles, gestures, and tail wags
than  I  ever  encountered  in  my  working  career.  I'll
always  have  doubts  about  certain  design  choices  or
implementation details on my part,  but I  think Cody
was right about the big picture. His apparent interest
(or lack thereof) determined so much of what did and
didn't make the cut. While he was there for so much of
this  work,  he's  no  longer  here  for  one  last  final
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inspection, big smile, or wag of the tail. But I do hope
he would have been proud.
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Hardware and Firmware
Design

2



INTRODUCTION

In  finished  form  the  Cody  Computer  is  small  by
computer standards, fitting into a rectangle about the
size of a large laptop trackpad and a couple of inches
thick. Much of the industrial design is inspired by the
Commodore  64  and  similar  1980s  computers  with
additional influence from the collected works of Tomy,
Playskool,  or  Fisher-Price.  The  overall  intent  was  to
produce  something  that  would  be  identifable  as  an
old-school computer yet come across to a bystander
as unintimidating, fun, and approachable.

From the  top  view you'll  notice  a  prominent  case
badge (complete with an inlaid rainbow-colored badge
in  the  finished  product),  a  large  10mm  power  LED
(blue according to the design, but you can replace it),
and a 30-key keyboard. The keycaps are custom but
compatible  with  Cherry  MX  keystems,  though  the
Cody  Computer  uses  a  nonstandard  spacing  to  fit
everything  into  such  a  small  package.  Standard
keycaps won't work unless you decided to saw them
down.
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Top  of  Cody  Computer  showing  case  badge,  power
LED, and keyboard.

While  you'll  spend  most  of  your  time  from  this
position, looking down at the machine and using the
keyboard, much of its most important functionality is
elsewhere. In particular, a variety of ports on the back
and right side of the computer are used to interface
with the outside world.
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Back of Cody Computer showing expansion port, video,
audio, and Propeller port.

Most of the Cody Computer's ports appear on the
computer's  lower  back  panel.  The  largest  is  an
expansion port that can be used to interface external
devices  or  boot  from  cartridges.  We'll  discuss  the
electrical  characteristics  of  the  expansion  port  later.
For now, it's enough to know it's here.

Next to the expansion port are RCA jacks for NTSC
composite  video  and  mono  audio  output.  The  video
output can be connected to any device that supports
NTSC video input  (unless,  in  rare circumstances,  the
display or converter is incompatible with the software-
generated video from the Cody Computer). The audio
output is generally connected to a splitter and then to
the left and right channels of the display.

The last connector on the back is a four-pin DuPont
connector compatible with Parallax's specifications for
their  Prop  Plug.  Initially  used  to  download  the
firmware to a finished Cody Computer, it later doubles
as a serial  communications port  to other computers,
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mobile phones, or compatible devices using the same
mechanism.

The  remaining  ports  are  on  the  computer's  right
side (as viewed from the top).

Right  side of  Cody Computer  showing joystick  ports
and DC power connector.

Two of  the ports  are  standard Atari-style  joystick
ports  used  by  many  of  the  best  1980s  computers.
Purely  digital,  they  lack  support  for  the  analog
paddles  of  the  Atari  and  Commodore  systems,  but
otherwise are nearly identical. Each presents as a male
DB9  connector  suitable  for  use  with  any  standard
Atari-compatible joystick.

The other port is the DC barrel jack responsible for
delivering  power  to  the  Cody  Computer.  Input  is
typically around 5 volts delivered from a wall-wart or
other  transformer  plugged  into  a  mains  outlet.
Because no switch is built into the Cody Computer, I
suggest connecting an external inline switch between
the DC jack and wall-wart.
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MECHANICAL DESIGN

We'll  explain how to build the Cody Computer  in
the  chapter  on assembly,  but  first  it's  good to  have
some idea of what you're actually building. Aside from
a few core  components,  switches,  and  fasteners,  the
Cody  Computer  is  designed  to  be  printed  on  any
reasonable fused-filament 3D printer.

The  case  itself  is  held  together  with  some  semi-
permanent screws on the lower half that also secure
the main printed circuit  board.  The screws also hold
some slotted brackets for the keyboard module,  and
some rare earth magnets hold a removable top section
to finish the enclosure.

In  addition  to  being  easy  to  assemble,  the  Cody
Computer  is  designed to  be easy to  take apart.  The
magnets  allow  the  top  of  the  case  to  be  easily
removed for a closer inspection of the keyboard and
case interior. The keyboard itself can be easily slid out
of its brackets to expose the main printed circuit board
for the entire system. If you do this a lot, you may find
yourself in need of some additional glue, but the idea
is  for  the  system  to  be  open  for  inquiry  in  every
possible way.

CASE BOTTOM

The  bottom  subassembly,  built  around  the  case
bottom itself, is essentially a stack. The printed circuit
board containing the circuitry for the computer rests
on standoffs at the base of the case. Above the PCB are
two brackets used to provide some support for the top
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of  the  case,  as  well  as  a  mounting  location  for  the
keyboard.

Cutaway  view  of  the  bottom  section  of  the  Cody
Computer.

The entire stack is held together by four screws that
are inserted from the bottom of the case through holes
in the PCB and into the mounting brackets at top. Pilot
holes  for  the  screws are  designed into  the  brackets,
though they may need to be adjusted for  particular
printers.

Holes in the back of the case expose the expansion
port,  video and audio connectors,  and serial  port  on
the back of the printed circuit board.

The  mounting  brackets  contain  slots  to  slide  the
keyboard  assembly  into.  The  right  bracket  also
contains  punchouts  for  the  joystick  ports  and  DC
power  connector.  Recessed  holes  at  the  top  of  the
brackets contain magnets that will anchor to the case
top. The keyboard itself is a separate piece.

KEYBOARD MODULE

The keyboard module consists of a keyboard plate, a
printed  circuit  board,  and  a  set  of  Cherry  MX
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compatible mechanical keyswitches and their keycaps.
The printed circuit board rests along the bottom of the
keyboard plate, with the keyswitches pressed in from
the top. The switches are soldered into the PCB, along
with a DuPont connector, and the keycaps pressed on.

Cutaway view of the keyboard module.

The keyboard plate is  sized to friction-fit  into the
slots on the brackets mentioned earlier.  One side of
the keyboard is slid into place, followed by the other.
This  allows  the  keyboard  to  be  removed  and  the
underlying  PCB  for  the  Cody  Computer  to  be
examined for educational purposes.
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Bottom assembly with keyboard module slotted into
place.

With the keyboard in place, all that remains is the
top cover for the Cody Computer.

CASE TOP

Similar to the bottom cover, the top cover has holes
for the keyboard, case badge, and the holder for the
power LED. These parts are glued or press-fit to the
top of the case. Four bosses for magnets also exist on
the  top  of  the  case.  In  these  locations  magnets  are
glued  into  place,  matching  those  inserted  into  the
brackets attached to the lower half of the computer.
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Cutaway view of the top section of the Cody Computer.

With the magnets correctly affixed to the brackets
and the case top, the top cover can be easily popped
on and off the remainder of the assembly.

Cutaway view of the assembled Cody Computer.

OPENSCAD FILES

All mechanical designs for the Cody Computer were
created  using  OpenSCAD  and  released  under  an
open-source  license.  This  means  that  the  original
design files are available to review and even change if
you  need  to.  The  generated  STL  files  for  each
component are available and should be the primary
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source for printing Cody Computer parts under normal
circumstances. The OpenSCAD files were only there to
produce  the  canonical  set  of  STLs  for  the  Cody
Computer using a standard open source tool.

However,  the OpenSCAD files are available if  you
need to adjust them for your own 3D printer or parts.
They're  direct  translations  from  pencil-and-paper
sketches so they aren't particularly pleasant to work
with. The files aren't done in a parametric CAD style,
magic numbers are everywhere,  and changes to one
measurement will often necessitate other changes. To
the extent that changes are possible, it's wise to limit
them to adding or subtracting fudge factors for specific
3D printer setups or part substitutions.

module CaseBottom() {

    difference() {

        union() {

            // bottom with cavity
            difference () {

                // main shape
                hull() {

                    translate([0, 2, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

                    translate([0, 103, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

                    translate([0, 0, 25]) cube([165, 105, 1]);

                }

                // interior
                translate([2, 2, 2]) cube([161, 101, 25]);

            }

            // PCB mounting standoffs
            translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
            translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
            translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
            translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
        }

        // screw heads
        translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
        translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);
        translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
        translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);

        // screw holes (gives a couple of layers to punch out rather than using supports)
        translate([2.5 + 5, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
        translate([2.5 + 5, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
        translate([2.5 + 5 + 150, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
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Example from Case.scad showing heavy use of magic
numbers.

The Case.scad file contains the designs for the case
top, case bottom, LED holder, badge, and badge inlays.
Each  portion  of  the  design resides  in  its  own SCAD
module  (CaseTop,  CaseBottom,  LEDHolder, 
LEDHolder,  CaseBadge,  and  BadgeInlay).  In  some
cases these modules rely on other modules within the
same file.

The Keyboard.scad file contains the designs for the
keyboard plate  (as  the  KeyboardPlate module)  and
keyboard  brackets.  The  two  keyboard  brackets  are
somewhat different as one contains punchouts for the
DB9  Atari  joystick  ports
(KeyboardBracketWithHoles),  while  the  other  does
not  (KeyboardBracket).  A  helper  module,  DB9Hole,
contains the shape of the hole.

The  Keycap.scad file  contains  the  keycap  designs.
The  Keycap module  has  the  design  for  a  normal
keycap, with the legend specified as a parameter. The
designs for the keycap legends exist as SVG files in a

        translate([2.5 + 5 + 150, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);

        // vent holes
        for(count = [0 : 6]) {
            translate([15 + count * 8, 15, 0]) VentHole();
            translate([15 + count * 8, 105 - 15 - 30, 0]) VentHole();
            translate([165 - 15 - 4 - count * 8, 15, 0]) VentHole();
            translate([165 - 15 - 4 - count * 8, 105 - 15 - 30, 0]) VentHole();
        }

        // expansion port
        translate([2.5 + 34.2, 0, 4]) cube([58, 10, 17 + 10]);

        // video port
        translate([2.5 + 95.7, 0, 11.23]) cube([12, 10, 17]);

        // audio port
        translate([2.5 + 114.9, 0, 11.23]) cube([12, 10, 17]);

        // prop plug port
        translate([2.5 + 134.1, 0, 11.23]) cube([12, 10, 17]);

        // side panel
        translate([0, 10 + 2.5, 11.23]) cube([5, 80, 15]);
    }
}
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subdirectory, with the appropriate SVG legend being
subtracted  from  the  keycap's  face  based  on  the
parameter.

The spacebar  is  a  special  keycap and has  its  own
module,  Spacebar. Supporting modules are  KeySlice,
which  generates  a  two-dimensional  keycap  shape
used  for  extrusion,  and  KeyStem,  which  creates  a
Cherry MX-compatible keystem. The tolerances for a
suitable keystem are quite small, and if you need to
modify any of the SCAD files directly, it will likely be
this one.

The Keychain.scad file is unused for the actual Cody
Computer  build,  but  I've  included  it  anyway.  It's  a
design  for  a  simple  keychain  based  on  the  Cody
Computer's  case  badge  and  has  similar  assembly
requirements.  During  the  Cody  Computer's
development,  one  of  these  was  used  to  test  the
longevity of air-dried clay for keycap legends.

ELECTRONIC DESIGN

We've  discussed  the  overall  concept  behind  the
Cody Computer and how it fits together mechanically,
so now we'll talk about how the actual electronics work.
In  many  respects  this  is  a  guided  tour  through  the
schematics, starting with the power supply and going
on  to  the  microprocessor,  RAM,  and  other  major
components.

While excerpts of the schematics are available here,
the full schematics are also available as original files
or PDF exports. It's recommended to follow along with
those  if  you're  particularly  interested  in  any  of  the
electrical  details.  The  Cody  Computer  was  designed
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using KiCad 5 and later KiCad 6, so even the software
used to design it is available as free and open source
software.

POWER SUPPLY

The Cody Computer's power supply circuit is simple
but  very  important.  Almost  all  of  the  glitches  and
transient  faults  encountered  when  developing  the
computer  were  actually  the  result  of  glitches  in  the
power  supply,  either  from third-party  power  supply
boards  or  from  loose  connections  in  the  wires
supplying power to the breadboards.

Schematic of the Cody Computer's power supply.

For the power supply circuit,  a standard DC barrel
jack (J1) supplies power from a wall-wart transformer
or other device. The external device typically supplies
power at a level around 5 or 6 volts. This is regulated
by  a  LM2937ET-3.3  voltage  regulator  (U2)  that
produces 3.3 volts from the input. There's also a rather
large capacitor (C5) to take care of any minor wobbles.
A 1 kilohm resistor (R1) connects to a 2-pin plug (J2)
for the power LED, so that the LED turns on whenever
power is being supplied to the circuit as a whole.
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The power supply circuit  is  a  subset of  the power
supply  circuit  featured  in  Andy  Lindsay's  Propeller
Education Kit Labs: Fundamentals. Aimed at students,
that circuit was powered from a 9 volt battery and had
regulators for both 5 volts and 3.3 volts. Only a subset
of that circuit is needed here for the 3.3 volt supply.

Andy Lindsay's text and the associated kit were
my introduction  to  the  Propeller  and  were  very
useful in getting started. I  went through a few 9
volt  batteries  during  my  own  later  experiments
and ran into some weirdness when the batteries
started  to  go  dead.  For  very  long-term projects
use your bench power supply.

There are also individual 0.1 microfarad decoupling
capacitors  scattered  throughout  the  circuit,  typically
one per integrated circuit and sometimes more. These
are  omitted  from  the  simplified  schematics  in  this
section  but  appear  in  the  full  schematic.  We  place
these capacitors very close to the positive voltage and
ground  pins  on  each  integrated  circuit  to  ensure  a
reliable and noise-free power supply.
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Part  of  a  Cody  Computer  schematic  showing  some
decoupling capacitors.

Note  that  as  the  Cody  Computer  doesn't  have  a
built-in power switch because of space constraints, it's
beneficial  to  get  an  inline  switch.  There  are  many
power switches that  accept  a  DC jack connector,  and
similar switches have been used on everything from
the ZX81 to most of today's Raspberry Pi models. Such
items  are  available  from  Amazon,  Sparkfun,  and  a
variety of other retailers,  usually costing less than a
few dollars.

PROPELLER

Much  of  the  circuit  is  offloaded  to  a  single
microcontroller, the Parallax Propeller. It does most of
the same jobs as Commodore's old VIC or TED,  and
sometimes a lot more. Fortunately, it's able to keep up
as it's a rather unique (and open-source) device that
actually contains eight lightweight processor "cogs" on
a  single  chip.  It's  used  to  clock  the  65C02
microprocessor,  monitor  and decode the 65C02 bus,
perform  serial  communications,  and  generate  video
and  sound.  The  complexity  of  the  schematic  sheet
containing the Propeller gives you an idea of just how
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important  the  chip  is  to  the  Cody  Computer's
functioning.

Schematic  of  the  Propeller  and  closely-related
circuitry.

When  the  circuit  powers  up,  the  Propeller  (U3)
wakes  up  using  its  own  internal  oscillator.  It  later
switches to a 5 megahertz crystal (Y1) which internally
is multiplied by 16 to give an actual clock frequency of
80  megahertz.  Because  each  Propeller  instruction
takes four cycles (with some exceptions), there are 20
million instructions per second per cog. That's a lot of
CPU cycles, especially when you take into account the
Propeller's built-in support for video generation.  On
the other hand, it has a lot to do!

On startup,  it  checks to see if  a  program is being
uploaded  via  the  Prop  Plug.  If  a  program  is  being
uploaded, the Prop Plug (J3) generates a reset pulse
and begins sending the program. We need this feature
to program the Propeller for the first time, but after
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that,  external  devices  shouldn't  be able  to  reset  the
computer. To inhibit this, a small jumper (JP1) connects
the Prop Plug reset pin to the Propeller's reset pin and
a  pull-up  resistor  (R2).  When  removed,  the  Prop
Plug's reset pin is disconnected so the Propeller's reset
pin  cannot  be  pulled low and trigger  a  reset.  Other
features are unaffected, allowing it to work as a serial
user port to communicate with other devices.

Aside  from  the  rare  circumstance  when  the
Propeller  is  being  programmed,  it  will  load  its
firmware  from  a  32  kilobyte  I2C  EEPROM  (U4),  a
24LC256 or similar. The Propeller has an internal 64
kilobyte  memory  space  of  its  own,  half  of  which  is
RAM and half of which is ROM. The content of the 32
kilobyte I2C EEPROM is copied into the RAM portion
and then run, first using the Propeller's built-in SPIN
interpreter,  but  soon  dropping  directly  into  the
Propeller's own assembly language. Contained in that
EEPROM is not only the program for the Propeller but
also the ROM for the 65C02.

Once the Propeller begins running its code, most of
its  I/O  pins  are  used  for  communicating  with  the
65C02's  system bus and other  devices.  Eight  of  the
Propeller's  I/O  pins,  P16  through  P21,  are  used  to
generate  the  65C02's  PHI2  clock  signal  and  reset
pulse,  chip  select  signals  for  other  devices  on  the
board,  and  monitor  the  read/write  signal  from  the
65C02. An additional two pins are used for a second
UART  that  interfaces  with  the  Cody  Computer's
expansion port.

When  running,  one  of  the  Propeller's  many
responsibilities is to decode the 65C02's address bus.
Along with the mentioned read/write signal, it uses I/
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O pins P0 through P15 to interface with the 65C02's
address  and  data  buses.  We're  even  able  to  share
some  pins  and  minimize  part  count  because  of  a
unique characteristic of the 65C02's bus. The 65C02
puts  the  address  on  the  address  bus  throughout  a
clock cycle, but it only puts the data on the data bus
during the latter half of the cycle when PHI2 is high.
During the first part, when PHI2 is low, the data bus is
essentially disconnected.

This means that we can actually share the same pins
on  the  Propeller  (P0  through  P7)  for  both.  We just
need  a  way  to  control  the  lower  eight  bits  of  the
address  bus  and  shut  them  off  to  avoid  a  collision
when PHI2 is high. To solve that problem, a 74HC541
buffer (U1) sends the lower eight address bits to the
Propeller  when  enabled.  When  disabled,  its  outputs
are  also  tristated,  allowing  the  data  lines  access
instead.

This technique can be used by any 6502-based
system,  not  just  a  Propeller-based  one.  In  the
Propeller community it became popularized from
Dennis  Ferron's  PROP-6502 and Jac  Goudsmit's
Propeddle, both of which used it to solve a similar
problem of conserving I/O pins on the Propeller.

The  Propeller  is  also  responsible  for  generating
NTSC video.  The chip  itself  has  built-in  circuitry  for
generating  NTSC  or  PAL  video  output,  generating  a
variety of colors. However, the circuitry still needs to
be programmed on the software side and interfaced on
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the hardware side using a digital-to-analog converter
(DAC) made of resistors.

Schematic  detail  showing  the  video  output  pins,
resistor DAC, and RCA jack.

For the Cody Computer, I/O pins P24 through P26
are used as the video output pins. These are summed
into a single analog signal through a DAC made of up
of 1.1 kilohm (R6), 560 ohm (R5), and 270 ohm (R4)
resistors  connected  to  an  RCA  composite  video  jack
(J4).  The Cody Computer uses 1% tolerance resistors
for  this  particular  part  of  the  circuit,  but  the  values
aren't  that finicky.  Some resistor values in the same
ballpark should suffice for our purposes. The resistor
values  themselves  come  from  André  Lamothe's
Unleashing  the  Propeller  C3 about  the  eponymous
credit card sized computer.

Audio output  is  handled by the Propeller  as  well.
The Propeller's internal counters and support for pulse
width  modulation  is  used  to  output  a  pulse  with  a
changing  duty  cycle.  The  stronger  the  signal,  the
longer  the  pulse  stays  on  before  turning  off.  This
output, in turn, gets converted by support circuitry into
a normal audio signal.
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Schematic detail of the audio circuit.

For  the  Cody  Computer,  Propeller  I/O  pin  P27  is
used for the audio output.  It  connects to a 220 ohm
resistor  (R7)  which  is  itself  connected  to  a  0.1
microfarad capacitor  (C6).  The resistor  and capacitor
essentially smooth out the on-or-off pulses generated
by the Propeller.  This output is  further filtered by a
larger 10 microfarad capacitor (C7) that also couples
the output to the RCA output jack (J5).

The  circuit  itself  comes  from  a  September  2006
Propeller  forum  posting  by  Parallax  engineer  Paul
Baker, who noted that the circuit was not necessarily
“optimal” but would suffice. I've been using it since I
started  prototyping  with  the  Propeller  on  a
breadboard, and it's been a part of what became the
Cody Computer ever since. You'll find many variations
of  the  same  circuit  floating  around  with  different
component values for different frequency cutoffs.

65C02

The  Cody  Computer's  brain  is  the  65C02
microprocessor (U5). The actual computing performed
by the Cody Computer happens entirely as a result of
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the 65C02's actions. It's also responsible for directing
what  happens  in  the  rest  of  the  circuit,  though  the
Propeller  assists  greatly  when  it  comes  to  decoding
the 65C02's address bus.

Schematic  detail  showing the 65C02 microprocessor
and its connections.

The Propeller's generated PHI2 signal is directed to
the  65C02's  input  on  pin  37;  this  pin  has  gone  by
various names over the years, but in modern variants,
it's  essentially  the  PHI2  clock  input.  A  Propeller-
generated reset pulse is also applied to its reset pin on
startup.  The  65C02's  IRQ  line  is  connected  to  the
corresponding  pin  on  the  65C22  I/O  chip  so  that
timers and output port events can signal the processor
when needed.

The 65C02's other interrupt line, the non-maskable
interrupt (NMI), isn't used in the Cody Computer and
is  connected to  3.3  volts.  Several  other  65C02 pins,
such  as  those  for  setting  overflow  or  enabling  the
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address bus, are also tied high. Some unused pins are
left  unconnected and do not  pose a  concern for  our
purposes.

One notable pin is the RDY pin, which is connected
to  a  3.3  kilohm  pull-up  resistor  (R8)  rather  than
directly tied high to 3.3 volts.  This is because on the
65C02,  a  WAI (wait  for  interrupt)  instruction  can
actually make the RDY pin go low. The 65C02 has no
built-in  pull-up  resistor  to  deal  with  this  problem.
Without  a  pullup  resistor,  the  65C02  would
essentially  be  connecting  the  positive  voltage  to  a
logic zero when a  WAI instruction runs. To avoid that
problem, there needs to be a pull-up resistor.

The  65C02's  other  connections  are  to  the  system
bus.  The 65C02's address pins (or a subset thereof)
are wired to the Propeller, SRAM, and 65C22. The data
bus pins are similarly connected. Lastly, the 65C02's
RWB pin,  a read-write strobe indicating whether the
current bus operation is a read or a write, is connected
to the same devices and completes the necessary bus
signals. The PHI2 clock generated by the Propeller is
used throughout the entire circuit instead of the PHI2
output from the 65C02. The Propeller generates the
master  clock,  so  the  65C02's  PHI2  output  is  left
unconnected.

RAM

Most of the Cody Computer's RAM is provided by a
single  AS6C1008  static  RAM  chip  (U6).  The  chip  is
actually  a  128  kilobyte  memory  chip,  but  the  Cody
Computer  uses  less  than  half  of  that—40 kilobytes
reside in the static RAM and the top 24 kilobytes are
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inside the Propeller itself.  Unfortunately, while there
are  32  kilobyte  static  RAM  chips  and  128  kilobyte
static RAM chips readily available, modern production
of 64 kilobyte static RAM is nonexistent. As a result,
designers just use the next biggest size and ignore the
extra space.

Schematic detail showing static RAM connections.

The  static  RAM  itself  is  rather  unremarkable.  The
address and data pins come directly from the 65C02,
as does the read/write strobe indicating the type of
memory operation in progress. The PHI2 clock and chip
select  both  come  from  the  Propeller,  which  is
responsible for decoding addresses and selecting the
appropriate chip.

If  you  look  closely  at  the  address  and  data  lines
you'll realize they don't match up with the exact same
line on the 65C02. For example, the 65C02's address
line A12 is connected to the static RAM's address line
A8.  It  may  appear  to  be  an  error,  but  it's  a  quite
intentional  choice.  The  static  RAM  is  really  just  a
sequential bunch of byte-sized buckets, and it doesn't
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care  what  65C02  address  maps  to  its  own  internal
address as long as the mapping is one-to-one.

You can't  use this  in  all  cases,  but  for  static  RAM
chips and similar, switching around the lines like this is
a  common  trick  when  you're  trying  to  route  your
printed  circuit  board.  That's  what  happened  to  the
Cody Computer; it was easier to route the connections
if some of the address lines were moved around.

65C22 AND I/O

Aside  from  two  serial  ports  provided  by  the
Propeller,  all  input  and  output  from  the  Cody
Computer  is  handled  by  a  single  65C22  Versatile
Interface  Adapter  (U7).  We  use  some  additional
circuitry  to  assist  in  scanning  the  keyboard,  thus
freeing  up  more  of  the  65C22's  I/O  pins  for  an
expansion port. In general, the Cody Computer's I/O is
there to provide mechanism, not policy. In other words,
you  have  direct  access  to  I/O  pins  which  you  can
program however you want, whether that's to perform
modern  SPI  or  I2C  communications  or  just  turn
individual lines on and off. The only exception is when
a  Cody  Computer  cartridge  is  inserted  into  the
expansion port, at which point certain pins read binary
code from an external SPI memory.
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65C22 and associated I/O ports.

The 65C22 is  connected to the system's data and
address  buses,  with  the  PHI2  clock  and  chip  selects
being provided by the Propeller. The 65C22 also has
an  /IRQ  pin  that's  connected  to  the  65C02's  own
interrupt  pin,  thereby  letting  the  65C22  trigger
interrupts  based  on  timers  or  I/O  events.  The
remainder of  the 65C02's pins are dedicated to two
output ports, port A and port B, both of which are 8-bit
and have some additional  out-of-band pins  used to
handle handshaking or for general I/O.

The Cody Computer uses the 65C22's port A to scan
the keyboard and joysticks. The keyboard and joystick
ports are all combined into the same matrix, consisting
of  five  columns  and  eight  rows.  The  last  two  of  the
eight matrix rows are the two joystick ports,  with all
other rows part of the keyboard itself.

To cut down on pin counts, the CD4051 one-of-eight
analog switch (U8) is used to assist in scanning rows.
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Three output lines from the 65C22 are used to select
one of eight outputs on the CD4051. This specific use
of the CD4051 goes back to the Oric computer.

The use of the CD4051 as a keyboard scanning
aid is explained as part of Garth Wilson's  Circuit
Potpourri.  His  entire  Wilson  Mines  Company
website  is  a  vital  resource  for  those  new to  the
65C02, with his 6502 Primer required reading for
anyone embarking on their own 65C02 computer
design.

Both the keyboard rows and keyboard columns are
connected  to  the  actual  keyboard  by  the  keyboard
connector (J7). Each column is connected to a pull-up
resistor (R9 through R13) so that, by default, a key that
is not pressed will register as a logic 1. When a row is
scanned, the selected row is pulled low by the CD4051,
with all others left disconnected in a high-impedance
state.  In  this  situation,  when  a  key  is  pressed,  it
completes the circuit to ground, resulting in a logic 0
for the pressed key.

The joystick ports, which reside on the main board,
work in a similar fashion. Both joystick ports are male
DB9 connectors (J8 and J9) that support a subset of
the Atari joystick pinout common to the 8-bit era. Each
port has the standard connections for up, down, left,
right, and fire button wired as the keys for a keyboard
row, while the ground pin for each port is wired as one
of the rows on the CD4051's outputs. To scan a joystick,
one selects the row just as for a keyboard, then reads
the joystick pins.
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One minor difference is that the joystick pins have
diodes (D1 through D10) connected to them to avoid
ghosting,  a  phenomenon  where  simultaneous
keypresses  can  result  in  erroneous  data.  We  don't
worry about this for the keyboard itself, as there are a
very  limited  number  of  valid  multiple-key
combinations and ghosting will not be a problem for
those. However, for the joysticks, where vigorous action
and many multiple presses can be expected, we need
to directly deal with the ghosting issue.

The  remainder  of  the  65C22's  I/O  pins  are
connected  to  the  expansion  port  (J6).  All  eight  I/O
pins from 65C22 port B are routed there and can be
used as general-purpose pins in most situations. The
CB1 and CB2 pins can be used as handshake pins for
communication  with  compatible  devices,  but  also
feature a shift-register mode that will likely be more
useful for most applications.  While not connected to
the  65C22,  the  Propeller's  second  UART  has  its
transmit and receive pins routed to the expansion port
as well.

The  CA1  and  CA2  handshake  pins,  not  used  with
port A, are used to check whether a Cody Computer
cartridge  has  been  connected  to  the  expansion  slot.
CA1 is tied high via a 10 kilohm resistor (R14), but will
be pulled down during the cartridge-check routine if
CA1 and CA2 are actually tied together by a cartridge
in the slot. In all other cases, CA1 will remain at a high
logic level and not trigger anything.

In the event a cartridge is detected, the value of PB4
is examined to determine whether the cartridge uses
two-byte  or  three-byte  addressing.  Following  that,
PB0 through PB3 are used to read the contents of the
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cartridge  into  memory  over  a  lowest-common-
denominator SPI protocol for memories.

KEYBOARD

The Cody Computer's keyboard exists as a separate
schematic and printed circuit board. It contains 29 keys
and a spacebar. The physical layout of the keys differs
significantly  from  the  electrical  layout,  with  the
keyboard itself arranged in a very compact QWERTY
layout. The keyboard also uses a nonstandard spacing
to keep the size down.

Three of the keys—the Cody, Meta, and Arrow keys
—are  special  keys  used  to  select  other  characters,
change  caps  lock,  and  delete  or  enter  text.  Two
switches are actually combined into the spacebar, one
on each side of the spacebar' keycap. This solution was
actually easier than designing a nonstandard spacebar
stabilizer.

Schematic with keyboard matrix and connector.

The keyboard matrix  consists  of  31  Cherry  MX or
compatible  switches  (SW1  through  SW31)  arranged
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into an electrical matrix of five columns and six rows.
The  spacebar  uses  two  switches  (SW4  and  SW5)
placed  on  either  end  of  the  spacebar;  from  the
standpoint of the keyboard matrix they're more or less
the same switch. The matrix is wired to the keyboard
connector (J1) and is connected to the main board via a
cable.

No  diodes  are  added  to  the  keyboard  to  prevent
ghosting.  Instead the Cody Computer is  designed so
that no more than two keys would need to be pressed
simultaneously at any time, thereby avoiding ghosting
issues; at least three simultaneous presses would be
necessary to produce ghosting.

Note that this means the keyboard is a poor choice
for  arcade  games  or  similar.  In  those  situations  the
joystick  ports  are  the  more  proper  input  device.  As
mentioned  above,  these  do  have  diodes  to  prevent
ghosting  and  allow the  joysticks  to  be  read  without
problems under heavy use.

PROPELLER FIRMWARE

As mentioned earlier, much of the Cody Computer's
functionality  comes  from  the  Propeller  chip.  That
functionality  is  specified  within  the  Propeller's
firmware.  Mostly  written  in  the  Propeller's  own
assembly language, PASM, with minor use of SPIN, the
Propeller's interpreted high-level language, it should
be at least somewhat understandable to anyone with
experience  in  low-level  programming.  The  files  are
released under the GPL and are available with the rest
of the Cody Computer's files.
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The  Propeller  actually  contains  eight  small
processors,  each  of  which  can  run  its  own  small
program of up to 512 instructions. While this may not
sound  like  a  lot,  it  suffices  for  most  low-level
programming, and larger programs can be written in
SPIN  or  executed  using  various  low-level
workarounds.

For our purposes, we rely on the fast, deterministic
execution  of  Propeller  assembly  language  code,  so
those  don't  apply  to  us.  Instead,  we  break  up  the
necessary  parts  of  the  Cody  Computer's  emulated
hardware into small programs, then start them up on
individual cogs, letting them run until the computer is
shut off.

The firmware is split up into five files:

The cody_computer.spin file contains startup
code and drives the circuit.
The cody_uart.spin file contains code for two
emulated serial UARTs.
The cody_audio.spin file contains a rough
emulation of the SID sound chip.
The cody_video.spin file contains code for NTSC
color video generation.
The cody_line.spin file contains per-line
rendering code used for video.

Each file is heavily commented but we'll do a brief
review of each one here in the book. If you're new to
the  Propeller  you  may  want  to  find  a  reference  for
PASM and SPIN from the Parallax website, especially if
you're going to be following through in the original
source files.

• 

• 

• 

• 

• 
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CODY_COMPUTER.SPIN

The  cody_computer.spin file  contains  the  main
startup  code  for  the  entire  Cody  Computer,  both
Propeller  and  65C02  code,  and  acts  as  the  overall
driver for the rest of the system. Everything else that
happens in the Cody Computer directly or indirectly
happens because of the contents of this file.

In  its  DAT section it  declares the memory regions
that will be visible to the 65C02 bus. One region is a
16-kilobyte  area  containing  zeroes,  used  for  the
emulated  16-kilobyte  RAM.  Following  that  is  an  8-
kilobyte area that contains the contents of the cody.bin
file,  the  65C02  firmware  that  contains  the  Cody
Computer's code and BASIC interpreter.

Declarations  for  shared  memory  mapped  into  the
65C02's address space.

The  actual  startup  code  is  written  in  SPIN,  the
Propeller's  interpreted language,  and is  contained in
the start method. The Propeller contains a copy of the
SPIN  interpreter,  and  once  it  starts  up,  it  calls  this
routine and starts  interpreting the code.  From there,
control  is  passed  to  us.  Our  code  starts  the  audio,
UART,  and  video  cogs  of  the  code,  then  uses  the
Propeller's  coginit function to replace the code in the
current cog with the driver code under cogmain.

DAT

memory

    long 0[4096]    ' 16K shared RAM starting at 65C02 address $A000
    long            ' 8K ROM (BASIC, character set) starting at 65C02 address $E000
    FILE "cody.bin"
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The Cody Computer's startup sequence as written in
SPIN.

The rest of the file is written in PASM. When control
is  passed to  cogmain,  the  assembly  language entry
point, it sets up some of the Propeller's I/O pins and
does some quick memory calculations to speed up the
code later. After that, it emits a reset pulse to start the
65C02 by calling the emit_reset routine.

The entry point in Propeller PASM.

PUB start

    audio.start(@memory)
    uart.start(@memory)
    video.start(@memory)

    waitcnt(cnt + 10000)
    coginit(0, @cogmain, @memory)

cogmain         mov     memory_ptr, PAR

                ' adjust ROM cutoff location with start address of memory
                add     BOUNDARY_ROM, memory_ptr

                ' configure the IO pins used for 6502 and bus signals
                mov     OUTA, INIT_OUTA
                mov     DIRA, INIT_DIRA

                ' run 65C02 reset sequence of 10 clocks with reset high
                call    #emit_reset

                ' dummy read to align our code with hub access windows
                ' before commencing the main loop driving the 6502
                rdbyte  data, addr

emit_reset
                ' begin with reset high and emit 20 clock cycles
                or      OUTA, MASK_RES
                mov     count, #20
:loop
                ' clock low
                andn    OUTA, MASK_PHI
                mov     temp, cnt
                add     temp, #40
                waitcnt temp, temp

                ' clock high
                or      OUTA, MASK_PHI
                mov     temp, cnt
                add     temp, #40
                waitcnt temp, temp

                ' bring reset low after 10 cycles
                cmp     count, #10      wz
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The  Propeller  emit_reset routine  that  starts  the
65C02.

Once done, the program enters the main loop, under
cycle, where it handles all the operations necessary to
drive the circuit for a single cycle. It  brings the PHI2
clock signal for the 65C02 low, reads the address on
the bus to determine what device to use,  selects the
appropriate  device,  and brings the PHI2 clock  signal
high.  Checks are also performed to determine if  the
Propeller itself is the device being selected, which will
happen  if  the  address  is  at  the  top  24  kilobytes  of
memory.

Because this main loop also produces the main clock
for  the  rest  of  the  circuit,  it  must  be  exact  with  its
timing.  In  order  to  achieve that,  we perform what  is
called a hub operation, syncing the code up with the
rest  of  the Propeller,  before entering the main loop.
After  that,  we  go  through  and  add  up  the  time
required  for  each  instruction,  including  other  hub
operations, to ensure that a stable 1 megahertz clock
results  from  the  code  regardless  of  any  path  taken
through it.

if_z            andn    OUTA, MASK_RES

                ' next clock cycle
                djnz    count, #:loop

                ' bring reset high when done
                or      OUTA, MASK_RES

emit_reset_ret  ret

cycle
                ' Begin the main 6502 loop by bringing phi low to end
                ' the previous cycle, then reset the OUTA/DIRA config.
                '
                ' Once we've reset our state to begin the next cycle,
                ' read from the inputs and determine what we need to do.

                andn    OUTA, MASK_PHI          ' phi2 low at start (1)
                mov     DIRA, INIT_DIRA         ' reset IO direction (2)
                mov     OUTA, INIT_OUTA         ' reset output state (3)
                mov     addr, INA               ' read address (4)
                and     addr, MASK_WORD         ' mask address bits (5)
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The  main  loop  that  drives  the  rest  of  the  circuit,
including the 65C02.

In this latter case, it also has to read data from the
65C02's bus into the Propeller or write data from the
Propeller onto the 65C02's bus. In these cases, control
jumps to the  internal branch, and on to the labelled
read or  write sections  depending  on  the  exact
operation. It also performs a special check to see if the
65C02 is attempting to write to the top 8 kilobytes,
and if so, ignore it. This emulates a traditional ROM at
the top of the address space by making it unwritable.

                cmp     addr, BOUNDARY_RAM  wc  ' test address for prop memory (6)
if_nc           jmp     #internal               ' prop internal memory path (7)
                cmp     addr, BOUNDARY_VIA  wc  ' test address for sram or io (8)
if_nc           andn    OUTA, MASK_IOSEL        ' io selected (9)
if_c            andn    OUTA, MASK_RAMSEL       ' otherwise ram selected (10)
                or      OUTA, MASK_ABE_PHI      ' address bus off, phi2 high (11)
                nop                             ' wait (12)
                nop                             ' wait (13)
                nop                             ' wait (14)
                nop                             ' wait (15)
                nop                             ' wait (16)
                nop                             ' wait (17)
                nop                             ' wait (18)
                nop                             ' wait (19)
                jmp     #cycle                  ' next loop (20)

                ' Accessing hub memory so capture the address while the
                ' address bus is enabled, then process as read or write.

internal        sub     addr, BOUNDARY_RAM      ' adjust address for prop (8)
                add     addr, memory_ptr        ' adjust with base pointer (9)
                test    MASK_RWB, INA       wz  ' read or write op? (10)
                or      OUTA, MASK_ABE_PHI      ' address bus off, phi2 high (11)
if_z            jmp     #write                  ' write operation (12)

                ' Performing a read operation from the hub memory, so we
                ' have to read from memory during the hub window and put
                ' the data on the data bus (note that the pin direction
                ' also has to be changed to actually put the data on the
                ' 6502 bus).

read            nop                             ' wait (13)
                nop                             ' wait (14)
                rdbyte  data, addr              ' read byte (15, 16)
                or      OUTA, data              ' set output data (17)
                or      DIRA, MASK_LOBYTE       ' enable outputs (18)
                nop                             ' wait (19)
                jmp     #cycle                  ' next loop (20)

                ' Performing a write operation, so we need to get the
                ' data from the 6502 data bus and write it to hub ram
                ' during our hub window.

write           mov     data, INA               ' get input data (13)
                cmp     addr, BOUNDARY_ROM  wc  ' test for non-writeable ROM area (14)
if_c            wrbyte  data, addr              ' write input data (15, 16)
                nop                             ' wait (17)
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The  paths  taken  when  the  Propeller's  memory  is
accessed by the 65C02.

CODY_UART.SPIN

The Cody Computer contains two UART devices used
for  serial  communication.  However,  both  are
implemented purely in software inside the Propeller
and  are  exposed  to  the  65C02  through  shared
memory in the Propeller. Each UART uses ring buffers
in memory for transmitted and received information, a
technique very common in serial communications.

Both  are  defined  in  the  same file  and  run  in  the
same  cog,  with  coroutines  used  to  interleave  the
running  code  for  both  UARTs.  The  Propeller  has  a
special  machine  language  instruction,  jmpret,  that
performs  a  jump  while  updating  a  return  address,
making it well-suited for implementing coroutines.

The  cody_uart.spin file  contains  a  start method
that's called by the main program to launch the UART
cog.  Passed along as a parameter is  the base of the
shared  memory  area  in  the  Propeller.  Because  the
UART will talk to the rest of the circuit using addresses
in shared memory it needs to know where the shared
memory begins within the Propeller.  From there, the
start method,  written in SPIN,  eventually launches a
new cog with assembly code using cognew.

                nop                             ' wait (18)
                nop                             ' wait (19)
                jmp     #cycle                  ' next loop (20)

PUB start(mem_ptr)
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The UART start entry point written in SPIN.

The assembly code, starting under cogmain, begins
by  adjusting  a  variety  of  memory  pointers  with  the
base  address  of  shared  memory.  This  way  the
adjustment  only  occurs  once  at  the  start  of  the
program  rather  than  each  time  it  reads  or  writes  a
value. After that, it configures the Propeller I/O pins
used  for  serial  I/O  and  does  initial  setup  for  the
coroutines.

Two variables, uart1_task and uart2_task, store the
current positions within the  uart1 and  uart2 routines
(the names are just a convention and could have been
anything).  The  UARTs  are  implemented  within  the
uart1 and  uart2 routines,  which  are  identical  except
that they use different local variables and I/O pins.

The PASM cogmain that sets up the UARTs.

Control initially begins with  uart1.  On each loop it
begins by checking if the UART is enabled, and if so,
reading the baud rate from the UART's configuration
settings.  Once  read  the  baud  rate  is  converted  to  a
time value using the BAUD_RATE_TABLE. If the UART

    cognew(@cogmain, mem_ptr)

cogmain
                ' Adjust all pointers using hub memory base address
                mov     temp, #18
:adjust         add     UART1_CONTROL, PAR
                add     :adjust, INC_DEST
                djnz    temp, #:adjust

                ' Initialize serial port pins
                or      DIRA, UART1_TX_PIN
                or      OUTA, UART1_TX_PIN

                or      DIRA, UART2_TX_PIN
                or      OUTA, UART2_TX_PIN

                ' Prepare to run as coroutines
                mov     uart2_task, #uart2
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is disabled then it does some cleanup at the end and
loops until the UART is reenabled.

The initial lines of the UART1 routine.

BAUD_RATE_TABLE lookup table that  maps register
values to time delays.

When the UART is running, it checks to see if any
bits remain to be sent, and if so, whether enough time
has elapsed since the last bit to send another one. If
there are no more bits to send, it checks to see if there
are more bytes to send in the transmit ring buffer and
brings in the next byte. Using that byte, it constructs

uart1
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' Is the UART running?
                rdbyte  temp, UART1_COMMAND
                test    temp, #$01              wz
if_z            jmp     #:disabled

                ' Mark UART1 status bit as high
                or      uart1_state, #$40
                wrbyte  uart1_state, UART1_STATUS

                 ' Get the baud rate for the UART
                rdbyte  temp, UART1_CONTROL
                and     temp, #$0F
                add     temp, #BAUD_RATE_TABLE
                movs    :baud, temp
                nop
:baud           mov     uart1_delta, 0-0

BAUD_RATE_TABLE long    0                               ' 0x0
                long    (80_000_000 /    50)            ' 0x1
                long    (80_000_000 /    75)            ' 0x2
                long    (80_000_000 /   110)            ' 0x3

                long    (80_000_000 /   135)            ' 0x4
                long    (80_000_000 /   150)            ' 0x5
                long    (80_000_000 /   300)            ' 0x6
                long    (80_000_000 /   600)            ' 0x7

                long    (80_000_000 /  1200)            ' 0x8
                long    (80_000_000 /  1800)            ' 0x9
                long    (80_000_000 /  2400)            ' 0xA
                long    (80_000_000 /  3600)            ' 0xB

                long    (80_000_000 /  4800)            ' 0xC
                long    (80_000_000 /  7200)            ' 0xD
                long    (80_000_000 /  9600)            ' 0xE
                long    (80_000_000 / 19200)            ' 0xF
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the entire frame for the byte, including a start bit and
a stop bit, and saves it so that the code can send it out
a bit at a time.

                ' Yield to other UART
:transmit       jmpret  uart1_task, uart2_task

                ' Do we have bits left to send?
                cmp     uart1_tx_left, #0       wz
if_nz           jmp     #:send

                ' Get buffer head and tail positions
                rdbyte  head, UART1_TXHEAD
                and     head, #$07

                rdbyte  tail, UART1_TXTAIL
                and     tail, #$07

                ' Is the buffer empty? If so, move on
                cmp     head, tail              wz
if_z            jmp     #:receive

                ' Mark transmit bit as high
                or      uart1_state, #$10
                wrbyte  uart1_state, UART1_STATUS

                ' Read the next item from memory
                mov     temp, UART1_TXBUF
                add     temp, tail
                rdbyte  uart1_tx_bits, temp

                ' Update the tail position
                add     tail, #1
                and     tail, #$07
                wrbyte  tail, UART1_TXTAIL

                ' Construct frame for bits (start and stop bit)
                or      uart1_tx_bits, #$100
                shl     uart1_tx_bits, #2
                or      uart1_tx_bits, #1

                ' Calculate first timestamp to send a bit
                mov     uart1_tx_time, CNT
                add     uart1_tx_time, uart1_delta

                ' Loop 11 times (high, start, data, stop)
                mov     uart1_tx_left, #11

:send
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                 ' See if it's time to send data
                mov     temp, uart1_tx_time
                sub     temp, CNT
                cmps    temp, #0                wc
if_nc           jmp     #:receive

                ' Shift out the next bit
                shr     uart1_tx_bits, #1       wc
                muxc    OUTA, UART1_TX_PIN
                add     uart1_tx_time, uart1_delta

                ' Decrement bit count by one
                sub     uart1_tx_left, #1       wz

                ' Clear transmit bit when done with the byte
if_z            andn    uart1_state, #$10
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Code path taken when transmitting bits.

The receive process is generally the same, checking
to  see  if  a  bit  needs  to  be  read,  and  if  no  receive
operation is in progress, whether a start bit has been
encountered. As bytes are read, they are added to the
receive buffer similar to how they're consumed from
the transmit buffer. Throughout the process, the code
updates various local variables,  status bits in shared
memory,  and at  key points  jumps back to  the other
UART so both run concurrently.

if_z            wrbyte  uart1_state, UART1_STATUS

:receive
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' Are we already receiving a byte?
                cmp     uart1_rx_left, #0       wz
if_nz           jmp     #:recv

                ' Do we have a start bit? (start bits are 0)
                test    UART1_RX_PIN, INA       wz
if_nz           jmp     #uart1

                ' Mark receive bit as high
                or      uart1_state, #$08
                wrbyte  uart1_state, UART1_STATUS

                ' Calculate first timestamp to receive a bit
                mov     uart1_rx_time, uart1_delta
                shr     uart1_rx_time, #1
                add     uart1_rx_time, uart1_delta
                add     uart1_rx_time, CNT

                ' Clear out bits
                mov     uart1_rx_bits, #0

                ' Nine bits to receive (includes the stop bit)
                mov     uart1_rx_left, #9

:recv
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' See if it's time to receive data
                mov     temp, uart1_rx_time
                sub     temp, CNT
                cmps    temp, #0                wc
if_nc           jmp     #uart1

                ' Read the next bit
                test    UART1_RX_PIN, INA       wz
if_nz           or      uart1_rx_bits, BIT_9
                shr     uart1_rx_bits, #1
                add     uart1_rx_time, uart1_delta

                ' Decrement number of bits left to read
                sub     uart1_rx_left, #1       wz
if_nz           jmp     #uart1
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Code path taken when receiving bits.

Some  special  paths  exist  for  when  errors  are
detected  or  the  UART  is  disabled.  During  error
conditions  an  appropriate  bit  is  set  in  the  status
register to indicate the nature of the problem. When
the UART is disabled, it is also an opportunity to reset
the  UART  for  the  next  time  it's  used.  Some  of  the
internal variables in particular need cleared out.

                ' Test stop bit was set (framing error?)
                test    uart1_rx_bits, BIT_8    wz
if_z            jmp     #:frame

                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' Get buffer head and tail positions
                rdbyte  head, UART1_RXHEAD
                and     head, #$07

                rdbyte  tail, UART1_RXTAIL
                and     tail, #$07

                ' Check for overflow (can only store 7 items)
                mov     temp, tail
                sub     temp, head
                abs     temp, temp
                cmp     temp, #7                wc
if_nc           jmp     #:overflow

                ' Calculate address for next byte in buffer
                mov     temp, UART1_RXBUF
                add     temp, head

                ' Calculate new buffer head position
                add     head, #1
                and     head, #$07

                ' Update buffer and position
                wrbyte  uart1_rx_bits, temp
                wrbyte  head, UART1_RXHEAD

                ' Clear receive bit at end of byte
                andn    uart1_state, #$08
                wrbyte  uart1_state, UART1_STATUS

                jmp     #uart1

:frame
                ' Set frame bit (bit 1) on status register
                or      uart1_state, #$02
                wrbyte  uart1_state, UART1_STATUS

                jmp     #uart1

:overflow
                ' Set overflow bit (bit 2) on status register
                or      uart1_state, #$04
                wrbyte  uart1_state, UART1_STATUS

                jmp     #uart1
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Special paths used when an error is found or the UART
is turned off.

The  UART  code,  while  not  as  complex  as  other
portions  of  the  firmware,  still  contains  a  variety  of
concepts that  may be new.  For  a  simple example of
implementing  a  single  UART  on  the  Propeller,  one
might  start  with  the  Full  Duplex  Serial example  by
Propeller  designer  Chip  Gracey  posted  on  the
Propeller  OBEX.  The  code  uses  coroutines  to  toggle
between the receive and transmit  paths  for  a  single
software  UART  and  lacks  many  of  the  complicating
factors  in  the  Cody Computer  UART code.  It  is  very
useful as a learning aid or reference.

CODY_AUDIO.SPIN

The Cody Computer uses a simplified version of the
Commodore SID chip for its sound generation. Instead
of  a  real  SID,  one  of  the  cogs  in  the  Propeller  is
devoted to generating audio output, and a portion of
the  shared  memory  is  set  aside  to  mimic  the  SID's
registers.

The  Cody  Computer's  implementation  is  in  most
respects  a  port  of  the  GPL-licensed  MOS6581  SID
Emulator  Arduino Library by Christoph Haberer  and
Mario  Patino.  In  addition  to  rewriting  the  library  in
PASM  from  the  original  code,  many  changes  were

:disabled
                ' Clear any pending bits in the system
                mov     uart1_rx_left, #0
                mov     uart1_tx_left, #0
                mov     uart1_state, #0

                ' Clear out any registers managed by the UART
                wrbyte  ZERO, UART1_RXHEAD
                wrbyte  ZERO, UART1_TXTAIL
                wrbyte  ZERO, UART1_STATUS

                jmp     #uart1
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made  to  support  the  Propeller's  similar  but  not
identical output-pin hardware. Yet other changes had
to be made to integrate it into the Cody Computer as a
whole.

SIDcog is  a  more  complete  emulation  for  the
Propeller  created  by  Johannes  Ahlebrand  and
later  enhanced  by  Ada  Gottensträter.  The
emulator is excellent but some timing and space
requirements on top of our already busy Propeller
made it a challenge to integrate. Nonetheless, the
possibility exists for an interested reader.

As with the other portions of Propeller firmware, the
implementation is written using PASM. A small SPIN
method,  start,  launches  the  cog  with  PASM  code
starting at  cogmain,  similar  to  the UART.  The PASM
code  begins  by  adjusting  some  internal  memory
pointers relative to the shared memory region, sets up
an output pin for the audio signal, and initializes some
variables used for the main loop.

One important step is setting the cog's ctra register
to  enable  what's  known  as  the  duty  single-ended
mode on the pin we've selected for audio output. Each
cog  has  an  internal  counter  that  can  be  used  for  a
variety  of  operations.  In  this  case  we're  using  the
counter to quickly generate an on-or-off output with a
varying duty cycle faster than we could possibly do in
software alone.

The  external  circuitry  discussed  in  the  previous
section  smoothes  this  out  into  an  analog  waveform
despite  the  actual  output  being  a  digital  on-or-off.
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Once  enabled,  we  can  put  an  output  value  into  the
matching  frqa register to control the duty cycle, and
by extension, control the sound that comes out of the
Propeller.

The cogmain entry point in PASM.

From  there  the  code  enters  main_loop,  which
begins  by waiting until  enough time has elapsed to
run the main loop again. The Cody Computer's SID has
a  sample  rate  of  16  kilohertz,  which  means  that  we
want the main loop to run 16000 times per second.
The Propeller's clock ticks 80 million times per second,
so after dividing the Propeller's clock by the desired
sampling rate, we realize we need to run the loop once
every  5000  ticks.  And  because  each  Propeller
instruction takes four of its clock cycles, we calculate
that  our  loop  has  to  run  in  no  more  than  1250
instructions.

When the loop is ready to run again, it begins by
updating the white noise generator.  White noise was
one of the waveform options for the real SID,  so we
also  need  a  source  for  it  here.  Our  implementation
follows  the  Arduino  SID  emulator  mentioned
previously, so it uses a linear feedback shift register
implemented in software.

cogmain
                ' Calculate actual position of registers
                add     REGS_BASE, PAR
                add     OSC3_PTR, PAR
                add     ENV3_PTR, PAR

                ' Configure output for sound
                mov     dira, INIT_DIRA
                mov     ctra, INIT_CTRA

                ' Configure timing
                mov     time, cnt
                add     time, WAIT_TIME

                mov     output, #0
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In a linear feedback shift register, a sequence of bits
is generated by storing a seed value, extracting certain
bits, shifting the original value, A portion of the result
can be extracted and used for other purposes (such as
noise), with other portions of the result fed back in to
repeat the proces on the next iteration.

Once the noise value is updated, the code runs the
:voice_loop three  times,  one  for  each  voice.
Subroutines for processing the voice are called from
within the loop.  Once done, the voices are combined
and output by calling the make_output routine.

The Cody SID's main loop.

The  voice_begin routine  prepares  everything  for
generating a voice. Because the Propeller's assembly

main_loop

:loop
                ' Wait for next cycle
                waitcnt time, WAIT_TIME

                ' Update noise
                mov     temp, noise
                and     temp, #$1
                neg     temp, temp
                and     temp, NOISE_BITS
                shr     noise, #1
                xor     noise, temp
                and     noise, MASK_16

                ' Start at beginning of internal voice states on each main loop
                movs    readvar, #state1
                movd    savevar, #state1

                ' Start at beginning of registers on each main loop
                mov     register_ptr, REGS_BASE

                ' Three voices to process
                mov     voice_count, #3
:voice_loop
                call    #voice_begin
                call    #make_wave
                call    #make_envelope
                call    #make_waveform
                call    #voice_end

                djnz    voice_count, #:voice_loop

                ' Combine into a single output
                call    #make_output

                ' Repeat the main loop
                jmp     #:loop
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language  has  very  limited  support  for  indirect
addressing,  the  code  has  to  copy variables  for  each
voice  to  temporary  variables  used  within  the  loop.
When it's done processing the current voice, it copies
them back at the end.

Once that initial per-voice setup is completed, the
code performs special  checks for the SID's sync and
test bits. If the sync bit is enabled the code syncs the
current voice's phase with another voice, but if the test
bit is set, the code resets most of the current voice's
internal state.

The  voice_begin routine  called  at  the  start  of  each
loop.

The next part of the loop is in  make_wave,  which
generates the wave portion of the current voice.  The
wave,  which  is  the  raw  triangle,  sawtooth,  pulse,  or

voice_begin
                ' Read the registers for a single voice into COG memory
                movd    :readreg, #voice_freq_l
                mov     count, #7
:readreg        rdbyte  0-0, register_ptr
                add     :readreg, INC_DEST
                add     register_ptr, #1
                djnz    count, #:readreg

                ' Copy the internal states for the current voice into temp vars
                movd    readvar, #state
                mov     count, #7
readvar         mov     0-0, 0-0
                add     readvar, INC_BOTH
                djnz    count, #readvar

                ' Sync voice if the other voice indicates it's time to sync,
                ' test if sync bit is on AND it's time to sync (order is)
                ' reversed because we're counting down).
                cmp     voice_count, #2                     wc,wz
if_nc           movd    :testsync, #sync3     ' Voice 1 uses voice 3
if_z            movd    :testsync, #sync1     ' Voice 2 uses voice 1
if_c            movd    :testsync, #sync2     ' Voice 3 uses voice 2
                nop
:testsync       test    0-0, voice_control                  wz
if_nz           mov     phase, #0

                ' Reset voice if the test bit is on
                test    voice_control, #$08                 wz
if_nz           mov     phase, #0
if_nz           mov     amplitude, #0
if_nz           mov     state, #0

voice_begin_ret ret
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noise signal, is shaped by an envelope in a later step.
However, it comprises the base upon which the rest of
the sound is built.

To  begin,  it  takes  the  frequency  specified  for  the
voice, using that to update an internal phase counter.
This  counter  is  used to  determine what  portion of  a
particular wave to generate based on how much time
has  gone  by.  Different  code  paths,
:triangle,  :sawtooth,  :pulse, and :noise, exist for each
supported wave type.

make_wave
                ' Combine frequency into 16 bit number
                ' Shift by 2 because frequency * 4000 / 16 KHz sample rate
                mov     freq_coefficient, voice_freq_h
                shl     freq_coefficient, #8
                or      freq_coefficient, voice_freq_l
                shr     freq_coefficient, #2

                 ' Calculate next phase
                mov     temp_phase, phase
                add     temp_phase, freq_coefficient

                ' If we overflowed, set our internal sync bit to apply later
                testn   temp_phase, MASK_16                 wz
                muxnz   sync, #$02

                ' Limit phase calculation to 16 bits internally
                and     temp_phase, MASK_16

:triangle
                ' Triangle waveform?
                test    voice_control, #$10                 wz
if_z            jmp     #:sawtooth

                ' Time to invert? (Goes up half the time, then down half the time)
                ' Double the value to make sure it covers the full range
                mov     wave, phase
                test    wave, BIT_15                        wz
                shl     wave, #1
if_nz           xor     wave, MASK_16
                and     wave, MASK_16
                jmp     #:done

:sawtooth
                ' Sawtooth waveform?
                test    voice_control, #$20                 wz
if_z            jmp     #:pulse

                mov     wave, phase
                jmp     #:done

:pulse
                ' Pulse waveform?
                test    voice_control, #$40                 wz
if_z            jmp     #:noise

                mov     temp, voice_pulse_h
                shl     temp, #8
                or      temp, voice_pulse_l
                shl     temp, #4
                and     temp, MASK_16
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The  make_wave routine  generates  a  voice's
underlying sound.

After generating the wave,  make_envelope runs to
generate the ADSR envelope. ADSR, short for Attack-
Decay-Sustain-Release, is a key concept in synthesis,
specifying  the  "envelope"  for  a  sound.  The  attack
specifies  how  long  it  takes  to  reach  a  maximum
volume  once  a  sound  is  started,  while  the  decay
specifies how long it  takes for the sound to go back
down  to  its  sustain  level  after  peaking.  The  release
specifies how long the sound takes to fade out once
the sound is shut off.

For the Cody Computer's SID, a voice is turned on
when its gate bit is set, so the code checks it to see if
the sound has started. It also refers to an internal state
variable  to  determine  where  it  is  in  the  ADSR
envelope.  As  part  of  the  calculations,  precomputed
tables  ATTACK_RATES,  DECAY_RATES,  and
SUSTAIN_LEVELS are used to look up how much to
add or subtract during the attack and decay or what

                cmp     phase, temp                         wc
if_c            mov     wave, MASK_16
if_nc           mov     wave, #0

                jmp     #:done

:noise
                ' Noise waveform?
                test    voice_control, #$80                 wz
if_z            jmp     #:done

                mov     temp, phase
                xor     temp, temp_phase
                test    temp, PHASEBIT_NOISE                wz
if_nz           mov     temp, noise
if_nz           and     temp, MASK_16
if_nz           mov     wave, temp

:done
                ' Update phase for the current voice (limited to unsigned 16 bits)
                mov     phase, temp_phase

                ' Ensure wave only has 16 bits of resolution
                and     wave, MASK_16

make_wave_ret   ret
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volume level to hold at during sustain. At the end of
the calculation, it has generated the envelope that will
be combined with the previously-generated wave.

make_envelope
                ' Is gate bit set? (playing a note?)
                test    voice_control, #$01                 wz
if_z            jmp     #:release

:attack
                ' Gate bit set, but are we on attack or decay state?
                tjnz    state, #:decay

                ' Increment amplitude with attack value from table
                movs    :addattack, #ATTACK_RATES
                mov     temp, voice_attack_decay
                shr     temp, #4
                add     :addattack, temp
                nop
:addattack      add     amplitude, 0-0

                ' Did we reach the maximum value (end of attack portion?)
                cmp     amplitude, MAXLEVEL                 wc
if_c            jmp     #:done

                ' Cap at maximum amplitude, enter decay phase
                mov     amplitude, MAXLEVEL
                mov     state, #1

                jmp     #:done

:decay
                ' Look up the matching sustain value from the table
                mov     temp, voice_sustain_release
                shr     temp, #4
                add     temp, #SUSTAIN_LEVELS
                movs    :getsustain, temp
                nop
:getsustain     mov     level_sustain, 0-0

                ' Did we reach that sustain level?
                cmp     level_sustain, amplitude            wc
if_nc           jmp     #:done

                ' Subtract the current decay value from our amplitude,
                ' but don't let our amplitude fall below zero
                mov     temp, voice_attack_decay
                and     temp, #$0F
                add     temp, #DECAY_RATES
                movs    :subdecay, temp
                nop
:subdecay       sub     amplitude, 0-0                      wc
if_c            mov     amplitude, #0

                ' Limit amplitude from falling below sustain level
                min     amplitude, level_sustain

                jmp     #:done

:release
                ' Gate bit is off so not in attack state
                mov     state, #0

                ' Have we reached zero amplitude?
                tjz     amplitude, #:done

                ' Subtract the current decay value from our amplitude,
                ' but don't let our amplitude fall below zero
                mov     temp, voice_sustain_release
                and     temp, #$0F
                add     temp, #DECAY_RATES
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The make_envelope routine generates a voice's ADSR
envelope.

The make_waveform combines both of these values
together. It  first checks if ring modulation is enabled
and applies  it  if  so.  Ring  modulation  is  a  technique
where  one  voice  is  combined  with  the  output  of
another to generate unique sounds, and the SID chip
implemented a special case of ring modulation that we
attempt to mimic.

Once ring modulation has been applied,  the wave
value and the envelope value are multiplied together
to get the final waveform value for this  voice in the
loop.

                movs    :subrelease, temp
                nop
:subrelease     sub     amplitude, 0-0                      wc
if_c            mov     amplitude, #0

                ' Scale envelope from 24 to 16 bits resolution
:done           mov     envelope, amplitude
                shr     envelope, #8

make_envelope_ret   ret

make_waveform
                ' We'll be multiplying the wave value by the envelope value
                mov     x, wave

:ring
                ' Ring modulation bit?
                test    voice_control, #$04                 wz
if_z            jmp     #:done

                ' For "ring modulation" we invert the wave based on another's phase
                ' (Order is reversed because we're counting down)
                cmp     voice_count, #2                     wc,wz
if_nc           movd    :testphase, #phase3   ' Voice 1 uses voice 3
if_z            movd    :testphase, #phase1   ' Voice 2 uses voice 1
if_c            movd    :testphase, #phase2   ' Voice 3 uses voice 2
                nop
:testphase      test    0-0, BIT_15                         wz
if_nz           xor     x, MASK_16

:done
                ' Multiply the wave by the envelope
                mov     y, envelope
                call    #multiply

                ' Scale result down from 32 to 16 bits
                shr     y, #16
                mov     output, y
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The  make_waveform routine that combines the wave
and envelope.

After  that,  there  are  some  bookkeeping  tasks  to
perform, such as copying the temporary variables back
to  their  original  locations.  At  the  end  of  each  voice
loop the voice_end routine is called. This handles any
final processing or cleanup at the end of a voice. As a
practical  matter,  it's  responsible  for  copying  the
temporary  voice  variables  back  to  their  permanent
locations.  Just  as  voice_begin copied them in  at  the
beginning of  the loop,  this  routine does the reverse
when the voice has come to an end. Once that's done,
the voice_loop repeats for each remaining voice.

The  voice_end routine saves the values of temporary
variables.

Once output values for all  three voices have been
generated, make_output puts them together. All three
voices  are  combined  together  (with  the  possible
exception of voice 3, which can be shut off), multiplied
by the current global volume, and scaled to the range
supported  by  the  audio  output  circuitry.  Once  the
combined  output  value  is  written  to  the  Propeller's
frqa register, the rest is handled by hardware, and a
pulse-width-modulated signal is output to the audio
circuitry on the board.

make_waveform_ret   ret

voice_end
                movs    savevar, #state
                mov     count, #7
savevar         mov     0-0, 0-0
                add     savevar, INC_BOTH
                djnz    count, #savevar

voice_end_ret   ret
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A few other operations are also performed, such as
updating  a  couple  of  shared  memory locations  with
some internal values from voice 3. The SID did this and
the  values  were  often  used  for  random numbers  or
special audio effects, so here we do something similar
to keep the spirit alive. Other features such as filters
haven't been implemented.

The make_output routine merges all three voices into
one output.

Note  that  because  the  Propeller  has  no  built-in
multiplication hardware,  all  multiplication is  done in
software.  While  this  sounds  somewhat  primitive,  it
also  helps  keep  the  Propeller  the  simple  and

make_output
                ' Read the filter registers
                movd    :readfilt, #filter_cutoff_l
                mov     count, #4
:readfilt       rdbyte  0-0, register_ptr
                add     :readfilt, INC_DEST
                add     register_ptr, #1
                djnz    count, #:readfilt

                ' Combine outputs (voice 3 is a special case)
                mov     x, output1
                add     x, output2

                ' Voice 3 is skipped if bit is set
                test    filter_mode_volume, #$80            wz
if_z            add     x, output3

                ' Apply volume setting
                mov     y, filter_mode_volume
                and     y, #$0F
                call    #multiply
                shr     y, #4

                ' Scale output value to Propeller PWM value
                mov     output, y
                sub     output, BIT_15
                shl     output, #11
                add     output, BIT_31
                mov     frqa, output

                ' Write high byte of voice 3 oscillator waveform
                mov     temp, wave3
                shr     temp, #8
                wrbyte  temp, OSC3_PTR

                ' Write high byte of voice 3 envelope
                mov     temp, envelope3
                shr     temp, #8
                wrbyte  temp, ENV3_PTR

make_output_ret ret
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deterministic system it is from a hardware standpoint.
We  have  a  routine,  multiply,  that  was  taken  from
Appendix B of the Propeller's reference manual and
multiplies two 16-bit numbers together.  This suffices
for our purposes and doesn't take that many cycles.

The software multiply routine.

CODY_VIDEO.SPIN

A significant portion of the Propeller's capabilities
are  used  to  implement  the  Cody  Computer's  Video
Interface Device (VID). Five of the chip's eight cogs are
devoted to some aspect of video generation, and the
chip's custom video generation hardware is utilized to
generate  an  NTSC-compatible  analog  video  signal.
The Propeller contains circuitry that can generate all
the  relevant  portions  of  a  video  signal,  including
blanking and color sync pulses.

Using the circuitry involves configuring a counter to
the appropriate output rate for the video signal, then
using the  waitvid instruction to pass color and pixel
data  to  it.  As  a  special  case,  we  can  actually  call
waitvid with  four  colors  and  four  pixels,  making  it
possible to use any of the Propeller's colors anywhere
on the screen.

multiply
                shl     x, #16      ' Get multiplicand into x high bits
                mov     t, #16      ' Ready for 16 multiplier bits
                shr     y,  #1  wc  ' Get initial multiplier bit into c
:loop

if_c            add     y, x    wc  ' If carry set, add multiplicand into product
                rcr     y, #1   wc  ' Get next multiplier bit into c, shift product

                ' Loop until done
                djnz    t,  #:loop

multiply_ret    ret
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Software-based  NTSC  video  generation  from  first
principles isn't something that can be easily summed
up in a few paragraphs. One level of detail would be to
discuss  the  characteristics  of  the  signal  itself,  while
another would be to discuss in depth the Propeller's
unique capacities for analog video output. In this book
it's  assumed  that  all  of  that  just  works,  instead
focusing on how these capabilities are used at a high
level  to  implement  the  Cody  Computer's  video
interface device.

For a more in-depth discussion of video generation
without all the extra complications caused by the Cody
Computer, one might start with Eric Ball's  NTSC and
PAL Driver Templates available on the Propeller OBEX.
Portions of that code were foundational to the Cody
Computer's  own  video  code,  and  it's  an  excellent
walkthrough of analog video generation in the context
of  the Propeller.  I'd  also recommend reading any of
the relevant Propeller forum postings.

Video generation on the Cody Computer begins in
the cody_video.spin file. Memory is reserved for four
scanline "mailboxes" in the  scanlines variable, which
will  later  be  used  to  communicate  with  the  cogs
responsible  for  rendering  the  video  lines.  A  lookup
table,  COLOR_TABLE,  is  also  defined  to  map  Cody
Computer  color  codes to  their  Propeller  equivalents.
On startup, the start SPIN method sets up the scanline
mailboxes, then launches the video signal generation
cog with PASM code starting at cogmain.

PUB start(mem_ptr) | index

    ' Start up the scanline renderer cogs
    repeat index from 0 to 3

        ' Set up each mailbox
        mailboxes[index * 100 + 0] := index
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SPIN portion of the video startup code.

The  cogmain code  first  calls  the  load_params
routine to read in the locations of shared memory and
the four mailboxes for the scanline cogs. It also uses
the  shared  memory  base  address  to  calculate  the
positions of some of the video registers used by the
video signal generator.

The main loop for the NTSC video generation code.

After that,  cogmain calls the  init_video routine to
set  up  vcfg for  the  video  mode  and  what  bank  of
output pins to use, ctra for the counter mode, and frqa
for the video frequency. The video output pins are also
set as outputs in  dira,  as without doing so, the video
will  not  actually  be  emitted  on  the  pins  selected  in
vcfg.  (For  more  detail  on  these  Propeller  registers,
refer to the Propeller reference manual in particular.)

        mailboxes[index * 100 + 1] := mem_ptr
        mailboxes[index * 100 + 2] := @COLOR_TABLE
        mailboxes[index * 100 + 3] := 0

        ' Launch the corresponding cog
        line_renderer.start(@mailboxes + index * 400)

    ' Launch the video cog itself once the scanline cogs are running
    launch_cog(mem_ptr, @COLOR_TABLE, @mailboxes+0, @mailboxes+400, @mailboxes+800, @mailboxes+1200)

PRI launch_cog(mem_ptr, ctable_ptr, scan1_ptr, scan2_ptr, scan3_ptr, scan4_ptr)

    cognew(@cogmain, @mem_ptr)

cogmain
                call    #load_params
                call    #init_video
:loop
                call    #frame
                jmp     #:loop

init_video
                ' Sets up the parameters for video generation
                mov     vcfg, ivcfg

                ' Internal PLL mode, PLLA = 16 * colorburst frequency
                mov     ctra, ictra

                ' 2 * colorburst frequency
                mov     frqa, ifrqa
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Initialization  of  the  Propeller's  video  registers  and
output pins.

After that the  load_params routine is responsible
for retrieving the parameters passed from SPIN.  The
previously-mentioned  launch_cog routine  in  SPIN
used  the  SPIN  interpreter's  stack  to  hold  multiple
parameters, passing the address of the first one to the
newly-created cog running the code. The PASM code
sequentially  reads  parameters  from  the  SPIN  stack
beginning at that starting address. It also adjusts a few
addresses along the way.

                ' Configure selected video pins as outputs
                or      dira, idira

init_video_ret  ret

load_params
                mov     params_ptr, PAR

                rdlong  memory_ptr, params_ptr
                add     params_ptr, #4

                rdlong  lookup_ptr, params_ptr
                add     params_ptr, #4

                rdlong  temp, params_ptr
                add     toggle1_ptr, temp
                add     buffer1_ptr, temp
                add     buffer5_ptr, temp
                add     params_ptr, #4

                rdlong  temp, params_ptr
                add     toggle2_ptr, temp
                add     buffer2_ptr, temp
                add     buffer6_ptr, temp
                add     params_ptr, #4

                rdlong  temp, params_ptr
                add     toggle3_ptr, temp
                add     buffer3_ptr, temp
                add     buffer7_ptr, temp
                add     params_ptr, #4

                rdlong  temp, params_ptr
                add     toggle4_ptr, temp
                add     buffer4_ptr, temp
                add     buffer8_ptr, temp
                add     params_ptr, #4

                mov     vblreg_ptr, memory_ptr
                add     vblreg_ptr, VBLANK_REG_OFFSET

                mov     ctlreg_ptr, memory_ptr
                add     ctlreg_ptr, CONTROL_REG_OFFSET

                mov     colreg_ptr, memory_ptr
                add     colreg_ptr, COLOR_REG_OFFSET
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PASM  for  loading  parameters  from  the  SPIN
launch_cog routine.

From this point the video generator code enters an
infinite loop, outputting video signals for NTSC frames
one after the other. The scanline generators are set to
the  start  of  a  new  frame,  a  vertical  sync  pulse  is
generated by calling  vertical_sync,  the video control
and  border  color  registers  are  read,  blank  lines  are
generated by calling ntsc_blank_lines, and at last the
scanline generators are turned on.

The  top  border  is  generated  via  top_border,  the
drawable screen area via screen_area, and the bottom
border  via  a  call  to  bottom_border.  The  vertical
blanking register is also updated during this process
to  indicate  when  the  65C02  can  generally  update
video memory or registers without fear of collision.

load_params_ret ret

frame
                ' Generate NTSC vertical sync
                call    #vertical_sync

                ' Generate NTSC blank lines after vertical sync
                call    #ntsc_blank_lines

                ' Set vertical blanking indicator to zero (not safe to update)
                wrbyte  ZERO, vblreg_ptr

                ' Read current video control register from memory
                rdbyte  control, ctlreg_ptr

                ' Read current border color and convert to Propeller color
                rdbyte  border, colreg_ptr
                shl     border, #1
                add     border, lookup_ptr
                rdword  border, border

                ' Reset scanline generators back to beginning
                wrlong  TOGGLE_FRAME, toggle1_ptr
                wrlong  TOGGLE_FRAME, toggle2_ptr
                wrlong  TOGGLE_FRAME, toggle3_ptr
                wrlong  TOGGLE_FRAME, toggle4_ptr

                ' Draw part of the screen top border
                call    #top_border

                ' Turn scanline generators on
                wrlong  TOGGLE_LINE1, toggle1_ptr
                wrlong  TOGGLE_LINE1, toggle2_ptr
                wrlong  TOGGLE_LINE1, toggle3_ptr
                wrlong  TOGGLE_LINE1, toggle4_ptr
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The frame routine generates a single TV frame.

Most of the work occurs in the screen_area routine
where  the  actual  screen  is  drawn.  A  quick  check  is
performed to see if vertical scrolling is enabled, and if
so,  reduce  the  size  of  the  vertical  area  by  one  row.
After that, it loops for each row on the screen, toggling
the scanline renderers and generating a video signal
for  each  rendered  scanline  by  calling  the  scanline
routine.

The  scanline  renderers  are  called  in  order,  giving
each  renderer  the  equivalent  of  four  scanlines  to
render  the  next  line.  To  make  this  possible,  each
scanline  renderer  has  two  buffers  so  that  it  can  be
rendering a new line while the previous line is being
sent out.

                ' Draw the rest of the screen top border
                call    #top_border

                ' Draw the screen (and horizontal borders)
                call    #screen_area

                ' Set vertical blanking indicator to 1 (safe to update)
                wrbyte  ONE, vblreg_ptr

                ' Draw screen bottom border
                call    #bottom_border

frame_ret       ret

screen_area
                ' Generate additional top border lines if vertical scroll enabled
                test    control, #%00000010 wz
if_nz           call    #scroll_border

                ' 25 groups of lines to generate (assuming no vertical scrolling)
                mov     numline, #25

                ' Adjust number of lines if vertical scrolling enabled
                test    control, #%00000010 wz
if_nz           sub     numline, #1

                ' Render scanlines behind the scenes as we generate NTSC signals
:loop           wrlong  TOGGLE_LINE2, toggle1_ptr
                mov     source, buffer1_ptr
                call    #scanline

                wrlong  TOGGLE_LINE2, toggle2_ptr
                mov     source, buffer2_ptr
                call    #scanline

                wrlong  TOGGLE_LINE2, toggle3_ptr
                mov     source, buffer3_ptr
                call    #scanline
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PASM routine for generating the drawable screen area.

The  scanline routine  actually  generates  the  video
signal for a single line in the drawable screen area. It
generates the horizontal sync at the start of the line,
followed by the NTSC signal's back porch.  Following
that, a total of 40 waitvids are performed in a loop.

The exact output and timing depends on the current
video mode. For the lower-resolution multicolor mode,
each  waitvid consists  of  four  pixels  read  from  a
scanline  renderer's  inactive  buffer.  In  the  high-
resolution  mode,  eight  pixels  are  read and the  data
format  in  the  scanline  buffer  is  somewhat  different.
While the output timing differs (each high-resolution
pixel takes half the time of a lower-resolution pixel)
most  of  the same Propeller  configuration values are
used for both outputs.

Once  all  the  pixels  have  been  output,  the  NTSC
signal's front porch is generated to end the line. The
horizontal_sync,  front_porch,  and  back_porch

                wrlong  TOGGLE_LINE2, toggle4_ptr
                mov     source, buffer4_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle1_ptr
                mov     source, buffer5_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle2_ptr
                mov     source, buffer6_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle3_ptr
                mov     source, buffer7_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle4_ptr
                mov     source, buffer8_ptr
                call    #scanline

                ' Continue on to next group of 8 lines
                djnz    numline, #:loop

                ' Generate additional bottom border lines if vertical scroll enabled
                test    control, #%00000010 wz
if_nz           call    #scroll_border

screen_area_ret ret
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routines  are  used  to  help  with  some  of  the  above.
When drawing the line, some checks are also made for
situations where the display is disabled or horizontal
scrolling  is  enabled.  If  these  conditions  exist,
adjustments are made to the output.

scanline        ' Start signal with horizontal sync and NTSC back porch
                call    #horizontal_sync
                call    #back_porch

                ' Test hires or lowres mode based on bit in control register
                test    control, #%00100000 wz
if_nz           jmp     #:hires

:lores          ' By default we have 40 waitvids (160 pixels / 4 pixels per waitvid)
                mov     count, #40
                mov     VSCL, vsclactv

                ' If horizontal scrolling, draw fewer pixels and a bigger border
                test    control, #%00000100 wz
if_nz           waitvid border, #0
if_nz           sub     count, #2

                ' Adjust pointer for offscreen scratch area in scanline buffer
                add     source, #12

:lores_loop     ' Read the next four pixels from the scanline buffer
                rdlong  colors, source

                ' If the display is enabled, draw the pixels from the buffer
                ' If the display is shut off, draw the border color instead
                test    control, #%00000001 wz
if_z            waitvid colors, lores_pixels
if_nz           waitvid border, #0

                ' Go on to the next four pixels
                add     source, #4
                djnz    count, #:lores_loop

                ' If horizontal scrolling, draw a bigger border
                test    control, #%00000100 wz
if_nz           waitvid border, #0

                ' Done generating NTSC video for the multicolor mode
                jmp     #:done

:hires         ' We always have 40 waitvids (320 pixels / 8 pixels per waitvid)
                mov     count, #40
                mov     VSCL, vsclactvhi

:hires_loop     ' Read the next eight pixels from the scanline buffer
                rdword  hires_pixels, source
                add     source, #2

                ' Read the colors for the 8x8 tile from the scanline buffer
                rdword  colors, source
                add     source, #2

                ' If the display is enabled, draw the pixels from the buffer
                ' If the display is shut off, draw the border color instead
                test    control, #%00000001 wz
if_z            waitvid colors, hires_pixels
if_nz           waitvid border, #0

                ' Go on to the next eight pixels
                djnz    count, #:hires_loop

                ' Generate the NTSC front porch before completing
:done           call    #front_porch
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PASM routine for generating a single NTSC scanline.

CODY_LINE.SPIN

The last component of the Cody Computer's video
firmware  are  the  scanline  renderers.  Rendering  the
contents of a single 160 pixel  line,  both background
tiles and sprites,  takes quite a bit  of  time (from the
standpoint  of  a  video signal).  In  fact,  it  takes longer
than a single scanline just to generate its contents. The
320 pixel lines in the high-resolution mode don't have
the overhead of  rendering sprites,  but  they do have
more  pixels  they  have  to  generate  because  of  the
higher resolution.

To work around this problem we set up other cogs as
renderers  that  store  pixels  to  a  buffer  in  memory.
When it's time to generate the signal containing the
line, the video cog reads the pre-rendered pixels and
generates the corresponding signal.

The  video  generator  cog  launches  a  total  of  four
scanline  renderer  cogs,  each  running  the  code  from
cody_line.spin. The video generator calls a short SPIN
method,  start,  passing the pointer to the start of the
mailbox used to communicate with the renderer.  The
renderer, in turn, starts running PASM code starting at
cogmain. Some initial setup code runs to get data from
the mailbox and calculate some pointer addresses.

scanline_ret    ret

cogmain
                ' Load parameters and calculate pointers from the scanline structure
                ' using the calculated offsets within the mailbox memory area
                add     renderer_index, PAR
                add     memory_ptr, PAR
                add     lookup_ptr, PAR
                add     toggle_ptr, PAR
                add     buffer1_ptr, PAR
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The  cogmain PASM  code  called  when  starting  a
scanline renderer.

From  there  the  scanline  renderer  enters  the
:frame_loop for the start of a new frame. It waits until
the mailbox shows a new frame has started (because
the video cog has toggled it),  then does some initial
setup for the new frame. The video registers are read
from shared memory.

The code then waits for another toggle to render a
line,  running the  :line_loop for  a  total  of  50 times.
Because the drawable screen has 200 lines and there
are four cogs rendering the screen contents, each cog
is responsible for 50 lines.

For each line,  any row effects are applied first  via
apply_row_effects,  followed  by  decoding  the  video
register  values  in  decode_registers.  Finally  the
scanline's  contents  are  rendered  by  calling  other
routines.  In  the  low-resolution  multicolor  mode  the
render_chars_lo and  render_sprites routines  are
responsible  for  rendering  the  scanline.  In  the  high-
resolution mode the  render_chars_hi mode is called
instead.  The  :line_loop repeats  until  no  more  lines
remain on the current frame, each time waiting for a
toggle from the main video cog.

                add     buffer2_ptr, PAR

                rdlong  renderer_index, renderer_index
                rdlong  memory_ptr, memory_ptr
                rdlong  lookup_ptr, lookup_ptr

                ' Adjust our offsets into shared memory now that we know where it is
                add     VIDCTL_REGS_OFFSET, memory_ptr
                add     SPRITE_REGS_OFFSET, memory_ptr

                add     ROWEFF_CNTL_OFFSET, memory_ptr
                add     ROWEFF_DATA_OFFSET, memory_ptr

:frame_loop
                ' Wait for the TOGGLE_FRAME value to begin the next frame
                rdlong  toggle, toggle_ptr
                cmp     toggle, TOGGLE_FRAME    wz
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if_nz           jmp     #:frame_loop
                wrlong  TOGGLE_EMPTY, toggle_ptr

                ' Read in the video registers at the start of a new frame
                mov     video_register_ptr, VIDCTL_REGS_OFFSET

                rdbyte  blankreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  controlreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  colorreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  basereg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  scrollreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  screenreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  spritereg, video_register_ptr
                add     video_register_ptr, #1

                ' Reset row effects at the beginning of each frame
                mov     roweff_remaining, #32
                mov     roweff_cntl_ptr, ROWEFF_CNTL_OFFSET
                mov     roweff_data_ptr, ROWEFF_DATA_OFFSET

                ' Render each line
                mov     lines_remaining, #50
                mov     curr_scanline, renderer_index

:line_loop
                ' Wait for a TOGGLE_LINE1 or TOGGLE_LINE2 value to begin the next line
                rdlong  toggle, toggle_ptr

                cmp     toggle, TOGGLE_EMPTY    wz
if_z            jmp     #:line_loop

                cmp     toggle, TOGGLE_FRAME    wz
if_z            jmp     #:frame_loop

                ' Clear toggle value once we begin a new line
                wrlong  TOGGLE_EMPTY, toggle_ptr

                ' Select the destination buffer for this scanline
                cmp     toggle, TOGGLE_LINE1    wz
if_z            mov     buffer_ptr, buffer1_ptr

                cmp     toggle, TOGGLE_LINE2    wz
if_z            mov     buffer_ptr, buffer2_ptr

                ' Read any row effects that may be pending for this scanline
                call    #apply_row_effects

                ' Decode the video registers (including any raster changes)
                call    #decode_registers

                ' Render the scanline to the buffer
                test    controlreg, #%00100000              wz
if_z            call    #render_chars_lo

                test    controlreg, #%00100000              wz
if_nz           call    #render_chars_hi

                test    controlreg, #%00100000              wz
if_z            call    #render_sprites

                ' Go to the next line
                add     curr_scanline, #4
                djnz    lines_remaining, #:line_loop

                ' Begin a new frame
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Code executed in the frame and line loops.

The render_chars_lo and render_chars_hi routines
are  responsible  for  rendering  the  characters  on  the
screen. These two routines have some similarities but
also  have  differences  resulting  from  the  different
behavior  in  the  multicolor  and  high-resolution
graphics modes. The multicolor mode is intended for
general  purpose  programming  including  games,  so
additional  features  like  scrolling  are  supported.  The
high-resolution  mode  is  intended  for  more  serious
uses  and  focuses  on  rendering  a  larger  number  of
pixels without other complications.

First  let's discuss the more common (and default)
low-resolution multicolor mode that  begins with the
render_chars_lo routine. It makes some adjustments
for  vertical  and  horizontal  scrolling,  if  enabled,  and
then  proceeds  to  render  the  current  scanline.
Calculations  use  the  SCREEN_OFFSET_TABLE to
determine  the  screen  and  color  memory  locations
corresponding to the current scanline.

Looping over each of the 40 columns in the scanline
in the :char_loop, the screen and color information are
read from shared memory. The colors for that screen
location  are  converted  from  Cody  Computer  color
codes  to  Propeller  NTSC  color  codes  using  the
previously-mentioned  COLOR_TABLE and  merged
with  the  current  global  colors  for  the  screen.  If  in
character graphics mode, the matching character line
for the character in screen memory is also read and
the byte pattern returned.  In  bitmap graphics  mode,
the  corresponding  four-pixel  byte  within  screen

                jmp     #:frame_loop

100



memory is returned instead, but the operation is very
similar otherwise. From there the :pixel_loop renders
the  actual  pixels  into  the  scanline  buffer  before
continuing on to the next character.

render_chars_lo
                ' Set up the output pointer taking into account the left "margin" for sprites
                mov     dest_ptr, buffer_ptr
                add     dest_ptr, #12

                ' Update the output start position to account for horizontal scrolling
                test    controlreg, #%00000100  wz
if_nz           sub     dest_ptr, scrollh

                ' Update the source line position to account for vertical scrolling
                mov     adjustv, #0
                test    controlreg, #%00000010  wz
if_nz           mov     adjustv, scrollv

                ' Precalculate the current offset for each character based on the scanline
                mov     char_offset_y, curr_scanline
                add     char_offset_y, adjustv
                and     char_offset_y, #%0111

                ' Determine offset in the screen and color memory based on the current row
                mov     screen_memory_offset, curr_scanline
                add     screen_memory_offset, adjustv
                shr     screen_memory_offset, #3
                add     screen_memory_offset, #SCREEN_OFFSET_TABLE
                movs    :load_offset, screen_memory_offset
                nop

:load_offset    mov     screen_memory_offset, 0_0

                ' Calculate the locations in color and screen memory using the offset above
                mov     curr_colors_ptr, colmem_ptr
                add     curr_colors_ptr, screen_memory_offset

                test    controlreg, #%00010000 wz
if_z            mov     curr_screen_adv, #1
if_nz           mov     curr_screen_adv, #8
if_nz           shl     screen_memory_offset, #3

                mov     curr_screen_ptr, scrmem_ptr
                add     curr_screen_ptr, screen_memory_offset

                mov     chars_remaining, #40

:char_loop      rdbyte  color_data, curr_colors_ptr

                shl     color_data, #1
                add     color_data, lookup_ptr

                rdword  color_data, color_data
                or      color_data, common_screen_colors

                add     curr_colors_ptr, #1

                test    controlreg, #%00010000              wz
if_nz           mov     source_ptr, curr_screen_ptr
if_z            rdbyte  source_ptr, curr_screen_ptr
if_z            shl     source_ptr, #3
if_z            add     source_ptr, chrset_ptr
                add     source_ptr, char_offset_y
                add     dest_ptr, #3
                rdbyte  pixel_data, source_ptr

                mov     pixels_remaining, #4

:pixel_loop     mov     temp, pixel_data
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The  render_chars_lo routine  renders  a  line's
background  characters  in  the  low-resolution
multicolor mode.

The  render_sprites routine  is  largely  the  same,
except that it renders the sprites over the now-drawn
background characters.  It  begins  by determining the
sprite register bank to read from based on the current
value  in  a  shared  memory  register,  positioning  a
pointer at the start of the appropriate bank. The sprite
bank registers have the needed coordinates, color, and
sprite pointer information, so it's important to start in
the right place.

Once  prepared,  it  loops  over  each  of  the  eight
possible  sprites  in  the  :sprite_loop,  verifying  that
they're actually on screen and adjusting for scrolling if
necessary.  It  also looks up the sprite's unique colors
and finds their Propeller equivalents in the same way
used for the character colors. When it's ready to draw
the sprite, it goes into the :byte_loop to draw each of
the sprite's three data bytes, with the individual pixels
being drawn in the :pixel_loop.

Some key differences exist between these loops and
the corresponding loops for drawing character pixels,

                and     temp, #%11

                shl     temp, #3
                ror     color_data, temp

                wrbyte  color_data, dest_ptr

                sub     dest_ptr, #1
                rol     color_data, temp

                shr     pixel_data, #2
                djnz    pixels_remaining, #:pixel_loop

                add     dest_ptr, #5
                add     curr_screen_ptr, curr_screen_adv

                djnz    chars_remaining, #:char_loop

render_chars_lo_ret    ret
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with one of the main differences being that sprites can
have transparent pixels.

render_sprites

                ' Start sprite pointer at the beginning of the current bank
                mov     curr_sprite_ptr, spritereg
                and     curr_sprite_ptr, #$70
                shl     curr_sprite_ptr, #1
                add     curr_sprite_ptr, SPRITE_REGS_OFFSET

                ' Draw the 8 sprites we have in this bank
                mov     sprites_remaining, #8
:sprite_loop
                ' Read in and check the sprite x coordinate is within bounds
                rdbyte  sprite_x, curr_sprite_ptr
                add     curr_sprite_ptr, #1

                cmp     sprite_x, #0        wz
if_z            jmp     #:next_sprite

                cmp     sprite_x, #172      wc
if_nc           jmp     #:next_sprite

                ' Read in and check the sprite y coordinate is within bounds
                rdbyte  sprite_y, curr_sprite_ptr
                add     curr_sprite_ptr, #1

                ' Adjust sprite y position by subtracting top margin amount
                sub     sprite_y, #21
                sub     sprite_y, curr_scanline
                neg     sprite_y, sprite_y

                cmp     sprite_y, #0        wc
if_c            jmp     #:next_sprite

                cmp     sprite_y, #21       wc
if_nc           jmp     #:next_sprite

                ' Read in the sprite colors and combine them with the common sprite color
                rdbyte  sprite_colors, curr_sprite_ptr
                shl     sprite_colors, #1
                add     sprite_colors, lookup_ptr
                rdword  sprite_colors, sprite_colors
                shl     sprite_colors, #8
                or      sprite_colors, common_sprite_colors
                add     curr_sprite_ptr, #1

                ' Read in the sprite pointer and adjust for the current scanline
                rdbyte  sprite_ptr, curr_sprite_ptr
                add     sprite_y, #SPRITE_OFFSET_TABLE
                movs    :load_offset, sprite_y
                shl     sprite_ptr, #6
:load_offset    add     sprite_ptr, 0_0
                add     sprite_ptr, memory_ptr

                ' Set up our destination buffer
                mov     dest_ptr, buffer_ptr
                add     dest_ptr, sprite_x

                ' Draw each byte remaining in this scanline
                mov     chars_remaining, #3
:byte_loop
                ' Read in the sprite data
                rdbyte  pixel_data, sprite_ptr
                add     sprite_ptr, #1

                ' Draw each pixel in this byte (in reverse order)
                add     dest_ptr, #3
                mov     pixels_remaining, #4
:pixel_loop
                ' Move the current color into position for drawing
                mov     temp, pixel_data
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The  render_sprites routine handles eight sprites per
line.

When  the  high-resolution  mode  is  enabled,  the
render_chars_hi routine  is  called  instead  of
render_chars_lo and  render_sprites.  This  routine is
similar but not exactly the same as  render_chars_lo.
It  calculates certain offsets and locations in memory,
but  doesn't  support  scrolling  so  those  additional
calculations  are  not  performed.  Additionally,  it  also
switches  between  reading  the  pixel  data  from
characters or more sequentally for a bitmap.

However, the actual data rendered into the scanline
buffer  is  quite  different.  Instead  of  rendering  four
different  Propeller  color  values,  this  mode  renders
eight pixels and their colors. Because the Propeller will
be  running  in  its  four-color  output  mode,  we  also
expand the single-bit pixel values into two-bit values
for  the  Propeller  hardware.  Because  we  have  eight
pixels  and  each  pixel  is  expanded  to  two  bits,  this
means a total of two bytes is required. This pixel data

                and     temp, #%11
                shl     temp, #3
                ror     sprite_colors, temp

                ' Draw the pixel if non-transparent
                cmp     temp, #0                wz
if_nz           wrbyte  sprite_colors, dest_ptr
                sub     dest_ptr, #1

                ' Prepare for the next pixel
                rol     sprite_colors, temp
                shr     pixel_data, #2

                djnz    pixels_remaining, #:pixel_loop

                add     dest_ptr, #5
                djnz    chars_remaining, #:byte_loop

:next_sprite
                ' Increment the sprite register pointer to the start of the next sprite
                andn    curr_sprite_ptr, #3
                add     curr_sprite_ptr, #4

                ' Loop if we have more sprites remaining
                djnz    sprites_remaining, #:sprite_loop

render_sprites_ret      ret
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is  followed  by  two  bytes  containing  the  Propeller
colors for that group of eight pixels.

render_chars_hi
                ' Set up the output pointer
                mov     dest_ptr, buffer_ptr

                ' Precalculate the current offset for each character based on the scanline
                mov     char_offset_y, curr_scanline
                add     char_offset_y, adjustv
                and     char_offset_y, #%0111

                ' Determine offset in the screen and color memory based on the current row
                mov     screen_memory_offset, curr_scanline
                shr     screen_memory_offset, #3
                add     screen_memory_offset, #SCREEN_OFFSET_TABLE
                movs    :load_offset, screen_memory_offset
                nop

:load_offset    mov     screen_memory_offset, 0_0

                ' Calculate the locations in color and screen memory using the offset above
                mov     curr_colors_ptr, colmem_ptr
                add     curr_colors_ptr, screen_memory_offset

                test    controlreg, #%00010000 wz
if_z            mov     curr_screen_adv, #1
if_nz           mov     curr_screen_adv, #8
if_nz           shl     screen_memory_offset, #3

                mov     curr_screen_ptr, scrmem_ptr
                add     curr_screen_ptr, screen_memory_offset

                mov     chars_remaining, #40

                ' Read the per-character color information and look up the Propeller colors
:char_loop      rdbyte  color_data, curr_colors_ptr

                shl     color_data, #1
                add     color_data, lookup_ptr

                rdword  color_data, color_data
                add     curr_colors_ptr, #1

                ' Fetch the character bits
                test    controlreg, #%00010000              wz
if_nz           mov     source_ptr, curr_screen_ptr
if_z            rdbyte  source_ptr, curr_screen_ptr
if_z            shl     source_ptr, #3
if_z            add     source_ptr, chrset_ptr
                add     source_ptr, char_offset_y
                rdbyte  temp, source_ptr

                mov     pixel_data, #0
                mov     pixels_remaining, #8

:pixel_loop     ' Shift out the character data bit at a time
                shr     temp, #1                            wc
if_c            or      pixel_data, #%01

                ' Next output bit
                shl     pixel_data, #2
                djnz    pixels_remaining, #:pixel_loop

                ' Compensate for last shift right inside the loop
                shr     pixel_data, #2

                ' Write the pixel and color information to the buffer
                wrword  pixel_data, dest_ptr
                add     dest_ptr, #2

                wrword  color_data, dest_ptr
                add     dest_ptr, #2
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The  render_chars_hi routine  renders  a  high-
resolution scanline.

The  decode_registers routine  is  a  helper  called
during  the  main  loop  to  decode  the  video  register
values  from  local  variables.  These  contain  some
information,  including  Cody  Computer  color  codes,
that  need  translated  to  their  Propeller  NTSC
equivalents.  Others contain data that's packed into a
single  register,  such  as  nibble  values  that  map  to
memory  locations  within  the  shared  memory.  This
routine  helps  with  unpacking  and  keeps  the  related
logic in one place.

                ' Move to the next character
                add     curr_screen_ptr, curr_screen_adv
                djnz    chars_remaining, #:char_loop

render_chars_hi_ret    ret

decode_registers

                ' Calculate color memory position
                mov     colmem_ptr, colorreg
                shr     colmem_ptr, #4
                shl     colmem_ptr, #10
                add     colmem_ptr, memory_ptr

                ' Calculate screen memory position
                mov     scrmem_ptr, basereg
                shr     scrmem_ptr, #4
                shl     scrmem_ptr, #10
                add     scrmem_ptr, memory_ptr

                ' Calculate character set position
                mov     chrset_ptr, basereg
                and     chrset_ptr, #$7
                shl     chrset_ptr, #11
                add     chrset_ptr, memory_ptr

                ' Calculate scroll values
                mov     scrollv, scrollreg
                and     scrollv, #%00000111

                mov     scrollh, scrollreg
                shr     scrollh, #4
                and     scrollh, #%00000011

                ' Calculate shared screen colors
                mov     common_screen_colors, screenreg
                shl     common_screen_colors, #1
                add     common_screen_colors, lookup_ptr
                rdword  common_screen_colors, common_screen_colors
                shl     common_screen_colors, #16

                ' Calculate shared sprite colors
                mov     common_sprite_colors, spritereg
                shl     common_sprite_colors, #1
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The  decode_registers routine  that  unpacks  register
values.

The  apply_row_effects routine  is  related.  On  old
computers, it was common to use special tricks, such as
switching out video data, on certain lines to extend the
hardware's graphics abilities. The Cody Computer has
a similar feature where data can be overridden on each
of  the  25  rows  on  the  screen.  Rather  than  setting
interrupts  and  changing  register  data,  additional
registers let you specify override values and where to
apply them.

This routine handles those situations by checking to
see if the row effects are enabled, and if so, whether
they need to be applied based on the current scanline.
The scanline is divided by 8 to determine what row on
the screen is being drawn, and then any of the video
data that has been overridden is updated in the local
variables.  By  doing  this  in  the  main  loop  prior  to
decoding  the  registers,  any  overridden  values  are
automatically used when rendering the scanline.  The
code also remembers the last row effect processed and
begins  from  there  on  the  next  scanline.  This
optimization exists to reserve more cycles for actually
rendering the scanline's contents.

                add     common_sprite_colors, lookup_ptr
                rdword  common_sprite_colors, common_sprite_colors
                shl     common_sprite_colors, #24

decode_registers_ret  ret

apply_row_effects

                ' Quick check to ensure that row effects are enabled
                test    controlreg, #%00001000          wz
if_z            jmp     #apply_row_effects_ret

                ' Calculate what row we're currently on for row effects
                mov     roweff_row, curr_scanline
                shr     roweff_row, #3

                ' Check if we have more row effects to look at
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The  apply_row_effects routine  replaces  old-school
raster interrupts.

:loop           cmp     roweff_remaining, #0            wz
if_z            jmp     #apply_row_effects_ret

                ' Read the control/data bytes and extract the row number
:cont           rdbyte  roweff_cntl_byte, roweff_cntl_ptr

                mov     temp, roweff_cntl_byte
                and     temp, #%00011111

                rdbyte  roweff_data_byte, roweff_data_ptr

                ' Test that this line is applicable for this row
                cmp     temp, roweff_row                wz, wc
if_nz_and_nc    jmp     #apply_row_effects_ret

                ' Apply the replacement for the selected register
                mov     temp, roweff_cntl_byte
                and     temp, #%11100000

                cmp     temp, #%10000000                wz
if_z            mov     basereg, roweff_data_byte

                cmp     temp, #%10100000                wz
if_z            mov     scrollreg, roweff_data_byte

                cmp     temp, #%11000000                wz
if_z            mov     screenreg, roweff_data_byte

                cmp     temp, #%11100000                wz
if_z            mov     spritereg, roweff_data_byte

                ' Move on to the next entry
                add     roweff_cntl_ptr, #1
                add     roweff_data_ptr, #1
                sub     roweff_remaining, #1

                ' Next row effect
                jmp     #:loop

apply_row_effects_ret   ret
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Software Design

3



INTRODUCTION

On  startup,  the  Cody  Computer  boots  into  Cody
BASIC, a BASIC interpreter written from scratch just for
the Cody Computer. It allows you to write moderately-
complex programs and perform file operations from
the  BASIC  prompt.  The  BASIC  dialect  is  inspired  by
Tiny BASIC, a small open-source BASIC dating to the
1970s.

While largely a dialect of Tiny BASIC, Cody BASIC
has some additional features typically not present in
most  Tiny  BASIC  environments.  These  include
(limited) arrays,  strings,  and DATA statements.  Cody
BASIC also uses messages and commands inspired by
Commodore  BASIC  instead  of  the  Tiny  BASIC
equivalents. Also unlike many Tiny BASIC dialects but
similar to the Commodore, the program is not directly
interpreted.  Rather,  the  BASIC  program  is  tokenized
into  small  pieces  that  are  executed  more  quickly  at
runtime.

We'll cover how to program in Cody BASIC later in
the  book,  but  here  we'll  talk  a  bit  about  how  it's
implemented  in  65C02 assembly.  The  code  itself  is
open source and heavily commented, so we won't go
over every single line here. We're more focused on a
high-level  view  of  the  code,  with  some  detailed
analysis of particular subroutines.

Keep  in  mind  that  while  the  actual  source  file  is
somewhat  long,  it  produces  a  mere  6  kilobytes  of
machine code for the 65C02 (an additional 2 kilobytes
contain the character set). The Cody BASIC ROM itself
is  embedded  as  data  within  the  Propeller  program
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mentioned in the previous section, mapped to the very
top of the 65C02's memory area.

STARTUP AND INITIALIZATION

When the 65C02 starts, it loads a two-byte address
from memory location $FFFC, lowest byte first (this is
always the case for the 65C02, as it's a little-endian
processor).  Here  we  put  the  address  for  our  MAIN
routine, responsible for the initial startup. It  sets the
boundary  page  of  BASIC  program  memory  into
PROGEND so  that  it  can  be  overridden  by  any
memory-resident programs later on. After that, it calls
INIT to  initialize most  of  the hardware and software
from the 65C02's side. Finally it performs a check to
see if a cartridge is inserted in the expansion slot. If so,
it boots from the cartridge. If not, it drops through to
the BASIC routine we'll discuss in a moment. 

The Cody BASIC interpreter's MAIN routine.

The MAIN routine calls INIT to initialize most of the
hardware  and  software  from  the  65C02's  side,
including copying the character set into video memory,
setting  up  video  registers,  and  preparing  a  timer
interrupt  for  timekeeping  and  keyboard  scanning.  It
also  sets  up  a  simple  error  handling  system  that
allows BASIC interpreter routines to easily signal an

MAIN      LDA #>PROGMAX         ; Set the top of program memory to the default page
          STA PROGEND

          JSR INIT              ; Run initialization on startup

          JSR CARTCHECK         ; Check for cartridge plugged in
          BEQ BASIC

          STZ IOMODE            ; Cartridge found, load and run binary instead of BASIC
          STZ IOBAUD
          JMP LOADBIN
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error. Because  INIT is also used to partially reset the
interpreter  after  running  a  binary  program,  some
things  aren't  reset  by  this  routine.  In  particular,  the
PROGEND zero-page  variable  is  untouched  by  this
routine so that memory-resident programs can adjust
it.

A small excerpt from the INIT routine.

Different  parts  of  the  initialization  process  run
depending on whether a cartridge is connected to the
computer or not. If a cartridge is present, most of the
initialization process is skipped or not enabled, instead
loading  and  running  a  binary  program  from  the
cartridge.  In  other  situations  the  Cody  BASIC
interpreter is launched.

TIMER INTERRUPT

Cody BASIC relies  on  a  timer  interrupt  to  handle
keyboard  scanning,  simple  timekeeping,  and  other
periodic tasks. This timer interrupt is generated by the
65C22  VIA  chip  that  also  handles  most  of  the
computer's I/O operations. The interrupt is configured
to run 60 times per second. Most of the setup occurs in
the  MAIN routine,  but  the  interrupt  isn't  actually
started until the BASIC interpreter itself takes control.

          STZ VID_SCRL          ; Clear out scroll registers

          STZ VID_CNTL          ; Clear out control register

          LDA #$E7              ; Point the video hardware to default color memory, border color yellow
          STA VID_COLR

          LDA #$95              ; Point the video hardware to the default screen and character set
          STA VID_BPTR

          STZ KEYLAST           ; Clear out the major keyboard-related zero page variables
          STZ KEYLOCK
          STZ KEYMODS
          STZ KEYCODE
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Setting up the timer interrupt in MAIN.

One  level  of  indirection  exists  for  the  timer
interrupt's  handler.  Because  the  65C02's  interrupt
handler is fixed at address  $FFFE in memory, code in
ROM  would  make  it  impossible  for  other  programs
(such  as  those  written  in  assembly  language)  to
change the interrupt handler to something different.

To  avoid  that  problem,  we  put  a  simple  stub,
ISRSTUB,  at  the  65C02's  interrupt  handler  address.
This jumps to a different address, ISRPTR, stored in the
zero page and pointing to the actual  location of  the
interrupt service routine. If other code wants to change
the interrupt behavior, it needs only change the value
of ISRPTR to point to its own routine.

The  ISRSTUB that  jumps  to  the  actual  interrupt
handler.

Cody BASIC's interrupt handler or  service routine,
TIMERISR,  is  responsible  for  several  important
functions. First it calls KEYSCAN to scan the keyboard
matrix.  Next  it  updates  the  jiffies  count  stored  in
JIFFIES,  a two-byte variable.  A jiffy is the time for a

          LDA #<TIMERISR        ; Set up ISR routine address
          STA ISRPTR+0
          LDA #>TIMERISR
          STA ISRPTR+1

          LDA #<JIF_T1C         ; Set up VIA timer 1 to emit ticks (60 per second)
          STA VIA_T1CL
          LDA #>JIF_T1C
          STA VIA_T1CH

          LDA #$40              ; Set up VIA timer 1 continuous interrupts, no outputs
          STA VIA_ACR

          LDA #$C0              ; Set up VIA timer 1 interrupt
          STA VIA_IER

ISRSTUB   JMP (ISRPTR)
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single  timer  tick,  and  we  keep  a  count  to  provide  a
simple  mechanism  for  determining  elapsed  time
without a full real time clock (this technique was very
common in the 8-bit era).

The  interrupt  handler  also  provides  an  important
safety  function  for  BASIC  programs.  When a  BASIC
program is running, it  checks to see if the Cody and
Arrow keys  are  both  held  down on the  keyboard.  If
both are pressed, the keypresses are interpreted as a
break request by the user. Without this functionality, it
would be possible to get into a nonterminating BASIC
program  and  be  unable  to  exit  without  turning  the
Cody Computer on and off.

The TIMERISR routine runs for each interrupt.

KEYBOARD SCANNING

The Cody Computer has a 30-key keyboard set up
in a matrix of five columns and six rows. In addition,

TIMERISR  PHA               ; Preserve accumulator

          BIT VIA_T1CL      ; Read the 6522 to clear the interrupt

          JSR KEYSCAN       ; Scan keyboard

          INC JIFFIES       ; Increment jiffy count lower byte (after scanning!)
          BNE _TEST

          INC JIFFIES+1     ; Increment jiffy count upper byte on overflow

_TEST     LDA RUNMODE       ; Only allow breaks if we're running a program
          BEQ _DONE

          LDA KEYROW2       ; Check for Cody key on row 2 (and ONLY the Cody key)
          CMP #$1E
          BNE _DONE

          LDA KEYROW3       ; Check for arrow key on row 3 (and ONLY the arrow key)
          CMP #$0F
          BNE _DONE

          JMP RAISE_BRK     ; Break

_DONE     PLA               ; Restore accumulator

          RTI               ; Return from interrupt routine
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two Atari-style  joystick  ports  with  five  buttons  each
are mapped as keyboard rows. Cody BASIC scans the
keyboard  as  part  of  the  timer  interrupt  routine,
updating  eight  bytes  in  zero  page  memory
(KEYROW0 through  KEYROW7)  with  the  current
values  of  the  keyboard  rows.  These  values  are
subsequently  used  by  other  routines  to  handle
keyboard or joystick input.

Scanning  is  handled  by  the  KEYSCAN routine.  It
uses  port  A  on  the  65C22  VIA  to  iterate  over  the
keyboard  matrix,  with  a  one-of-eight  analog  switch
used to  convert  a  three-bit  number into  the current
keyboard  row  to  scan.  Once  a  row  is  selected,  the
remainder of port A is read, containing the five bits for
the columns, and stored in the appropriate  KEYROW
variable.  The  timer  interrupt  calls  this  routine  on  a
regular basis to update the data.

The KEYSCAN routine that scans the keyboard matrix.

Converting  the  raw  bits  from  the  matrix  into  a
keyboard code is the responsibility of the KEYDECODE
routine. There the KEYROW values are examined and

KEYSCAN   PHA                   ; Preserve registers
          PHX

          STZ VIA_IORA          ; Start at the first row and first key of the keyboard
          LDX #0

_LOOP     LDA VIA_IORA          ; Get the keys for the current row from the VIA port
          LSR A
          LSR A
          LSR A
          STA KEYROW0,X

          INC VIA_IORA          ; Move on to the next keyboard row
          INX

          CPX #8                ; Do we have any rows remaining to scan?
          BNE _LOOP

          PLX                   ; Restore registers
          PLA

          RTS
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converted to a  scan code and stored in  KEYCODE.  It
also performs a special check to see if the Cody key is
pressed, and if so, updates the state of the keyboard
modifiers in KEYMODS.

KEYDECODE PHX                   ; Preserve registers
          PHY

          STZ KEYMODS           ; Reset scan codes and modifiers at start of new scan
          STZ KEYCODE

          LDX #0                ; Start at the first row and first key scan code
          LDY #0

_ROW      LDA KEYROW0,X         ; Load the current row's column bits from zero page
          INX

          PHX                   ; Preserve row index

          LDX #5                ; Loop over current row's columns

_COL      INY                   ; Increment the current key number at the start of each new key

          LSR A                 ; Shift to get the next column bit

          BCS _NEXT             ; If the current column wasn't pressed, just skip to the next column

          CPY #KEY_META         ; Is this the META special key?
          BNE _CODY

          PHA                   ; META key is pressed, update current key modifiers
          LDA KEYMODS
          ORA #$20
          STA KEYMODS
          PLA

          BRA _NEXT             ; Continue on to the next column

_CODY     CPY #KEY_CODY         ; Is this the CODY special key?
          BNE _NORM

          PHA                   ; CODY key is pressed, update current key modifiers
          LDA KEYMODS
          ORA #$40
          STA KEYMODS
          PLA

          BRA _NEXT             ; Continue on to the next column

_NORM     PHA                   ; Not a special key so just store it as the current scan code
          TYA
          STA KEYCODE
          PLA

_NEXT     DEX                   ; Move on to the next keyboard column
          BNE _COL

          PLX                   ; Restore current row index

          CPX #6                ; Continue while we have more rows to process
          BNE _ROW

          LDA KEYCODE           ; Update the current key scan code with the modifiers
          ORA KEYMODS
          STA KEYCODE

          PLY                   ; Restore registers
          PLX
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The KEYDECODE routine produces a key code from the
matrix.

Key scan codes represent  an actual  button on the
keyboard,  not  a  character.  The  Cody Computer  uses
CODSCII, a special character set that's just traditional
ASCII with the PETSCII graphics symbols appended to
it. As a result, character handling is greatly simplified
compared  to  the  actual  Commodore  computers.
Unfortunately, we still  have to convert scan codes to
their ASCII (or more accurately CODSCII) values.

This  is  handled  by  the  KEYTOCHR routine,  which
accepts a scan code for the keyboard and converts it to
an ASCII code. The routine's implementation relies on
a  lookup  table  containing  the  ASCII  codes  for  each
scan  code.  The  ASCII  codes  correspond  to  the
arrangement of  keys in the keyboard matrix  so that
once  we  have  a  scan  code  we  can  look  up  the
appropriate  value.  The  lookup  table  also  takes  into
account  whether  the  Cody  or  Meta  keys  have  been
pressed on the keyboard. (Shift status and conversion
to lowercase, however, happens elsewhere.)

          RTS

KEYTOCHR  PHX
          DEC A
          TAX
          LDA _LOOKUP,X
          PLX
          RTS

_LOOKUP

.BYTE 'Q', 'E', 'T', 'U', 'O'      ; Key scan code mappings without any modifiers

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $00

.BYTE 'Z', 'C', 'B', 'M', $0A

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE 'W', 'R', 'Y', 'I', 'P'

.BYTE $00, $00

.BYTE '!', '#', '%', '&', '('      ; Key scan code mappings with META modifier

.BYTE '@', '-', ':', $27, ']'

.BYTE $00, '<', ',', '?', $00

.BYTE '\', '>', '.', '/', $08

.BYTE '=', '+', ';', '[', ' '
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The KEYTOCHR routine and its lookup table.

The KEYDECODE and KEYTOCHR routines are never
called as part  of  the keyboard scanning done in the
timer  interrupt.  Instead,  they're  called  from  the
READKBD routine, which is completely separate. This
routine  is  called  when  the  Cody  BASIC  interpreter
expects line-based input, such as during the REPL loop
or  in  an  INPUT statement.  Each character  entered is
also echoed to the screen. We'll discuss those routines
in  detail  when  we  talk  about  input  and  output
handling.

ERROR HANDLING

As part of the initialization process a simple form of
error handling is set up for the BASIC interpreter and
its related code. Error handling in Cody BASIC works
like a very simple exception handler.  On startup the
current location in the 65C02's own stack is stored in
the STACKREG variable for later use.

At runtime, whenever the interpreter encounters an
error,  one  of  several  error  routines  are  called.  The
error  routine  then  calls  ERROR to  handle  the  error,
print an error message, and unwind the 65C02 stack.
After unrolling the error, it jumps back into the BASIC
interpreter's REPL loop.

.BYTE '"', '$', '^', '*', ')'

.BYTE $00, $00

.BYTE '1', '3', '5', '7', '9'      ; Key scan code mappings with CODY modifier

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $1B

.BYTE 'Z', 'C', 'B', 'M', $18

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE '2', '4', '6', '8', '0'

.BYTE $00, $00
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Preserving the stack position to unwind in the event of
an error.

Four helper routines exist to save code and provide
a consistent interface to raise an error condition. The
RAISE_BRK routine  corresponds  to  the  ERR_BREAK
error code,  RAISE_SYN to  ERR_SYNTAX,  RAISE_LOG
to ERR_LOGIC, and RAISE_SYS to ERR_SYSTEM.

Entry  points  to  the  error-handling  system  in  Cody
BASIC.

The first error type, ERR_BREAK isn't an error in the
strictest sense. An error of this type only indicates that
the  user  is  attempting  to  break  from  the  current
program  by  pressing  the  Cody  and  Arrow  keys
simultaneously.  In  this  situation,  the  error  handling
process is somewhat abbreviated instead of displaying
a full error message.

The  other  error  types  largely  match  the  error
conditions from the original Tiny BASIC in the 1970s.
ERR_SYNTAX indicates  that  a  syntax  error  was
encountered  in  the  current  program,  similar  to  Tiny
BASIC's  WHAT?.  ERR_LOGIC indicates  that  the
program was running but  didn't  make logical  sense,
similar  to  Tiny  Basic's  HOW?.  The  last  error,

BASIC     TSX                   ; Preserve the stack register for unwinding on error conditions
          STX STACKREG

RAISE_BRK LDA #ERR_BREAK
          BRA ERROR

RAISE_SYN LDA #ERR_SYNTAX
          BRA ERROR

RAISE_LOG LDA #ERR_LOGIC
          BRA ERROR

RAISE_SYS LDA #ERR_SYSTEM
          BRA ERROR
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ERR_SYSTEM,  indicates  a  system  problem  such  as
running out of memory caused an error, similar to Tiny
BASIC's SORRY.

Using  the  error  routines  is  straightforward.  When
code determines that an error exists in the program, it
performs an unconditional jump to the corresponding
routine  to  raise  that  particular  error.  Detecting  the
error  itself  (for  example,  a  missing  keyword  in  a
statement) is the responsibility of the calling routine.
However, once an error routine is called, further error
handling will be taken care of automatically.

Example from  MOD16 of raising an error on division
by zero.

Once another part  of  the program has called into
the  error  handlers,  control  eventually  passes  to  the
ERROR routine. It unwinds the stack, restores any I/O
settings  to  their  screen  and  keyboard  defaults,  and
finally prints an error message indicating the type of
error  that  occurred.  If  the  error  occurred  while  the
program  was  running,  the  current  line  number  is
appended as in Commodore BASIC. Once completed,
the routine jumps to the REPL loop, allowing the user
to continue to work with the computer.

MOD16     LDA NUMTWO          ; See if the low byte of the second argument is nonzero
          BNE _OK

          LDA NUMTWO+1        ; See if the high byte of the second argument is nonzero
          BNE _OK

          JMP RAISE_LOG       ; Raise a logic error for divide by zero

ERROR     LDX STACKREG        ; Unwind the stack
          TXS

          JSR SERIALOFF       ; Turn off serial mode (just in case it was on)

          STZ IOMODE          ; Reset IO mode for all future output
          STZ IOBAUD
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The  ERROR routine  recovers  from  errors  and  prints
messages.

STARTING BASIC

Once the required setup is out of the way, it's time
to start up BASIC itself. If no cartridge is connected to
the  computer,  the  program continues  on  to  boot  up
BASIC.  While  the  BASIC  interpreter  is  somewhat

          STZ OBUFLEN         ; Reset output buffer position

          PHA                 ; Preserve the provided error code in the accumulator

          LDA #CHR_NL         ; Ensure error messages begin on a new line
          JSR PUTOUT

          PLA                 ; Restore the error code into the accumulator

          CLC                 ; Calculate the message table index for the provided error
          ADC #MSG_ERRORS

          JSR PUTMSG          ; Print the error

          CMP #MSG_ERRORS     ; "Break" errors don't have the word "error" (just BREAK IN ...)
          BEQ _BREAK

          LDA #MSG_ERROR      ; Print the word "ERROR" for all other errors
          JSR PUTMSG

_BREAK    LDA RUNMODE         ; Are we running a program right now? (otherwise hide line numbers)
          CMP #RM_PROGRAM
          BNE _NOLINE

          LDA #MSG_IN         ; Append "IN" to our error message
          JSR PUTMSG

          LDY #1              ; Start at line number position in current line

          LDA (PROGPTR),Y     ; Copy line number low byte
          STA NUMONE

          INY                 ; Next byte

          LDA (PROGPTR),Y     ; Copy line number high byte
          STA NUMONE+1

          JSR TOSTRING        ; Write the line number into the buffer

_NOLINE   LDA #CHR_NL         ; New line after the error message
          JSR PUTOUT

          LDA #CHR_NL         ; Blank line
          JSR PUTOUT

          LDA #MSG_READY      ; Ready message
          JSR PUTMSG

          JSR FLUSH           ; Print the error message

          STZ RUNMODE         ; Reset run mode (REPL mode after errors or breaks)

          CLI                 ; Enable interrupts (in case we came from the interrupt routine)

          JMP REPL            ; Return to the REPL loop
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complex,  the  main  loop  for  it  isn't  that  difficult  to
follow.  As  mentioned  in  our  discussion  of  error
handling, we keep a copy of the current 65C02 stack
position for our error handler when we enter BASIC.
Then  a  short  startup  message  is  printed.  Finally,
interrupts are enabled so that the timer interrupt and
keyboard scanning routine will run.

Final steps before entering BASIC.

We then enter  a  read-eval-print  loop (REPL)  that
lets the user enter text into Cody BASIC. All input is
tokenized  by  the  TOKENIZE routine  and  then
examined. If a line begins with a number, we insert or
delete  the  line  from  the  program  with  a  call  to
ENTERLINE.  If it doesn't begin with a number, we call
EXSTMT to execute the line as a BASIC statement.

BASIC     JSR INIT              ; Re-run BASIC initialization just to be safe

          TSX                   ; Preserve the stack register for unwinding on error conditions
          STX STACKREG

          STZ OBUFLEN           ; Move to beginning of the output buffer

          LDA #MSG_GREET        ; Print the welcome message
          JSR PUTMSG
          JSR FLUSH

          LDA #MSG_READY        ; Print the ready message
          JSR PUTMSG
          JSR FLUSH

          CLI                   ; Enable interrupts and drop through to the REPL loop

122



The implementation of Cody BASIC's read-eval-print
loop.

STARTING A CARTRIDGE PROGRAM

The  only  exception  to  the  above  sequence  occurs
when a cartridge is plugged into the computer. In the
event  a  cartridge  is  plugged in,  we  skip  starting  up
BASIC and instead read in a binary program from the
cartridge. During startup we rely on the  CARTCHECK
routine  to  see  if  a  cartridge  is  plugged  in  the
expansion port.

REPL      STZ RUNMODE           ; Clear out RUNMODE

          STZ IOMODE            ; Direct all IO to screen and keyboard

          JSR READKBD           ; Read a line of input and advance the screen
          JSR SCREENADV

          JSR TOKENIZE          ; Tokenize the input

          LDA TBUF              ; Line number to add or execute the line immediately?
          CMP #$FF
          BNE _EXEC

          JSR ENTERLINE         ; Enter the line into the program

          BRA REPL              ; Next read-eval-print loop

_EXEC     STZ PROGOFF           ; Start at the beginning of the line

          LDA #>TBUF            ; Use the token buffer as the line we're going to run
          STA PROGPTR
          LDA #>TBUF
          STA PROGPTR+1

          JSR EXSTMT            ; Execute the statement in the token buffer

          STZ OBUFLEN           ; Move to beginning of output buffer

          LDA #MSG_READY        ; Print the ready message after each REPL operation
          JSR PUTMSG
          JSR FLUSH

          BRA REPL              ; Next read-eval-print loop
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The section in MAIN that checks for a cartridge.

CARTCHECK toggles  some lines  on the expansion
port  to  determine  if  a  cartridge  is  plugged  in.  If  a
cartridge  is  present,  the  CA1  and  CA2  lines  on  the
65C22  VIA  will  be  connected  by  a  trace  on  the
cartridge's printed circuit board. If not, the CA1 line will
be  pulled  low  by  a  pulldown  resistor  built  into  the
Cody Computer itself. We set up the 65C22 so that the
CA1  line  is  positive-edge  triggered,  then  bring  CA2
high.  If  CA1  detected  a  positive  edge,  we  know  a
cartridge  is  connected.  If  not,  then  no  cartridge  is
present.

The CARTCHECK routine for cartridge detection.

If  a  cartridge  is  detected,  the  LOADBIN routine  is
called  to  load  binary  code  from  the  cartridge's  SPI
EEPROM.  This  routine  actually  handles  loading  of
binary code from both serial and SPI sources to save

          JSR CARTCHECK         ; Check for cartridge plugged in
          BEQ BASIC

          STZ IOMODE            ; Cartridge found, load and run binary instead of BASIC
          STZ IOBAUD
          JMP LOADBIN

CARTCHECK LDA #$0D              ; Set CA2 to LOW output, CA1 to positive edge trigger
          STA VIA_PCR

          LDA VIA_IORA          ; Clear the existing CA1 flag value in the VIA_IFR register

          LDA #$0F              ; Toggle CA2 HIGH
          STA VIA_PCR

          LDA VIA_IFR           ; Push the CA1 flag value in the VIA_IFR register for later
          PHA

          LDA #$0D              ; Set CA2 to LOW output, CA1 to positive edge trigger
          STA VIA_PCR

          LDA VIA_IORA          ; Clear the existing CA1 flag value in the VIA_IFR register

          PLA                   ; Pop the stored CA1 flag value and test if bit was set
          AND #$02

          RTS
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space,  but  different  underlying  routines  are  called
depending on the use case. For loading from SPI, three
helper  routines  exist  to  handle  SPI  communications.
The  CARTON routine  starts  an  SPI  transaction,  the
CARTOFF routine  ends  an  SPI  transaction,  and  the
CARTXFER routine simultaneously sends and receives
a byte over SPI.

The CARTXFER routine transfers a single byte over SPI.

An additional complication exists for cartridges as
they  have  two  possible  address  sizes:  16  bits  (for
cartridges up to 64 kilobytes) and 24 bits (for larger
SPI  memories).  The  LOADBIN routine takes this  into

CARTXFER  PHX

          STA SPIOUT

          STZ SPIINP

          LDX #8              ; 8 bits to read

_LOOP     STZ VIA_IORB        ; Bring the clock low

          LDA #0              ; Start with no data

          ROL SPIOUT          ; Get output bit

          BCC _SEND

          ORA #CART_MOSI      ; Output bit was a 1

_SEND     STA VIA_IORB        ; Put the bit on MOSI

          ORA #CART_CLK       ; Bring the SPI clock high
          STA VIA_IORB

          ROL SPIINP          ; Rotate SPI input for next bit

          LDA VIA_IORB        ; Read the incoming MISO
          AND #CART_MISO

          BEQ _NEXT

          LDA SPIINP
          ORA #1
          STA SPIINP

_NEXT     DEX                 ; Next loop (if any remain)
          BNE _LOOP

          PLX

          LDA SPIINP

          RTS
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account,  something we'll  talk about when we discuss
loading and saving of programs later on.

Portion of LOADBIN that checks for the cartridge's size.

TOKENIZATION AND
INTERPRETATION

Running  programs  in  Cody  BASIC  is  a  two-step
process.  The  first  step  is  tokenization,  where  a
program's contents are translated to a special internal
representation  of  the  program.  The  second  step  is
interpretation,  where  the  tokenized  program  is
executed  line  by  line  and  its  statements  processed.
Both  steps  occur  regardless  of  the  nature  of  the
program,  whether  it's  a  single  line  entered  in  REPL
mode, an entire program that's been typed in by the
user, or a program loaded in over a serial port.

TOKENIZATION

Certain  keywords  or  symbols  in  Cody  BASIC  are
converted into tokens. This approach, common to many
1980s  BASIC  implementations,  serves  two  purposes.
The first  is  that by reducing an entire word,  such as
RETURN,  to  a  one-byte  token  like  $8A,  we  save
considerable  space  in  BASIC  program  memory.  The
second is that the program can be interpreted far more
quickly.

          LDX #2              ; Assume a cartridge with a two-byte address

          LDA VIA_IORB        ; If cart size bit is high, we have a three-byte address
          BIT #CART_SIZE
          BEQ _ADDR
          INX
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Instead  of  having  to  process  each  letter  and
determine what to do at the end of the keyword, we
can  just  test  if  a  byte  falls  within  a  certain  range
reserved for tokens. If so, we know we have a keyword
or other special value. In some cases, the tokens can be
used  as  indexes  into  a  jump  table,  making  our
interpreter code even faster.

The tokenization occurs in the  TOKENIZE routine. It
takes the contents of a line in the input buffer  IBUF
and converts it to a tokenized line in the token buffer
TBUF.  A  tokenized  line  at  this  point  consists  of  the
same text contents as its original, except that certain
keywords, symbols, and literals are replaced by their
token equivalents. Constants beginning with the TOK_
prefix define the numeric values of the tokens.

Main loop of the TOKENIZE routine.

Tokens always begin with a single byte that has its
highest bit set to 1. As a practical matter, this means
that  BASIC  tokens  begin  at  $80 in  hex  or  128  in
decimal. Tokens for keywords are only a single byte in
size. Numbers are the only exception and begin with a

_LOOP     LDA IBUF,X          ; Load the next character

          CMP #CHR_NL         ; End of line?
          BEQ _END

          CMP #CHR_QUOTE      ; String?
          BEQ _STR

          JSR ISALPHA         ; Letter?
          BCS _LET

          JSR ISDIGIT         ; Digit?
          BCS _NUM

          CMP #CHR_LESS       ; Rule out relational operator ranges
          BCC _CHR

          CMP #CHR_QUEST
          BCS _CHR

          JMP _OPR            ; Relational operators handled as special case
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sentinel value of  $FF followed by a 16-bit  unsigned
number  in  little-endian  format  (lowest  byte  stored
first). Strings are not tokenized and are delimited by
ASCII  double-quote  characters.  Contents  within  the
strings are not tokenized.

Part of the TOKENIZE routine that handles numbers.

The  actual  text  of  the  tokens  is  kept  in  a  page-
aligned table of string literals. To save space, instead
of  terminating  each  literal  in  the  table  with  a  null
character, the high bit on the final character is set. This
saves many bytes of  space but  makes reading from
the  table  more  complicated.  Tokens  are  mapped  to
message constants starting at MSG_TOKENS from the
start of the message number table. Because both the
token  string  and  message  string  tables  are  page-
aligned only  the  low byte  of  the  address  is  kept  in
some of the message lookup tables.

_NUM      LDA #<IBUF          ; Input buffer lower byte
          STA MEMSPTR

          LDA #>BUF          ; Input buffer high byte
          STA MEMSPTR+1

          PHY                 ; Preserve current token buffer position

          TXA                 ; Move the current input buffer position into the y-register
          TAY

          JSR TONUMBER        ; Parse the number

          TYA                 ; Move the updated input buffer position back into the x-register
          TAX

          PLY                 ; Restore the token buffer position off the stack

          LDA #$FF            ; Write the sentinel value for a number token
          JSR _PUT

          LDA NUMANS          ; Store number low byte
          JSR _PUT

          LDA NUMANS+1        ; Store number high byte
          JSR _PUT

          JMP _LOOP
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To match  a  substring  to  its  token  value  we  use  a
binary  search  algorithm.  The  _TOKTABLE in  the
TOKENIZE routine  stores  token  values  in  their
alphabetical  order  to  assist  with  the  binary  search
process.  This  table  is  used  by  the  routine  to  more
quickly match incoming text to tokens.

          STZ TOKENIZEL       ; Prepare for binary search
          LDA #(_TOKTABLEEND - _TOKTABLE)
          STA TOKENIZER

_TOKNEXT  LDA TOKENIZEL       ; Are we done yet? (L <= R)
          CMP TOKENIZER

          BCC _TOKCOMP
          BEQ _TOKCOMP

          PLY                 ; Restore token buffer (Y) and input buffer (X) positions
          PLX

          JMP _CHR            ; Process as normal character

_TOKCOMP  CLC                 ; Calculate our position in the token lookup table
          LDA TOKENIZEL
          ADC TOKENIZER
          LSR A
          TAX

          PHX

          LDA _TOKTABLE,X     ; Get the token's matching index in the string table
          TAX

          LDA TOKTABLE_L,X    ; Put the token's address in the memory destination pointer
          STA MEMDPTR
          LDA #TOKTABLE_H
          STA MEMDPTR+1

          PLX

          LDY #$00            ; Use the y register for our position in the strings

_TOKCHAR  LDA (MEMDPTR),Y     ; Get the destination char and test the high bit for the end of string
          BIT #$80
          PHP

          AND #$7F            ; Mask out the valid portion of the char for later comparision
          STA SYS_A

          LDA (MEMSPTR),Y     ; Get the next character from the input string and UPPERCASE it
          JSR TOUPPER

          CMP SYS_A           ; Compare it to the token string and see if we still match
          BEQ _TOKOK
          BCC _TOKLO
          BCS _TOKHI

_TOKOK    INY                 ; Move to next char

          PLP                 ; If we've reached the end of the token we're testing against, we have a match
          BNE _TOKYES
          BRA _TOKCHAR

_TOKHI    PLP
          TXA                 ; Input token was greater, move to top partition
          INC A
          STA TOKENIZEL
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Binary  search  as  implemented  in  the  TOKENIZE
routine.

The performance of the tokenization process is very
important  to  the  overall  usability  of  the  Cody
Computer. Unlike most tokenized BASICs, Cody BASIC
does not use its tokenized form when a copy is saved
via  SAVE or loaded via  LOAD.  Instead, all tokens are
converted back to their plain text to make the content
readable in just about any text editor. This means that
when a program is loaded over a serial connection, it
must  also  be  tokenized.  This  also  means  that  the
loading speed of a BASIC program is largely limited
by how fast the incoming text can be tokenized.

A  TOKENIZE optimization  that  skips  over  REM
comments.

LINE INSERTION AND DELETION

Once  a  line  is  tokenized  it's  either  evaluated
immediately or added to the program. The REPL loop
examines the contents of the token buffer  TBUF and
checks if  the line begins with a number.  If  it  does, it

          BRA _TOKNEXT

_TOKLO    PLP
          TXA                 ; Input token was less, move to bottom partition
          DEC A
          STA TOKENIZER
          BRA _TOKNEXT

_REM      LDA IBUF,X          ; Skip tokenizing after a REMARK to save time

          CMP #CHR_NL         ; End of line?
          BEQ _REMEND

          JSR _PUT            ; Copy the character

          INX                 ; Next character
          BRA _REM

_REMEND   JMP _END
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means  the  line  is  either  being  added,  replaced,  or
deleted  from the  program,  which  is  handled  by  the
ENTERLINE routine.

It  extracts  the  line  number  from the  token  buffer
and  calls  FINDLINE to  determine  the  line's  starting
location within program memory. If the line exists, the
contents of program memory are shifted downward to
delete  the  existing  line.  Unless  the  line  is  empty
(containing only the line number), program memory is
then shifted upward to make room for the new line.
INSLINE is called to handle the actual insertion.

ENTERLINE PHA                 ; Preserve registers

          LDA TBUF+1          ; Get the line number we're looking for
          STA LINENUM+0
          LDA TBUF+2
          STA LINENUM+1

          JSR FINDLINE        ; See if the line number entered already exists
          BCC _NEW

_DEL      LDA LINEPTR+0       ; Use matching line as destination (deleting line by copying over it)
          STA MEMDPTR+0
          LDA LINEPTR+1
          STA MEMDPTR+1

          CLC                 ; Calculate end of matching line as the source pointer
          LDA MEMDPTR+0
          ADC (LINEPTR)
          STA MEMSPTR+0
          LDA MEMDPTR+1
          ADC #0
          STA MEMSPTR+1

          SEC                 ; Calculate number of bytes to move down from the top
          LDA PROGTOP+0
          SBC MEMSPTR+0
          STA MEMSIZE+0
          LDA PROGTOP+1
          SBC MEMSPTR+1
          STA MEMSIZE+1

          SEC                 ; Adjust the top address in program memory because we deleted a line
          LDA PROGTOP+0
          SBC (LINEPTR)
          STA PROGTOP+0
          LDA PROGTOP+1
          SBC #0
          STA PROGTOP+1

          JSR MEMCOPYDN       ; Delete the current line by moving memory down

_NEW      LDA TBUFLEN         ; If nothing on the new line, don't insert anything (just a deletion?)
          CMP #4
          BEQ _END

          LDA LINEPTR+0       ; Is our insertion position the same as the top of program memory?
          CMP PROGTOP+0
          BNE _MOV

131



The ENTERLINE routine handles lines entered into the
REPL.

The FINDLINE routine determines the insert location
for a new line. If a line already exists with the same
number, it will return that location instead. The routine
works by starting at  PROGMEM, the base of program
memory,  and continuing until  either a matching line
number is found (indicating the line is present) or a
line number that is larger is found (indicating the line
does not exist).

To  compare  line  numbers  it  examines  the  second
and third bytes in each line, which contain the low and
high bytes of the line number. If it needs to move to
the following line, the first byte of the line, containing
the  line  length,  is  added  to  the  current  pointer  in

          LDA LINEPTR+1
          CMP PROGTOP+1
          BNE _MOV

          BRA _INS            ; If so, we can just insert without copying memory to make space

_MOV      LDA LINEPTR+1       ; If we're on the last page of program memory just say we're out
          CMP PROGEND
          BEQ _SYS

          LDA LINEPTR+0       ; Use the insertion position as source pointer to move memory
          STA MEMSPTR+0
          LDA LINEPTR+1
          STA MEMSPTR+1

          CLC                 ; Calculate the destination pointer for copying memory
          LDA MEMSPTR+0
          ADC TBUFLEN
          STA MEMDPTR+0
          LDA MEMSPTR+1
          ADC #0
          STA MEMDPTR+1

          SEC                 ; Calculate the amount of memory to copy to make room for the new line
          LDA PROGTOP+0
          SBC MEMSPTR+0
          STA MEMSIZE+0
          LDA PROGTOP+1
          SBC MEMSPTR+1
          STA MEMSIZE+1

          JSR MEMCOPYUP       ; Copy the memory up to make room for the new line

_INS      JSR INSLINE         ; Insert the line

_END      PLA                 ; Restore registers

          RTS

_SYS      JMP RAISE_SYS       ; Indicate we're out of BASIC program memory
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LINEPTR to move forward. If  LINEPTR is ever equal to
PROGTOP, the top of program memory, it means the
line does not exist and should be appended to the end
of the program.

FINDLINE is also used by the BASIC interpreter to
find destination  line  numbers  in  GOTO and  GOSUB
statements.

Finding a line's insert position is handled by FINDLINE.

FINDLINE  PHA                 ; Preserve registers
          PHY

          LDA #<PROGMEM       ; Start at the beginning of program memory
          STA LINEPTR+0
          LDA #>PROGMEM
          STA LINEPTR+1

_LOOP     LDA LINEPTR+0       ; Ensure that we're not at the top of program memory already
          CMP PROGTOP+0
          BNE _COMP

          LDA LINEPTR+1
          CMP PROGTOP+1
          BNE _COMP

          BRA _NO

_COMP     LDY #2              ; Skip leading line size byte when doing line number comparison

          LDA (LINEPTR),Y     ; Compare current and desired line number high bytes
          CMP LINENUM+1
          BNE _TEST

          DEY                 ; Compare current and desired line number low bytes
          LDA (LINEPTR),Y
          CMP LINENUM

_TEST     BEQ _YES            ; Found a match

          BCS _NO             ; Current line greater than desired line number, doesn't exist

          CLC                 ; Current line less than desired line number, move to next line

          LDA LINEPTR+0       ; Add current line size to low address byte
          ADC (LINEPTR)
          STA LINEPTR+0

          LDA LINEPTR+1       ; Propagate carry to high address byte
          ADC #0
          STA LINEPTR+1

          BRA _LOOP

_NO       CLC                 ; No match found, clear carry
          BRA _END

_YES      SEC                 ; Match found, set carry

_END      PLY                 ; Restore registers
          PLA

          RTS
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Insertion of a line is handled by INSLINE. It assumes
that appropriate space has already been allocated for
the new line (by  ENTERLINE) and doesn't  move any
contents within program memory. Instead, it copies the
contents  of  the  token  buffer  TBUF into  a  specified
address  in  program  memory.  It  also  somewhat
modifies the line contents, changing the first byte from
$FF (representing the start of a number token) to the
line's  length  in  bytes.  When  done,  the  value  of
PROGTOP is  incremented  by  the  line's  length  to
reflect the increased size of the program.

The  INSLINE routine is also used by the  LOADBAS
routine when a BASIC program is being loaded from
storage over the serial port. In this case lines are being
appended to the top of the program as they come in
and get  tokenized.  This  allows us to  skip over  some
unrelated code not needed for this special case of line
insertion.

INSLINE   LDA LINEPTR+1       ; If we're on the last page of program memory just say we're out
          CMP PROGEND
          BEQ _SYS

          LDA TBUFLEN         ; Store token buffer length as first byte in line
          STA TBUF

          STA MEMSIZE+0       ; Set size of memory to copy into program buffer
          STZ MEMSIZE+1

          LDA #<TBUF          ; Use token buffer as source pointer
          STA MEMSPTR+0
          LDA #>TBUF
          STA MEMSPTR+1

          LDA LINEPTR+0       ; Use line pointer found for line number as destination pointer
          STA MEMDPTR+0
          LDA LINEPTR+1
          STA MEMDPTR+1

          JSR MEMCOPYDN       ; Copy the memory

          CLC                 ; Update the top of memory to the new location
          LDA PROGTOP+0
          ADC TBUFLEN
          STA PROGTOP+0
          LDA PROGTOP+1
          ADC #0
          STA PROGTOP+1

          RTS
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INSLINE routine for inserting a line into the program.

INTERPRETATION

Once  Cody  BASIC  code  is  tokenized,  it  can  be
executed via interpretation. The core of the interpreter
is a recursive-descent parser that goes through each
tokenized  line  looking  for  tokens  and  calling  the
appropriate  routines  to  handle  them.  The  PROGPTR
zero-page variable points to the start  of  the current
line  while  another  zero-page  variable,  PROGOFF,
stores  the  current  position  within  the  line.  For
evaluating  mathematical  expressions  or  passing
values  between  interpreter  routines,  a  dedicated
expression stack exists in zero page (EXPRS_L for low
bytes, EXPRS_H for high bytes).

The starting point for interpretation is the  EXSTMT
routine that interprets a single statement. It examines
the  first  token  in  the  current  line,  converts  it  to  an
index into a jump table, and jumps to the appropriate
routine to handle the statement type. When the called
routine returns, because we did a jump rather than a
subroutine call, control will return back to the routine
that  called  EXSTMT.  While  somewhat  hackish,  this
works  around  the  65C02's  inability  to  perform  an
indirect subroutine call.  (A more generic way around
the same problem is to perform a subroutine call to
the  code  that  does  the  jump,  but  for  our  specific
purpose, what we have works quite well.)

Note that the routines that are part of the recursive-
descent  interpreter  are  usually  prefixed  with  EX to
indicate they're used to execute the program. You can

_SYS      JMP RAISE_SYS       ; Indicate we're out of BASIC program memory
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see many of these routines in the jump table included
below.

EXSTMT is the highest-level routine in the interpreter.

The REPL loop relies on EXSTMT to run the lines of
BASIC code the user enters. In this mode, each entered
line  that  is  not  an  edit  is  executed  immediately.  To

EXSTMT    STZ EXPRSNUM        ; Start at the bottom of the expression stack

          JSR EXSKIP          ; Skip any whitespace before we run into a token

          LDY PROGOFF         ; Get the current offset in the current line

          LDA (PROGPTR),Y     ; Get the current byte

          CMP #CHR_NL         ; Was it a newline? If so the entire line was blank
          BEQ _END

          CMP #TOK_SYS+1      ; Check that the byte isn't too big to be a valid token
          BCS _SYN

          SEC                 ; Subtract from the first statement token to get the index
          SBC #TOK_NEW

          BCC _ASN            ; If the result was less than that, assume it was an assignment

          ASL A               ; Multiply by two to convert the number into a jump table index
          TAX

          INC PROGOFF         ; Increment the current offset since we consumed the token

          JMP (_JMP,X)        ; Jump to the code for the statement we have

_END      RTS

_ASN      JMP EXASSIGN        ; Jump to the assignment

_SYN      JMP RAISE_SYN       ; Raise syntax error

_JMP      .WORD EXNEW
          .WORD EXLIST
          .WORD EXLOAD
          .WORD EXSAVE
          .WORD EXRUN
          .WORD EXNOP
          .WORD EXIF
          .WORD _SYN
          .WORD EXGOTO
          .WORD EXGOSUB
          .WORD EXRETURN
          .WORD EXFOR
          .WORD _SYN
          .WORD EXNEXT
          .WORD EXPOKE
          .WORD EXINPUT
          .WORD EXPRINT
          .WORD EXOPEN
          .WORD EXCLOSE
          .WORD EXREAD
          .WORD EXRESTORE
          .WORD EXNOP
          .WORD EXEND
          .WORD EXSYS
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make this happen,  PROGOFF is set to zero,  PROGPTR
is pointed to the token buffer, and EXSTMT is called to
execute  the  line.  Once  the  line  has  been  executed
control returns to the REPL loop for further input.

The _EXEC portion of the REPL code.

Running an entire program using the RUN command
is  very  similar,  except  that  lines  are  interpreted  in
succession  until  the  program  comes  to  a  stop.
Interestingly,  it's the responsibility of the interpreter
itself to begin interpreting a full program, as the RUN
statement  is  actually  implemented  within  the
interpreter  itself.  When  a  user  enters  the  RUN
statement in  the REPL loop,  the interpreter  calls  the
EXRUN routine to execute it, running the program.

EXRUN starts out by clearing the current interpreter
state back to some sane default values. It also has to
set the RUNMODE so other code, particularly the error
handler,  knows  that  we're  running  a  program.  It
positions  the  PROGPTR to  the  start  of  the  program,
then  begins  evaluating  each  line  one  at  a  time  by
calling EXSTMT.

As an additional complication, some statements can
change  the  interpreter's  current  position  in  the

_EXEC     STZ PROGOFF           ; Start at the beginning of the line

          LDA #<TBUF            ; Use the token buffer as the line we're going to run
          STA PROGPTR
          LDA #>TBUF
          STA PROGPTR+1

          JSR EXSTMT            ; Execute the statement in the token buffer

          STZ OBUFLEN           ; Move to beginning of output buffer

          LDA #MSG_READY        ; Print the ready message after each REPL operation
          JSR PUTMSG
          JSR FLUSH

          BRA REPL              ; Next read-eval-print loop
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program. For example, a GOTO statement could move
the current position far away from the current line, and
other statements related to control flow have similar
effects.

To handle these situations, EXRUN also calculates a
PROGNXT pointer to the  next line to execute before
executing  the  current  line.  Once  the  current  line  is
executed, it goes to the line pointed to by PROGNXT.
Under normal circumstances this will be the line after
the  current  one,  but  for  statements  that  modify  the
control flow, the value can be replaced with a different
one when the control statement runs.

EXRUN     JSR ONLYREPL        ; Only valid in REPL mode

          JSR NEWVARS         ; Reset variable memory

          JSR RESTORE         ; Reset data buffer for DATA/READ statements

          LDA #RM_PROGRAM     ; Set RUNMODE to running
          STA RUNMODE

          STZ GOSUBSNUM       ; Start out with empty GOSUB/RETURN and FOR/NEXT stacks
          STZ FORSNUM

          LDA #<PROGMEM       ; Use the start of program memory as our starting position
          STA PROGPTR
          LDA #>PROGMEM
          STA PROGPTR+1

_LOOP     LDA RUNMODE         ; Check that we're still running (e.g. no END statement was executed)
          BEQ _DONE

          JSR ISEND           ; Make sure that this line isn't actually the end of the program
          BEQ _DONE

_CONT     CLC                 ; Prepare to calculate the NEXT line we'll be running

          LDA PROGPTR         ; Calculate the low byte by adding our pointer to the line's size
          ADC (PROGPTR)
          STA PROGNXT

          LDA PROGPTR+1       ; Propagate the carry
          ADC #0
          STA PROGNXT+1

          LDA #4              ; Start at the first non-line-number position in the current line
          STA PROGOFF

          JSR EXSTMT          ; Execute the statement on this line

          LDA PROGNXT         ; Copy the NEXT line's pointer over to use as the current line
          STA PROGPTR
          LDA PROGNXT+1
          STA PROGPTR+1

          BRA _LOOP           ; Repeat, run the next statement

_DONE     STZ RUNMODE         ; Clear run mode
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EXRUN runs  an  entire  program  from  within  the
interpreter.

The  interpreter  supports  26  numeric  arrays,  A
through Z, each capable of holding up to 128 numbers.
An additional 26 string variables, A$ through Z$, also
exist with a maximum length of 255 characters plus a
terminating NUL char. These reside in the  DATAMEM
portion of the interpreter's memory, with each array or
string  aligned  to  a  single  256-byte  page  in  the
65C02's  memory.  Numeric  variables  start  at  ARRA
through  ARRZ while  string  variables  start  at  STRA
through STRZ. The interpreter's EXVAR routine parses
variables  and  calculates  the  actual  memory  address
associated with them, including any array indexes for
number variables.

          STZ IOMODE          ; Clear IO mode

          RTS                 ; Done

EXVAR     JSR EXSKIP          ; Consume leading space

          LDY PROGOFF         ; Load the next character from the current line
          LDA (PROGPTR),Y

          INC PROGOFF         ; Consume the character

          JSR ISALPHA         ; If not a letter, it's a syntax error
          BCC _SYN

          SEC                 ; Calculate the page number assuming we have an array variable
          SBC #CHR_AUPPER

          CLC                 ; Determine the actual page location based on the start of vars
          ADC #>ARRA

          STZ NUMANS          ; Assume by default we DO NOT have an index into an array
          STA NUMANS+1

          LDY PROGOFF         ; Load another character
          LDA (PROGPTR),Y

          CMP #CHR_DOLLAR     ; String variable so we need to adjust our pointer into string memory
          BEQ _STR

          CMP #CHR_LPAREN     ; Array index so we need to adjust our pointer within array memory
          BNE _NUM

          JSR EXLPAREN        ; Consume left parenthesis

          LDA NUMANS+1        ; Preserve high byte of variable address (will be clobbered by expr eval)
          PHA
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The  EXVAR routine  calculates  a  variable's  memory
address.

In  addition  to  the  many  interpreter  routines  that
execute  specific  statements  or  functions  in  Cody
BASIC,  there  are  helper  routines  used  by  the
interpreter.  Some  are  part  of  the  BASIC  interpreter
itself, such as  EXSKIP (used for skipping whitespace),
EXLPAREN and  EXRPAREN (used  for  parsing
parentheses),  and  EXCHARACT (used  for  requiring
that  the  next  character  in  a  line  is  a  certain  value).
Routines  such  as  EXONEARG and  EXTWOARG
consolidate code for parsing one-argument and two-

          JSR EXEXPR          ; Evaluate expression for array index

          PLA                 ; Restore the high byte of the variable address (just got clobbered)
          STA NUMANS+1

          JSR EXRPAREN        ; Consume right parenthesis

          JSR POPONE          ; Pop the array index off the stack

          LDA NUMONE+1        ; High byte should be zero (or will be out of range)
          BNE _LOG

          LDA NUMONE          ; Low byte should be less than 128 (or will be out of range)
          BIT #$80
          BNE _LOG

          ASL A               ; Shift low byte by one (multiply by two because numbers are two bytes wide)

          STA NUMANS          ; Store the index as the low byte

_NUM      JSR PUSHANS         ; Store the address of the variable

          CLC                 ; Clear carry to indicate it's a number variable

          RTS                 ; All done

_STR      CLC                 ; Adjust pointer from array memory to string memory
          LDA #26
          ADC NUMANS+1
          STA NUMANS+1

          INC PROGOFF         ; Consume dollar sign

          JSR PUSHANS         ; Store the address of the variable

          SEC                 ; Set carry to indicate it's a string variable

          RTS                 ; All done

_SYN      JMP RAISE_SYN       ; Raise a syntax error

_LOG      JMP RAISE_LOG       ; Raise a logic error (array index out of bounds)
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argument  mathematical  functions,  while  EXSTRARG
does something similar for string functions.

EXTWOARG combines  helper  routines  into  another
helper routine.

Other  helper  routines  also  exist  outside  the
interpreter core. Math routines such as MUL16,  DIV16, 
RND16,  and  SQR16 perform 16-bit math calculations
needed  to  implement  some  of  Cody  BASIC's
mathematical  functions.  Other  routines  such  as
POPONE,  POPBOTH, and PUSHANS, assist in moving
values  back  and  forth  between  the  expression  stack
and the  NUMONE,  NUMTWO,  and  NUMANS zero-
page variables used by many interpreter and helper
routines.

POPONE removes the top value from the expression
stack.

EXTWOARG  JSR EXLPAREN
          JSR EXEXPR
          JSR EXCOMMA
          JSR EXEXPR
          JSR EXRPAREN
          RTS

POPONE    PHA                 ; Preserve registers
          PHX

          LDX EXPRSNUM        ; Fetch the current size of the expression stack

          LDA EXPRS_L-1,X     ; Store the low byte into NUMONE
          STA NUMONE

          LDA EXPRS_H-1,X     ; Store the high byte into NUMONE
          STA NUMONE+1

          DEC EXPRSNUM        ; Decrement the count by one

          PLX                 ; Restore registers
          PLA

          RTS                 ; All done
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NUMERIC AND STRING
EXPRESSIONS

Cody  BASIC  supports  numeric  and  string
expressions.  It's  not  possible  to  go  over  the
implementation  of  every  single  command  in  Cody
BASIC (though the code is heavily documented),  but
by  studying  how  some  of  the  math  and  string
operations are implemented, it's possible to develop a
greater understanding of how the BASIC interpreter's
recursive-descent parser works in practice.

Numeric expressions, like everything in Cody BASIC,
follow  the  language's  grammar.  A  numeric  EXPR
contains a TERM followed by zero or more addition or
subtraction operators and TERMs. In turn, the TERM is
defined much the same,  except that  it  begins with a
single  FACTOR  followed  by  zero  or  more
multiplication  or  division  operators  and  FACTORs.
Lastly, a FACTOR can be any of a variety of numeric
types,  including  number  literals,  numeric  functions,
variables, or even a nested expression in parentheses.
Note  that  this  approach  also  preserves  operator
precedence,  as  individual  numbers  or  nested
expressions  end  up  evaluated  first,  followed  by
multiplication and division, and only last are addition
and subtraction performed.

An EXPR is implemented in the interpreter by the
EXEXPR routine.  It  calls  another routine,  EXTERM,  to
handle  the  initial  term,  then  loops  as  long  as  an
addition  or  subtraction  operator  is  present.  If  one  is
present, it parses the operator, calls EXTERM to get the
other  operand,  and  then  performs  the  calculation.
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Because the operands are pushed on the expression
stack,  the  values  are  obtained  from  there  and  the
result stored there as well.

EXEXPR executes the code for a numeric expression.

The  EXTERM routine implements the same but for
TERMs. In this case, EXFACTOR is called to put the first
operand  on  the  expression  stack.  Then  the  code

EXEXPR    JSR EXTERM          ; Evaluate the left side of the (possible) operator

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_PLUS       ; Addition operation
          BEQ _ADD

          CMP #CHR_MINUS      ; Subtraction operation
          BEQ _SUB

          RTS                 ; All done

_ADD      INC PROGOFF         ; Consume plus character

          JSR EXTERM          ; Evaluate the right side of the plus sign

          LDX EXPRSNUM        ; Find how many items we have on the expression stack

          CLC                 ; Prepare for addition

          LDA EXPRS_L-2,X     ; Add number low bytes together and put back on stack
          ADC EXPRS_L-1,X
          STA EXPRS_L-2,X

          LDA EXPRS_H-2,X     ; Add number high bytes together and put back on stack
          ADC EXPRS_H-1,X
          STA EXPRS_H-2,X

          DEC EXPRSNUM        ; Decrement stack by one (took two values off, put result back on)

          BRA _LOOP           ; Next

_SUB      INC PROGOFF         ; Consume minus character

          JSR EXTERM          ; Evaluate the right side of the minus sign

          LDX EXPRSNUM        ; Find how many items we have on the expression stack

          SEC                 ; Prepare for subtraction

          LDA EXPRS_L-2,X     ; Subtract number low bytes and put back on stack
          SBC EXPRS_L-1,X
          STA EXPRS_L-2,X

          LDA EXPRS_H-2,X     ; Subtract number high bytes and put back on stack
          SBC EXPRS_H-1,X
          STA EXPRS_H-2,X

          DEC EXPRSNUM        ; Decrement stack by one (took two values off, put result back on)

          BRA _LOOP           ; Next
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continues  to  loop  as  long  as  a  multiplication  or
division operator is present, calling EXFACTOR for the
other operand if so.

In  this  case  the  actual  calculation  is  less
straightforward  as  the  65C02 does  not  support  any
hardware  multiplication  or  division.  Instead,  we
perform the calculation in software, calling POPBOTH
to  get  the  top  values  of  the  expression  stack  into
NUMONE and  NUMTWO.  We  then  call  MUL16 or
DIV16 to perform the calculation. Lastly, we push the
single  result  in  NUMANS on  the  stack  by  calling
PUSHANS.

EXTERM    JSR EXFACTOR        ; Evaluate the left side of the (possible) operator

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_ASTERISK   ; Multiplication operation
          BEQ _MUL

          CMP #CHR_SLASH      ; Division operation
          BEQ _DIV

          RTS                 ; All done

_MUL      INC PROGOFF         ; Consume multiply operator

          JSR EXFACTOR        ; Evaluate the right side of the multiply sign

          JSR POPBOTH         ; Pop both values off the expression stack

          JSR PRE16

          PHA

          JSR MUL16           ; Multiply the numbers together

          PLA

          JSR ADJ16

          JSR PUSHANS         ; Push the result back on the stack

          BRA _LOOP           ; Next

_DIV      INC PROGOFF         ; Consume divide operator

          JSR EXFACTOR        ; Evaluate the right side of the division sign

          JSR POPBOTH         ; Pop both values off the expression stack

          JSR PRE16

          PHA

          JSR MOD16           ; Divide using the modulus operation (division result is also calculated)
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Numeric terms are executed by the EXTERM routine.

The EXFACTOR has to handle the many possiblities
of  a  FACTOR  in  the  grammar.  Negative  numbers
beginning  with  a  unary  minus,  expressions  in
parentheses, numeric variables, functions, and number
literals all need to be handled. To decide what to do, it
begins by examining the next token and branching to
an appropriate part of its code.

For number literals,  it  simply pushes the value of
the number on the stack. For minus signs, it attempts
to  interpret  the  next  value  as  a  number  by  calling
EXFACTOR itself, then flips its sign via subtraction. For
nested  expressions,  it  parses  a  left  parenthesis  via
EXLPAREN,  an  EXPR by calling  EXEXPR,  and  a  right
parenthesis  via  EXRPAREN.  For  variables,  it  calls
EXVAR to obtain the variable's memory address then
loads  the  value  from  there.  And  for  functions,  it
converts  the token's  value into an index into a local
jump  table,  jumping  to  the  appropriate  routine  to
handle the function.

          LDA NUMONE          ; Copy division result low byte (from the modulus) to the answer
          STA NUMANS

          LDA NUMONE+1        ; Copy division result high byte (from the modulus) to the answer
          STA NUMANS+1

          PLA

          JSR ADJ16

          JSR PUSHANS         ; Push the result back on the stack

          BRA _LOOP           ; Next

EXFACTOR  JSR EXSKIP          ; Skip any leading spaces

          LDY PROGOFF         ; Get the offset in the current line

          LDA (PROGPTR),Y     ; Read the character there

          CMP #CHR_MINUS      ; Is it a negative number?
          BEQ _NEG

          CMP #TOK_NUM        ; Is it a number literal?
          BEQ _NUM
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          CMP #CHR_LPAREN     ; Is it a nested expression?
          BEQ _EXP

          JSR ISALPHA         ; Is it a letter for a variable name?
          BCS _VAR

          CMP #TOK_ASC+1      ; Check that the byte isn't too big to be a valid token
          BCS _SYN

          INC PROGOFF         ; Consume the token

          SEC                 ; Subtract the start of the function tokens to get our index
          SBC #TOK_TIME

          BCC _SYN            ; If the result was less than that the token value was too low

          ASL A               ; Multiply by two to convert the number into a jump table index
          TAX

          JMP (_JMP,X)        ; Jump to the code for the function we have

_NUM      INY                 ; Skip the leading $FF tag at the start of the number

          LDA (PROGPTR),Y     ; Fetch number literal low byte
          STA NUMANS
          INY

          LDA (PROGPTR),Y     ; Fetch number literal high byte
          STA NUMANS+1
          INY

          STY PROGOFF         ; Update the offset in the current line

          JSR PUSHANS         ; Push the number onto the expression stack

          RTS                 ; All done

_EXP      JSR EXLPAREN        ; Grab the left parenthesis

          JSR EXEXPR          ; Process the nested expression

          JSR EXRPAREN        ; Grab the right parenthesis

          RTS                 ; All done

_VAR      JSR EXVAR           ; Evaluate variable to get its address in memory

          BCS _SYN            ; If we read a string variable, it's a syntax error here

          JSR POPONE          ; Pop the variable's address off the stack

          LDA (NUMONE)        ; Read and store the low byte of the variable
          STA NUMANS

          INC NUMONE          ; Increment address by one (safe because of page alignment)

          LDA (NUMONE)        ; Read and store the high byte of the variable
          STA NUMANS+1

          JSR PUSHANS         ; Push the number (not its address) on the stack

          RTS

_NEG      INC PROGOFF         ; Consume the unary minus

          JSR EXFACTOR        ; Process the rest of the factor

          LDX EXPRSNUM        ; Get the current expression stack size

          SEC                 ; Prepare to subtract

          LDA #0              ; Subtract low byte from zero in place on stack
          SBC EXPRS_L-1,X
          STA EXPRS_L-1,X

          LDA #0              ; Subtract high byte from zero in place on stack
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EXFACTOR handles a variety of  numeric  literals  and
values.

String expressions are handled in a similar way. In
some ways string expressions are more complex, while
in  others  they're  significantly  simpler.  Instead  of
storing  values  on  the  expression  stack,  string
expressions  are  evaluated by copying their  contents
into the output buffer OBUF.

This is  possible because string expressions have a
significantly reduced grammar, being limited only to
concatenation  operations,  string  variables,  string
literals,  and  string  functions  that  produce  no
intermediate  values.  In  other  words,  a  string
expression (or STREXPR) consists of one or more string
terms, and string terms (STRTERMs) themselves aren't
particularly complicated.

          SBC EXPRS_H-1,X
          STA EXPRS_H-1,X

_END      RTS

_SYN      JMP RAISE_SYN       ; Raise a syntax error

_JMP
          .WORD EXTIME
          .WORD EXPEEK
          .WORD EXRND
          .WORD EXNOT
          .WORD EXABS
          .WORD EXSQR
          .WORD EXAND
          .WORD EXOR
          .WORD EXXOR
          .WORD EXMOD
          .WORD EXINT
          .WORD EXLEN
          .WORD EXASC
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EXSTREXPR handles a string expression.

The  EXSTRTERM routine is a bit more complicated,
but not much so.  The STRTERM can only be a string
literal, a string variable, or one of a small number of
functions that return a string value. String literals and
string  variables  can  be  handled  by  copying  their
contents into the output buffer.

Only three string functions exist,  CHR$,  STR$,  and
SUB$.  These are handled by checking for their token
and  jumping  to  EXCHR,  EXSTR,  or  EXSUB directly.
Given the small number of possibilities, a jump table
probably isn't worth the overhead.

EXSTREXPR JSR EXSKIP

          JSR EXSTRTERM       ; Evaluate the string term we started with

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_PLUS       ; Concatenation operator is the only one supported
          BEQ _CAT

          RTS                 ; All done

_CAT      INC PROGOFF         ; Consume operator

          JSR EXSTRTERM       ; Evaluate the next string term to concatenate

          BRA _LOOP           ; Next

          RTS

EXSTRTERM LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_QUOTE      ; String literal
          BEQ _LIT

          CMP #TOK_CHR        ; CHR$ function (char code to string)
          BEQ EXCHR

          CMP #TOK_STR        ; STR$ function (number to string)
          BEQ EXSTR

          CMP #TOK_SUB        ; SUB$ function (substring to string)
          BEQ EXSUB

          JSR EXVAR           ; String variable is all we have left
          BCS _VAR

          JMP RAISE_SYN       ; Otherwise it's a syntax error, nothing we can do
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EXSTRTERM handles the few possibilities for a term in
a string expression.

The  general  approach  shown  for  expression
evaluation  is  also  the  core  of  the  recursive  descent
mechanism. A more general  routine handles a more
complicated  part  of  the  BASIC  language,  then  calls
down into more specific subroutines to handle more
specific parts.

For example, printing a numeric calculation's result
on the screen would involve EXSTMT determining that
a  PRINT statement was to be executed, then jumping
to EXPRINT to print it. EXPRINT would look ahead and
see  that  a  numeric  expression  was  in  play  and  call
EXEXPR to  evaluate  it.  EXEXPR would  call  EXTERM,
which in turn calls EXFACTOR.

_LIT      INY                 ; Skip the leading quote

_LITLOOP  LDA (PROGPTR),Y     ; Read the next character

          CMP #CHR_NL         ; Newlines shouldn't happen, but if they do, stop immediately
          BEQ _LITDONE

          INY                 ; Consume whatever character we read

          CMP #CHR_QUOTE      ; End quote means we're done with the string literal
          BEQ _LITDONE

          JSR PUTOUT          ; Otherwise just copy the character to the output buffer

          BRA _LITLOOP        ; Repeat

_LITDONE  STY PROGOFF         ; Update the offset in the current line

          RTS                 ; All done

_VAR      JSR POPONE          ; Pop the variable address off the stack

          LDY #0              ; Start at the beginning

_VARLOOP  LDA (NUMONE),Y      ; Read the character from the string (zero/NUL indicates end of string)
          BEQ _VARDONE

          JSR PUTOUT          ; Put the character from the string into the output buffer

          INY                 ; Consume the character

          BEQ _SYS            ; If we wrapped around then we never found a terminating NUL

          BRA _VARLOOP

_VARDONE  RTS                 ; All done

_SYS      JMP RAISE_SYS       ; Raise system error indicating we didn't find a NUL
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CONTROL AND DATA STATEMENTS

Cody  BASIC  has  some  special  statements  that
handle  control  flow  and  data  literals  in  BASIC
programs.  While  implemented  using  the  same
interpreter logic as the rest of Cody BASIC, they have
additional  effects  that  set  them  apart  from  more
straightforward operations such as math calculations
or  updating  variables.  These  statements  also  often
maintain  information  outside  of  the  core  BASIC
interpreter, such as line pointers, and take actions that
in  some  ways  override  the  normal  interpreter
behavior.

One  set  of  such  statements  are  the  control  flow
statements  that  change  the  course  of  a  running
program.  Cody  BASIC  supports  the  typical  BASIC
commands  for  such  operations:  IF,  GOTO,  GOSUB/
RETURN,  and  FOR/NEXT statements  are  all
implemented.

Many  of  these  statements  rely  on  a  similar
underlying implementation. Under normal conditions
the interpreter sets the value of PROGNXT to the start
of  the  next  line  after  PROGPTR,  but  individual
statements can overwrite the value to change the path
through the program. Different types of control flow
statements  also  have  to  maintain  additional
information  unique  to  their  own  special  situations,
such  as  pointers  to  return  lines  or  terminating  loop
values.

Another  set  of  statements  are  those  that  handle
reading of data literals within a program. Many BASIC
dialects supported the use of DATA statements. A user
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could enter raw data separated by commas into these
statements,  which  would  be  ignored  under  normal
operation  of  the  interpreter.  However,  when a  READ
statement  was  executed,  values  from  the  DATA
statements scattered through the program would be
stored in variables.

Cody  BASIC  supports  a  limited  form  of  this
mechanism inspired by Commodore BASIC. To do so, it
maintains  some  external  information  regarding  the
current  data  pointer  position  and  the  contents  of
previous DATA statements.

IF STATEMENTS

The  IF statement is one of the most simple control
flow statements.  It  evaluates  a  relational  expression
(an  expression  that  compares  two  terms).  If  the
expression evaluates to true, it runs the remainder of
the  statement  after  the  THEN keyword.  If  the
expression is  false then it  skips over the rest  of  the
statement and proceeds to the next line.

The  implementation  is  somewhat  complicated
because there are two kinds of relational expressions.
One is for numbers and compares the results of two
numeric  expressions.  The  other  is  for  strings  and
compares  a  string  variable's  contents  to  a  string
expression. The typical equal, not-equal, greater-than,
less-than,  greater-than-or-equal,  and  less-than-or-
equal are all available for both kinds of expressions.

Because  there  are  different  kinds  of  comparisons
that must be performed, the comparison testing logic
is  also somewhat  complicated.  Once the appropriate
comparison  has  been  performed,  the  code  loads  a
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constant indicating what relational operators would be
true  given  the  inputs.  This  value  is  ANDed  with  a
constant for the relational operator to determine if the
result is true or false.

EXIF      JSR EXSKIP          ; Skip any leading space after the "IF"

          LDY PROGOFF         ; Read the first character to see if it could be a string var
          LDA (PROGPTR),Y

          JSR ISALPHA         ; If we have a string var it has to start with a letter
          BCC _NUM

          INY                 ; Read the next character to see if it's a dollar sign
          LDA (PROGPTR),Y

          CMP #CHR_DOLLAR     ; If we have a string var it ends with a dollar sign
          BNE _NUM

_STR      JSR EXVAR           ; Parse a string variable (syntax error if not a string)
          BCC _SYN

          JSR _RELOP          ; Evaluate the relational operator and store the index temporarily
          PHA

          STZ OBUFLEN         ; Evaluate the right hand side as a string into the output buffer
          JSR EXSTREXPR

          LDX OBUFLEN         ; Append a NUL to the end of the buffer to make the comparison easier
          LDA #0
          STA OBUF,X

          JSR POPONE          ; Pop the string variable address off the stack

          LDY #0              ; Loop over the string in the buffer

_STRLOOP  LDA (NUMONE),Y      ; Compare the characters in the string and the output buffer
          CMP OBUF,Y

          BEQ _STRNEXT        ; Branch depending on the result of the comparison
          BCC _LT
          BRA _GT

_STRNEXT  CMP #0              ; If we have a null char for both, the strings are equal
          BEQ _EQ

          INY                 ; Increment the position in the output buffer to compare to

          BRA _STRLOOP        ; Next character

_SYN      JMP RAISE_SYN       ; Raise a syntax error (needs to be here for branch distance purposes)

_NUM      JSR EXEXPR          ; Evaluate left hand side of the relational operator

          JSR _RELOP          ; Evaluate the relational operator and store the index temporarily
          PHA

          JSR EXEXPR          ; Evaluate the right hand side of the relational operator

          JSR POPBOTH         ; Pop both numbers off the stack

          LDA NUMONE+1        ; Compare high bytes using a signed comparison
          CMP NUMTWO+1

          BEQ _LO
          BMI _LT
          BPL _GT

_LO       LDA NUMONE          ; Compare low bytes using an unsigned comparison
          CMP NUMTWO
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EXIF processes IF statements and their THEN clauses.

GOTO STATEMENTS

Another  simple control  flow statement,  the  GOTO
statement, simply looks up the line number to go to,
then sets the  PROGNXT pointer to that line's pointer.
On  the  next  iteration  the  interpreter  will  run  the
destination line.

          BEQ _EQ
          BCC _LT
          BRA _GT

_EQ       LDA #(REL_LE | REL_GE | REL_EQ)     ; Equals is true for "<=", ">=", or "="
          BRA _THEN

_LT       LDA #(REL_LE | REL_LT | REL_NE)     ; Less than is true for "<=", ">" or "<>"
          BRA _THEN

_GT       LDA #(REL_GE | REL_GT | REL_NE)     ; Greater than is true for ">=", ">" or "<>"
          BRA _THEN

_THEN     PLX                 ; Get the index in our table for the relational operator

          AND _BITS,X         ; AND the table entry with the possible matches we have

          BEQ _DONE           ; If nothing matches, then the result of the comparison was false

          LDA #TOK_THEN       ; We expect a "THEN" token after the string
          JSR EXCHARACT

          JMP EXSTMT          ; Then evaluate the rest of the line as its own statement

_DONE     RTS                 ; Nothing to do since condition was false

_BITS     .BYTE REL_LE        ; Lookup table that matches valid relop results with relops
          .BYTE REL_GE
          .BYTE REL_NE
          .BYTE REL_LT
          .BYTE REL_GT
          .BYTE REL_EQ

_RELOP    JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character from the line (should be a relop token)
          LDA (PROGPTR),Y

          INC PROGOFF         ; Consume the token

          CMP #(TOK_EQ+1)     ; Was the token out of the expected range (too high)?
          BCS _SYN

          SEC                 ; Adjust token into lookup table value (and check if too low)
          SBC #TOK_LE
          BCC _SYN

          RTS                 ; All done, leave index in accumulator
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The EXGOTO routine handles GOTO statements.

GOSUB AND RETURN STATEMENTS

GOSUB and  RETURN statements  are  somewhat
more  complicated  as  the  line  to  return  to  must  be
stored somewhere. In Cody BASIC this information is
stored  in  a  gosub-return  stack  using  zero-page
variables GOSUBS_L (for low bytes) and GOSUBS_H
(for high bytes) containing the return line's address.
When  a  GOSUB is  executed,  the  current  PROGNXT
pointer is  stored on the stack before jumping to the
destination line by delegating to the EXGOTO routine.
A check is  performed to ensure that sufficient space
exists in the gosub-return stack.

EXGOTO    JSR ONLYRUN         ; Only valid in RUN mode

          JSR EXEXPR          ; Evaluate the line number to jump to

          JSR POPONE          ; Pop the number off the stack

          LDA NUMONE          ; Copy line number to LINENUM before we search
          STA LINENUM
          LDA NUMONE+1
          STA LINENUM+1

          JSR FINDLINE        ; Try to find a matching line (control flow error if none)
          BCC _LOG

          LDA LINEPTR         ; Use the pointer we found as the next line to execute
          STA PROGNXT
          LDA LINEPTR+1
          STA PROGNXT+1

          RTS                 ; All done

_LOG      JMP RAISE_LOG       ; Indicate the line number was invalid
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EXGOSUB preserves  the  next  line  pointer  before
branching.

When  a  RETURN statement  is  executed,  the  top
value on the gosub-return stack is popped and used as
the new value for  PROGNXT.  This  returns control  to
the line after the GOSUB that pushed the value on the
stack, working just as we'd expect. We also have to do
a check to ensure there's a value on the stack at all,
otherwise  we  have  a  RETURN without  a  matching
GOSUB.

EXRETURN pops the line pointer and returns control to
that location.

EXGOSUB   JSR ONLYRUN         ; Only valid in RUN mode

          LDX GOSUBSNUM       ; Do we have room on the GOSUB/RETURN stack?
          CPX #MAXSTACK
          BCS _SYS

          LDA PROGNXT         ; Store the NEXT line pointer to execute as our return position
          STA GOSUBS_L,X
          LDA PROGNXT+1
          STA GOSUBS_H,X

          INC GOSUBSNUM       ; Increment stack count (we just pushed an item on it)

          JMP EXGOTO          ; The rest of our statement is just like a GOTO, so go there

_SYS      JMP RAISE_SYS       ; Indicate the GOSUB-RETURN stack is out of memory

EXRETURN  JSR ONLYRUN         ; Only valid in RUN mode

          LDX GOSUBSNUM       ; Load the number of GOSUB/RETURN entries (control flow error if none)
          BEQ _LOG

          LDA GOSUBS_L-1,X    ; Copy the top item on the GOSUB/RETURN stack as our next line to run
          STA PROGNXT
          LDA GOSUBS_H-1,X
          STA PROGNXT+1

          DEC GOSUBSNUM       ; Decrement count (we just removed an item from the stack)

          RTS                 ; All done

_LOG      JMP RAISE_LOG       ; Indicate we have a RETURN without a GOSUB
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FOR AND NEXT STATEMENTS

Implementing  FOR and  NEXT statements  is
somewhat more complex. The line to return to in the
FOR loop must be preserved similar to the return line
in a GOSUB. However, we also have to keep a pointer
to the FOR loop's variable so we can update it on each
loop. We also have to keep the stop value so we know
when  the  end  of  the  loop  has  been  reached.  Cody
BASIC's solution is to use a stack that is similar to the
gosub-return loop, but with extra values for a variable
pointer and a stop value. This information is kept in the
FORLINE_L/FORLINE_H,  FORVARS_L/FORVARS_H,
and FORSTOP_L/FORSTOP_H zero-page variables.

EXFOR     JSR ONLYRUN         ; Only valid in RUN mode

          JSR EXVAR           ; Evaluate the loop variable as an lvalue (only number vars)
          BCS _SYN

          JSR EXEQUALS        ; Consume equals

          JSR EXEXPR          ; Evaluate starting expression

          LDA #TOK_TO         ; Consume "TO"
          JSR EXCHARACT

          JSR EXEXPR          ; Evaluate ending expression

          LDX FORSNUM         ; Do we have room on the FOR/NEXT stack?
          CPX #MAXSTACK
          BCS _SYS

          LDA PROGNXT         ; Store the line pointer to execute as our return position
          STA FORLINE_L,X
          LDA PROGNXT+1
          STA FORLINE_H,X

          JSR POPONE          ; Pop the ending value for the FOR loop off the stack

          LDA NUMONE          ; Store the ending value into the FORSTOPs
          STA FORSTOP_L,X
          LDA NUMONE+1
          STA FORSTOP_H,X

          JSR POPBOTH         ; Pop the variable address and the initial value off the stack

          LDA NUMONE          ; Store the variable address into the FORVARS
          STA FORVARS_L,X
          LDA NUMONE+1
          STA FORVARS_H,X

          LDA NUMTWO          ; Store the low byte of the initial loop value
          STA (NUMONE)
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EXFOR handles the beginning of a FOR-NEXT loop.

Surprisingly,  much  of  the  FOR loop  is  actually
handled  by  the  NEXT statement.  When  a  NEXT
statement is executed, it checks to see if the value in
the loop's variable is equal to the stop value. If so, the
loop is done and popped from the for-next stack, while
control proceeds to the next line. If it's not equal, the
variable  is  incremented  by  one  and  PROGNXT
updated with the first line in the loop's body, similar to
how a  RETURN statement works.  A sanity check also
ensures that a matching FOR exists.

          INC NUMONE          ; Move to the high byte (relies on page alignment to be safe)

          LDA NUMTWO+1        ; Store the high byte of the initial loop value
          STA (NUMONE)

          INC FORSNUM         ; Increment stack count (we just pushed an item on it)

          RTS                 ; All done

_SYN      JMP RAISE_SYN       ; Raise syntax error

_SYS      JMP RAISE_SYS       ; Indicate the FOR-NEXT stack is out of memory

EXNEXT    JSR ONLYRUN         ; Only valid in RUN mode

          LDX FORSNUM         ; Load the number of FOR/NEXT entries (logic error if none)
          BEQ _LOG

          LDA FORVARS_L-1,X   ; Assemble the variable address from the low and high bytes
          STA MEMSPTR
          LDA FORVARS_H-1,X
          STA MEMSPTR+1

          LDY #0              ; Compare low bytes
          LDA (MEMSPTR),Y
          CMP FORSTOP_L-1,X
          BNE _LOOP

          INY                 ; Compare high bytes
          LDA (MEMSPTR),Y
          CMP FORSTOP_H-1,X
          BNE _LOOP

          DEC FORSNUM         ; This loop is done, remove it from the stack

          BRA _DONE           ; All done here

_LOOP     CLC                 ; Prepare to increment the variable by one

          LDY #0              ; Increment low byte
          LDA (MEMSPTR),Y
          ADC #1
          STA (MEMSPTR),Y

          INY                 ; Increment high byte (with carry)
          LDA (MEMSPTR),Y
          ADC #0
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Much of the loop is actually implemented by EXNEXT.

DATA AND READ STATEMENTS

Cody BASIC supports a form of the RESTORE, DATA,
and  READ statements common to many 8-bit BASIC
dialects. A DATA statement specifies comma-delimited
number literals that can be read into variables using
the  READ statement.  When  data  is  to  be  read,  the
interpreter  starts  at  the  top  of  the  program,  going
through  each  line  until  a  new  DATA statement  is
found.

To  repeat  the  process  from  the  beginning,  the
RESTORE statement can be called to move the current
data pointer back to the beginning of the program. In
many respects the behavior is a number-only subset
of the DATA statements in Commodore BASIC.

Some  zero-page  variables  and  memory  locations
are  very  important  to  the  processing  of  DATA
statements. The  DATAPTR variable points to the next
line to search for data. Because the content read from
DATA statements is stored in a buffer until it is read,
DBUFL and DBUFH point to the start of storage for the
data's  low  and  high  bytes  respectively.  DBUFLEN
stores the number of  items held in the current data
buffer, while DBUFPOS stores the current index within
the buffer for READ statements.

          STA (MEMSPTR),Y

          LDA FORLINE_L-1,X   ; Copy the top item on the FOR/NEXT stack as our next line to run
          STA PROGNXT
          LDA FORLINE_H-1,X
          STA PROGNXT+1

_DONE     RTS                 ; All done

_LOG      JMP RAISE_LOG       ; Indicate a NEXT-without-FOR error
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Loading  data  begins  with  the  MOREDATA routine,
which is called whenever a READ statement needs data
and  the  buffer  is  empty.  MOREDATA starts  at  the
current  DATAPTR and  continues  until  a  line  with  a
DATA statement  is  found.  If  a  matching  DATA
statement is found, the numbers in that statement are
parsed and stored in DBUFL and DBUFH.

Because parsing a DATA statement is in some ways
similar  to  the  parsing  of  any  other  statement,  the
routine  temporarily  replaces  PROGPTR with  the
current  value  of  DATAPTR to  reuse  some  of  the
existing  routines.  When  a  DATA statement  is
encountered  during  the  normal  interpretation  of  a
program, it's skipped over entirely.  DATA statements
only get processed when a call to  READ needs more
data and reading has advanced to a given line.

MOREDATA  LDA PROGPTR         ; Preserve the current program pointer
          PHA
          LDA PROGPTR+1
          PHA

          LDA PROGOFF         ; Preserve the current program line offset
          PHA

          LDA DATAPTR         ; Temporarily use the line pointer as the data pointer
          STA PROGPTR
          LDA DATAPTR+1
          STA PROGPTR+1

_LINE     JSR ISEND           ; Are we at the end of the program?
          BNE _LINEOK

          JMP _DONE           ; End of program (need JMP because of distance)

_LINEOK   LDA #4              ; Start after line number in the current line
          STA PROGOFF

          JSR EXSKIP          ; Skip whitespace

          LDY PROGOFF         ; Read the next token
          LDA (PROGPTR),Y
          INC PROGOFF

          CMP #TOK_DATA       ; If a DATA statement, process the line
          BEQ _LOOP

          JSR _NXTLINE        ; Otherwise go to the next line

          BRA _LINE

_LOOP     JSR EXSKIP          ; Skip whitespace

          LDY PROGOFF         ; Load the next character from the current line
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          LDA (PROGPTR),Y

          INY                 ; Consume number token symbol

          CMP #CHR_NL         ; Newline means we're done
          BEQ _EOL

          CMP #CHR_MINUS      ; Minus means a negative number
          BEQ _NEG

          CMP #TOK_NUM        ; Otherwise just a number (or a syntax error)
          BNE _SYN

_POS      LDX DBUFLEN         ; Load the current data buffer length

          LDA (PROGPTR),Y     ; Store data low byte
          STA DBUFL,X
          INY

          LDA (PROGPTR),Y     ; Store data high byte
          STA DBUFH,X
          INY

          BRA _NXT            ; Next number in list

_NEG      STY PROGOFF         ; Update program offset

          JSR EXSKIP          ; Skip any trailing space after the minus sign

          LDY PROGOFF         ; Load the next character from the current line
          LDA (PROGPTR),Y

          CMP #TOK_NUM        ; Must be a number
          BNE _SYN
          INY

          LDX DBUFLEN         ; Load the current data buffer length

          SEC                 ; Prepare to subtract

          LDA #0              ; Subtract low byte from zero and store in buffer
          SBC (PROGPTR),Y
          STA DBUFL,X
          INY

          LDA #0              ; Subtract high byte from zero and store in buffer
          SBC (PROGPTR),Y
          STA DBUFH,X
          INY

_NXT      STY PROGOFF         ; Update program offset

          INC DBUFLEN         ; Update data buffer length (overflow shouldn't happen)

          JSR EXSKIP          ; Skip any trailing space after the number

          LDY PROGOFF         ; Read and consume the next character in the line
          LDA (PROGPTR),Y
          INC PROGOFF

          CMP #CHR_NL         ; Newline means we're done
          BEQ _EOL

          CMP #CHR_COMMA      ; Otherwise it needs to be a comma
          BNE _SYN

          BRA _LOOP           ; Next data value in list

_EOL      JSR _NXTLINE

_DONE     PLA                 ; Restore the program line offset
          STA PROGOFF

          PLA                 ; Restore the program pointer
          STA PROGPTR+1
          PLA
          STA PROGPTR+0
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MOREDATA fills the data buffer with more data when
called.

The  EXREAD routine  implements  the  read
functionality.  It  loops  over  one  or  more  variables,
attempting to populate each of the variables with data.
When the data buffer is empty (DBUFLEN is zero), it
calls  MOREDATA to  read  more  data.  If  nothing  is
found,  an  out  of  data  error  condition  exists.  On the
other hand, if data was found and stored in the buffer,
it begins copying data out of the buffer and into the
variable list.

          RTS

_SYN      JMP RAISE_SYN

_NXTLINE  CLC                 ; Move to the next line by adding the line length

          LDA PROGPTR
          ADC (PROGPTR)
          STA PROGPTR
          STA DATAPTR

          LDA PROGPTR+1
          ADC #0
          STA PROGPTR+1
          STA DATAPTR+1

          RTS

EXREAD

_LOOP     JSR EXVAR           ; Read the variable to read into, it has to be a number variable
          BCS _SYN

          LDA DBUFLEN         ; Verify that we still have data in the buffer to read
          BNE _READ

          STZ DBUFPOS         ; Out of data, need to read more in from the program
          JSR MOREDATA

          LDA DBUFLEN         ; Did we find any more data in the program?
          BEQ _LOG

_READ     JSR POPONE          ; Pop the variable address into NUMONE

          LDX DBUFPOS         ; Read current index in the data buffer

          LDA DBUFL,X         ; Copy low byte
          STA (NUMONE)

          INC NUMONE          ; Move on to high byte (relies on page alignment)

          LDA DBUFH,X         ; Store high byte
          STA (NUMONE)

          DEC DBUFLEN         ; Decrement data buffer size and increment buffer position
          INC DBUFPOS

161



EXREAD implements the READ statement.

For the last statement in this group,  the  RESTORE
statement, the EXRESTORE routine is called. However,
EXRESTORE only  calls  the  RESTORE routine  already
used  when  a  program  is  being  run.  It  resets  the
DBUFLEN and  DBUFPOS to  zero,  then  moves  the
DATAPTR to the start of program memory.

RESTORE resets the handling of DATA statements.

INPUT AND OUTPUT STATEMENTS

Cody BASIC  supports  input  and  output  similar  to
many  other  BASIC  dialects.  INPUT and  PRINT
statements  handle  generic  input  and  output.  OPEN
and CLOSE statements select either the keyboard and
screen  or  a  serial  port  as  the  current  I/O  device.
Within  the  BASIC  interpreter  there  are  several

          JSR EXSKIP          ; Skip any whitespace

          LDY PROGOFF         ; Load the next character from the current line
          LDA (PROGPTR),Y

          CMP #CHR_NL         ; Newline means we're done with this statement
          BEQ _DONE

          CMP #CHR_COMMA      ; If it's not a comma then it's a syntax error
          BNE _SYN

          INC PROGOFF         ; Consume the comma

          BRA _LOOP           ; Next variable

_DONE     RTS

_SYN      JMP RAISE_SYN
_LOG      JMP RAISE_LOG

RESTORE   STZ DBUFLEN         ; Reset data buffer positions
          STZ DBUFPOS

          LDA #<PROGMEM       ; Move data line pointer to start of program
          STA DATAPTR+0
          LDA #>PROGMEM
          STA DATAPTR+1

          RTS
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routines  that  work  together  to  implement  input  and
output.

Input  and  output  in  Cody  BASIC,  much  like  Tiny
BASIC, is line-based, with two buffers set up to store
input data and output data. IBUF is an input buffer that
stores up to 255 characters read from the keyboard or
a serial port. OBUF is an output buffer that also stores
255 characters to be printed to the screen or sent to a
serial port. The length of the contents of each buffer
are stored in IBUFLEN and OBUFLEN.

The  I/O  routines  support  a  combined  keyboard-
screen  device  and  the  Cody  Computer's  two  serial
ports. Two zero page variables, IOMODE and IOBAUD,
contain the current I/O mode (the device) and a value
representing the baud rate (only used for serial ports).
These are set either by code internal to the interpreter
(such as when loading or saving programs) or by user
code in the BASIC program.

OPEN AND CLOSE STATEMENTS

The  OPEN and  CLOSE statements  are  used  to
redirect input and output to specific devices, either the
screen/keyboard combination (in the default case) or
one of the Cody Computer's two serial ports.

The  OPEN statement  is  implemented  by  the
EXOPEN routine.  It  sets  the  IOMODE and  IOBAUD
values  to  configure  the  input  and  output.  If  a  serial
port is selected, it also calls the SERIALON routine to
set up the UART for the selected serial device.
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The EXOPEN routine configures input and output.

The  CLOSE statement  is  implemented  by  the
EXCLOSE routine.  It  calls  SERIALOFF to  disable  the
UART for the selected serial port (for keyboard/screen
operation this reduces to a no-op). Once the UART is
shut  down,  it  clears  out  the  IOMODE and  IOBAUD
variables to return input and output to the keyboard
and screen.

The  EXCLOSE routine restores I/O to the screen and
keyboard.

PRINT STATEMENTS

The EXPRINT routine handles a PRINT statement to
write  text  to  the  screen.  It  accepts  string  expressions
that are stored in the output buffer and later written to

EXOPEN    JSR ONLYRUN         ; Only valid in RUN mode

          JSR EXEXPR          ; Read device number

          JSR EXCOMMA         ; Comma separator

          JSR EXEXPR          ; Baud rate (1 through 15)

          JSR POPBOTH         ; Get both values off the stack

          LDA NUMTWO          ; Baud rate (1 through 15)
          STA IOBAUD

          LDA NUMONE          ; Device number
          STA IOMODE

          BEQ _DONE           ; If a UART was selected turn serial on
          JSR SERIALON

_DONE     RTS

EXCLOSE   JSR ONLYRUN         ; Only valid in RUN mode

          JSR SERIALOFF       ; Turn serial off (routine should check if IOMODE is actually set)

          STZ IOMODE          ; Clear IO mode and IO baud settings (defaults back to screen/keyboard)
          STZ IOBAUD

          RTS
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the  current  I/O  device's  output  via  FLUSH.  It  also
supports some control codes and format specifiers to
handle  clearing  the  screen,  changing  text  colors,
aligning text, and moving the cursor, though these are
only  relevant  when  the  screen  is  the  output  device.
Some of the functionality for these features is actually
implemented  in  the  screen  routines  rather  than  in
EXPRINT itself.

Excerpt from EXPRINT showing possible arguments.

When the statement is done, it sends its output via
the  FLUSH routine.  FLUSH goes over the contents in
the output buffer OBUF and sends them to the current
IO device. It checks the current value of  IOMODE and
calls either SCREENPUT or SERIALPUT to print out the

EXPRINT   STZ OBUFLEN         ; Start at beginning of output buffer

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character in the current line
          LDA (PROGPTR),Y

          CMP #TOK_AT         ; "AT()" format specifier to change screen location
          BEQ _AT

          CMP #TOK_TAB        ; "TAB() format specifier to advance position in line
          BEQ _TAB

          CMP #CHR_QUOTE      ; Quote means a string expression
          BEQ _STR

          CMP #TOK_STR        ; "STR$" function means a string expression
          BEQ _STR

          CMP #TOK_CHR        ; "CHR$" function means a string expression
          BEQ _STR

          CMP #TOK_SUB        ; "SUB$" function means a string expression
          BEQ _STR

          CMP #CHR_NL         ; Newline means the end of the line
          BEQ _ADV

          CMP #CHR_SEMICOLON  ; Semicolon means the end of the line without advancing
          BEQ _END

          JSR ISALPHA         ; At this point, the only possibility left is a string variable
          BEQ _NUM

          INY                 ; Look ahead one character
          LDA (PROGPTR),Y

          CMP #CHR_DOLLAR     ; String variables end with a dollar sign ("$")
          BEQ _STR

165



individual characters in the buffer. Other routines that
populate the output buffer also call FLUSH to print out
the contents.

The  FLUSH routine  writes  the  output  buffer  to  the
current output.

INPUT STATEMENTS

The  EXINPUT routine implements the internals for
Cody BASIC's INPUT statement. It reads a line of input
from the current I/O device into the input buffer and
then attempts to parse it into the variable list passed
to  the  statement.  Both  numbers  and  strings  are
supported. As part of its operations, the routine has to
check the current I/O mode and call either  READKBD
or READSER depending on the mode.

FLUSH     PHA                     ; Preserve registers
          PHX
          PHY

          LDY IOMODE              ; We'll be checking the IO mode a lot

          LDX #0                  ; Start at the beginning

_LOOP     CPX OBUFLEN             ; Check that we have more characters to print
          BEQ _END

          LDA OBUF,X              ; Load the next character from the output buffer
          INX

          CPY #0                  ; Determine whether to use screen or serial output
          BEQ _SCREEN

_SERIAL   JSR SERIALPUT           ; Print it to the serial port (current UART)
          BRA _LOOP

_SCREEN   JSR SCREENPUT           ; Print it on the screen
          BRA _LOOP

_END      STZ OBUFLEN             ; Clear the length of the output buffer (we're empty now)

_NOOFF    PLY                     ; Restore registers
          PLX
          PLA

          RTS                     ; All done
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Portion of EXINPUT selecting the input source.

Unlike the common  FLUSH routine for sending out
printed output,  no similar  single routine for  reading
input exists. Instead, the  READKBD routine populates
the input buffer  IBUF from keyboard input, updating
the  screen  contents  as  the  user  types.  This  routine
relies on a variety of other routines related to screen
output  and keyboard scanning covered elsewhere in
this chapter.

_READ     LDA IOMODE          ; Determine where to read from
          BEQ _KBD

_SER      JSR READSER         ; Read our input line from the UART
          BRA _INP

_KBD      JSR READKBD         ; Read out input line from the keyboard

READKBD   PHA                   ; Preserve registers
          PHX

          LDX #0                ; Start at beginning of input buffer

_NEXT     LDA JIFFIES

_WAIT     JSR BLINK             ; Wait for jiffies to change to know we got a new keyboard scan
          CMP JIFFIES
          BEQ _WAIT

          JSR KEYDECODE         ; Decode whatever key was pressed (if anything)

          LDA KEYCODE           ; Debounce keys by making sure we read the same code twice in a row
          CMP KEYDEBO
          STA KEYDEBO
          BNE _NEXT

          LDA KEYCODE           ; Suppress repeated key presses by comparing to last key read
          CMP KEYLAST
          STA KEYLAST
          BEQ _NEXT

          CMP #$60              ; Check for CODY + META (shift lock) toggle
          BEQ _TOG

          BIT #$1F              ; Suppress key codes when no keys (aside from modifiers) were pressed
          BEQ _NEXT

          JSR KEYTOCHR          ; Convert key code to CODSCII code and preserve on stack
          PHA

          LDA KEYLOCK           ; Check if the shift lock is set
          BEQ _KEY

          PLA                   ; Convert CODSCII code to lowercase
          JSR TOLOWER
          PHA

_KEY      PLA                   ; Restore keyboard CODSCII code from stack
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The READKBD routine reads a line from the keyboard.

For  serial  operations,  the  READSER routine  will
populate  IBUF with the contents read from the serial
port's UART. The routine stops when a carriage return
or  newline  character  are  read  from the  serial  input.
This  is  essentially  the  serial  equivalent  of  the
READKBD routine.  It  relies  on  the  serial  routines
covered later in the chapter.

          CMP #CHR_CAN          ; Skip cancel character
          BEQ _NEXT

          CMP #CHR_BS           ; Check for backspace character
          BEQ _DEL

          CPX #$FE              ; Check for space to store character
          BEQ _NEXT

          STA IBUF,X            ; Put the character in the buffer
          INX

          CMP #CHR_NL           ; Check for newline character (end of line)
          BEQ _DONE

          JSR SCREENPUT         ; Echo to the screen

          BRA _NEXT

_DEL      CPX #0                ; Check that we have something in the buffer to delete
          BEQ _NEXT

          DEX                   ; Back up one position the buffer and remove the char from the screen
          JSR SCREENDEL

          BRA _NEXT

_TOG      LDA KEYLOCK           ; Toggle shift lock
          EOR #$01
          STA KEYLOCK

          BRA _NEXT

_DONE     STX IBUFLEN           ; Update input buffer length

          LDA #20               ; TODO: CLEAR BLINKING CURSOR (MAKE THIS BETTER, ALSO SEE ABOVE)
          STA (CURSCRPTR)

          PLX                   ; Restore registers
          PLA

          RTS

READSER   PHA
          PHX

          LDX #0                ; Start at beginning of buffer

_READ     JSR SERIALGET         ; Poll for next character
          BCC _READ

          STA IBUF,X            ; Store the character and increment the buffer position
          INX
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READSER uses  serial  routines  to  read a  line  of  text
from a UART.

LOADING AND SAVING
PROGRAMS

Cody  BASIC  supports  the  LOAD and  SAVE
commands for loading and saving programs. With the
exception of loading binary programs over the serial
port or from a cartridge, load and save operations rely
almost entirely on other functionality in Cody BASIC.

When loading a BASIC program, input is redirected
from  the  serial  port,  and  each  incoming  line  is
tokenized as though the user had typed the program
in. When saving a program, output is redirected to the
serial port, and the program is listed as though a LIST
command had been executed.

LOAD STATEMENTS

The EXLOAD routine implements the BASIC portion
of  LOAD statements.  It  parses parameters containing
the  device  number  and  mode  before  calling  the
appropriate routine to do the operation.  In the event

          CPX #$FE              ; Do we still have space in the buffer?
          BCS _SYS

          CMP #CHR_NL           ; Newline characters can be an end of line
          BEQ _DONE

          CMP #CHR_CR           ; Carriage return characters can be an end of line
          BEQ _DONE

          BRA _READ             ; Continue

_DONE     STX IBUFLEN           ; Store the input line length

          PLX
          PLA

          RTS

_SYS      JMP RAISE_SYS         ; Indicate we're out of space in the input buffer
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that the program to be loaded is a BASIC program, it
calls  LOADBAS,  and  for  binary  programs,  it  calls
LOADBIN instead.

EXLOAD implements  the  LOAD statement  in  Cody
BASIC.

LOADBAS loads  BASIC  programs  over  the  serial
port. Each line is read into the input buffer IBUF just as
a user would enter the code line by line, with each line
being  tokenized  and  appended  at  the  end  of  the
program. When the routine encounters a line with no
characters, it considers the load completed and returns
to the REPL loop.

Unlike  many  other  8-bit  systems,  Cody  BASIC
doesn't  save  its  BASIC  programs  in  their  tokenized
format.  This makes it  easier to exchange BASIC files
with other computers,  but  it  also makes it  slower to
load because  of  the  retokenization.  As  the  speed of
tokenization  is  the  main  limit  to  loading  programs
quickly,  optimization  of  the  tokenizer  is  very

EXLOAD    JSR ONLYREPL        ; Only valid in REPL mode

          LDA #RM_COMMAND     ; Running without a line number so we can break
          STA RUNMODE

          JSR EXEXPR          ; Device argument

          JSR EXCOMMA         ; Comma separator

          JSR EXEXPR          ; Mode argument (0 for BASIC, 1 for binary)

          JSR POPBOTH         ; Pop results

          LDA #$F             ; Read at 19200 baud
          STA IOBAUD

          LDA NUMONE          ; Use device number as UART number
          STA IOMODE

          LDA NUMTWO          ; Read BASIC or binary file as appropriate
          BNE _BIN

_BAS      JSR LOADBAS         ; Load the BASIC program

          STZ RUNMODE         ; Reset run mode and return
          RTS

_BIN      JMP LOADBIN
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important.  This  also  means  that  terminal  programs
talking to the Cody Computer usually need to insert a
delay after each line so that the tokenizer can keep up.

Some  simple  optimizations  and  sanity  checks  are
added to this code path to speed up loading and guard
against  obvious  errors  (such  as  out-of-order  line
numbers).  Much  like  what  happens  when  input
statements are redirected to serial, LOADBAS sends a
question-mark  character  before  waiting  for  each
incoming  line.  If  the  device  sending  the  program
recognizes  this,  it  can  immediately  skip  to  the
program's  next  line  rather  than  waiting  for  a  fixed
period for each line.

LOADBAS   JSR NEWPROG         ; Clear out the current program

          STZ LINENUM         ; Start at "line zero" as the first line
          STZ LINENUM+1

          JSR SERIALON        ; Turn serial port on

_LOOP     LDA #CHR_QUEST      ; Send question mark prompt (for more advanced loaders)
          JSR SERIALPUT

          JSR READSER         ; Read a line of input

          LDX IBUFLEN         ; Make sure we actually read a full line
          CPX #2
          BCC _DONE

          DEX                 ; Replace trailing character with a newline (could be a carriage return!)
          LDA #CHR_NL
          STA IBUF,X

          JSR TOKENIZE        ; Tokenize the line

          LDA TBUF            ; Basic validity check (must start with line number)
          CMP #$FF
          BNE _SYS

          LDA TBUF+2          ; Another validity check (ensure line numbers ascending)
          CMP LINENUM+1
          BNE _LINE

          LDA TBUF+1
          CMP LINENUM
          BEQ _SYS
_LINE     BCC _SYS

          LDA PROGTOP         ; Set destination as the top of the program
          STA LINEPTR
          LDA PROGTOP+1
          STA LINEPTR+1

          JSR INSLINE         ; Insert the line into the program

          LDA TBUF+1          ; Update last line number for future tests
          STA LINENUM
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The  LOADBAS routine  loads  a  BASIC  program  into
memory.

For  loading  binary  files,  the  LOADBIN routine  is
used instead. Loading a binary file is somewhat easier
as it's essentially a direct read of bytes into the Cody
Computer's  memory,  followed  by  a  jump  to  the
loading  address.  Because  binary  programs  can  be
loaded  from  the  serial  ports  (in  BASIC)  or  from  a
cartridge (on system startup),  LOADBIN has  to  take
into  account  both  possibilities.  It  also  supports
returning to BASIC at the end of a binary program, but
the  results  may  vary  depending  on  the  state  the
computer was left in. However, this permits carefully-
written binary programs to remain resident in memory
to extend the system or for later use in BASIC code.

The Cody Computer's binary format is simple. Two
bytes contain the start address, two bytes contain the
end address, and the remainder consists of raw bytes
for  the  program.  To  load the  program the computer
needs only to point a destination pointer at the start
address, read and store a byte, and continue reading
until the destination pointer equals the end address.

          LDA TBUF+2
          STA LINENUM+1

          BRA _LOOP           ; Read the next line

_DONE     JSR SERIALOFF       ; Turn off serial port

          STZ IOMODE          ; Clear I/O settings back to screen/keyboard
          STZ IOBAUD

          STZ RUNMODE         ; Not "running" any more

          RTS

_SYS      JMP RAISE_SYS       ; Indicate IO error during read

LOADBIN   LDA IOMODE
          BEQ _INITSPI

_INITSER  JSR SERIALON        ; Start running serial port

          BRA _LOAD
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_INITSPI  JSR CARTON          ; Begin SPI transaction

          LDA #$03            ; Command 3 to begin reading
          JSR CARTXFER

          LDX #2              ; Assume a cartridge with a two-byte address

          LDA VIA_IORB        ; If cart size bit is high, we have a three-byte address
          BIT #CART_SIZE
          BEQ _ADDR
          INX

_ADDR     LDA #$00            ; Send the appropriate number of zeroed address bytes
          JSR CARTXFER
          DEX
          BNE _ADDR

_LOAD     JSR _READ           ; Read starting address (low and high bytes)
          STA MEMSPTR
          STA PROGPTR

          JSR _READ
          STA MEMSPTR+1
          STA PROGPTR+1

          JSR _READ           ; Read ending address (low and high bytes)
          STA MEMDPTR

          JSR _READ
          STA MEMDPTR+1

_LOOP     JSR _READ           ; Read and store another byte
          STA (MEMSPTR)       ; Store it in memory

          LDA MEMSPTR         ; If not at the destination address, read another byte
          CMP MEMDPTR
          BNE _INCR

          LDA MEMSPTR+1
          CMP MEMDPTR+1
          BNE _INCR

          LDA IOMODE          ; Finished loading, shutdown for SPI vs serial is different
          BEQ _DONESPI
          BNE _DONESER

_INCR     INC MEMSPTR         ; Increment source pointer by one
          BNE _LOOP
          INC MEMSPTR+1
          BRA _LOOP

_DONESER  JSR SERIALOFF       ; Stop running serial port

          STZ IOMODE          ; Clear I/O settings back to screen/keyboard
          STZ IOBAUD

          BRA _DONE

_DONESPI  JSR CARTOFF

_DONE     STZ RUNMODE         ; Ensure run mode is zero before jumping to loaded binary

          SEI                 ; Disable interrupts for BASIC (keyboard scan and clock)

          LDX STACKREG        ; Roll back the BASIC stack
          TXS

          JSR _JUMP

          JMP BASIC           ; If it returns for some reason, restart BASIC and hope

_JUMP     JMP (PROGPTR)       ; Jump to the load address (indirect JSR workaround)

_READ     LDA IOMODE          ; Determine what mode we're running in
          BNE _READSER
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READBIN loads binary programs from serial ports or
cartridges.

SAVE STATEMENTS

Saving programs is somewhat more straightforward
because Cody BASIC only supports saving the current
BASIC  program  in  memory  as  text.  No  provision  is
mode for dumping an arbitrary region of memory to
serial output as raw bytes,  and BASIC programs can
only be saved to serial ports, not cartridges.

To save a program, output is redirected to one of the
serial  ports,  the  entire  program  is  listed  by  calling
LISTPROG, and a blank line is written to mark the end
of the program. Because of its overall simplicity this is
entirely implemented in the  EXSAVE routine used by
the interpreter.

_READSPI  LDA #$00            ; Read value and return as accumulator
          JSR CARTXFER
          RTS

_READSER  JSR SERIALGET       ; Busy-wait for another byte
          BCC _READSER
          RTS

EXSAVE    JSR ONLYREPL        ; Only valid in REPL mode

          LDA #RM_COMMAND     ; Running without a line number so we can break
          STA RUNMODE

          JSR EXEXPR          ; Read the device number for the UART
          JSR POPONE

          LDA NUMONE          ; Use it as the UART number
          STA IOMODE

          LDA #$F             ; Save at 19200 baud
          STA IOBAUD

          LDA #<PROGMEM       ; Start at the beginning of program memory
          STA LINEPTR
          LDA #>PROGMEM
          STA LINEPTR+1

          LDA PROGTOP         ; Stop at the top of program memory
          STA STOPPTR
          LDA PROGTOP+1
          STA STOPPTR+1

          JSR SERIALON        ; Start the serial port
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EXSAVE is a short routine that implements the  SAVE
command.

Most of the actual work in saving a program is done
by the  LISTPROG routine.  This  same routine  is  also
called when a user enters the  LIST statement at  the
BASIC prompt, except that in this case we're listing the
program  to  a  serial  port  instead.  LISTPROG works
opposite to a tokenizer, starting at the beginning of the
BASIC  program,  going  through  each  tokenized  line,
and looking up the actual values of each token to put
them  into  the  output  buffer.  Once  an  entire  line  is
decoded, it's flushed to the current output device.

          JSR LISTPROG        ; List the program out the serial port to "save" it

          STZ OBUFLEN         ; Write an empty line to mark the end (the loader expects this!)
          LDA #CHR_NL
          JSR PUTOUT
          JSR FLUSH

          JSR SERIALOFF       ; Stop the serial port

          STZ RUNMODE         ; Reset run mode

          STZ IOBAUD          ; Go back to screen/keyboard IO when we're done
          STZ IOMODE

          RTS

LISTPROG  PHA                   ; Preserve registers
          PHX
          PHY

_LOOP     LDA LINEPTR+0         ; Always do a sanity check (data can come from LIST)
          CMP PROGTOP+0
          BNE _SANE

          LDA LINEPTR+1
          CMP PROGTOP+1
          BNE _SANE

          BRA _DONE

_SANE     LDA LINEPTR+0         ; Are we at the line we're supposed to stop at?
          CMP STOPPTR+0
          BNE _LINE

          LDA LINEPTR+1
          CMP STOPPTR+1
          BNE _LINE

_DONE     PLY                   ; No more lines in program, restore registers
          PLX
          PLA

          RTS                   ; All done

_LINE     STZ OBUFLEN           ; Start at the beginning of the output buffer
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LISTPROG is  used  internally  to  both  list  and  save
programs.

          LDY #1                ; Start at beginning of line (skipping line length byte)

          LDA (LINEPTR),Y       ; Copy line number low byte
          STA NUMONE+0
          INY

          LDA (LINEPTR),Y       ; Copy line number high byte
          STA NUMONE+1
          INY

          JSR TOSTRING          ; Write the number's digits to the output buffer

_PART     LDA (LINEPTR),Y       ; Load the next byte in the line

          CMP #$FF              ; Do we have a number token?
          BEQ _NUM

          BIT #$80              ; Do we have a token to decode?
          BNE _TOK

          JSR PUTOUT            ; Normal character, put it into the output buffer
          INY

          CMP #CHR_NL           ; If it was a newline, move on to the next source line
          BEQ _NEXT

          BRA _PART             ; Next part of the current line

_TOK      AND #$7F              ; Mask out the number of the actual token

          CLC                   ; Adjust the token number into the message table
          ADC #MSG_TOKENS

          JSR PUTMSG            ; Put the token's text into the output buffer

          INY                   ; Consume the token

          BRA _PART             ; Next part of the current line

_NUM      INY                   ; Skip leading number token tag

          LDA (LINEPTR),Y       ; Copy integer low byte
          STA NUMONE+0
          INY

          LDA (LINEPTR),Y       ; Copy integer high byte
          STA NUMONE+1
          INY

          JSR TOSTRING          ; Print integer

          BRA _PART             ; Next part of the current line

_NEXT     JSR FLUSH             ; Flush the output buffer

          CLC                   ; Move the pointer to the next line
          LDA LINEPTR+0
          ADC (LINEPTR)
          STA LINEPTR+0
          LDA LINEPTR+1
          ADC #0
          STA LINEPTR+1

          BRA _LOOP             ; Next line
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SERIAL ROUTINES

When input and output have been redirected to one
of the serial ports (IOMODE of 1 or 2), serial routines
are  called  to  configure  the  appropriate  UART  and
perform  reads  and  writes.  The  SERIALON routine
starts up the serial UART, SERIALPUT places a byte in
its transmit buffer,  SERIALGET reads a byte from its
receive  buffer,  and  SERIALOFF turns  it  off.  Together
these  provide  enough  features  to  support  Cody
BASIC's  line-based  input  and  output  when  a  serial
port is enabled.

Because  the  register  layout  for  each  UART  is
identical,  the  relevant  assembly  code  uses  indirect
addressing  to  access  them.  Either  UART1_BASE or
UART2_BASE is stored into the  UARTPTR zero page
variable when SERIALON is called, and all subsequent
calls  to  serial  routines  use  the  specified  pointer  to
access the current UART.

SERIALON  PHA
          PHY

          LDA IOMODE              ; What UART are we using?
          CMP #1
          BEQ _UART1
          BCS _UART2

          JMP RAISE_SYS           ; Indicate an IO error (should never happen!)

_UART1    LDA #<UART1_BASE        ; Running UART 1
          STA UARTPTR
          LDA #>UART1_BASE
          STA UARTPTR+1

          BRA _INIT

_UART2    LDA #<UART2_BASE        ; Running UART 2
          STA UARTPTR
          LDA #>UART2_BASE
          STA UARTPTR+1

_INIT     LDA #0

          LDY #UART_RXTL          ; Clear out buffer registers
          STA (UARTPTR),Y

          LDY #UART_TXHD
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SERIALON configures a UART to transmit and receive.

Turning  off  serial  communications  is  somewhat
simpler, as it only waits for any pending bytes to be
transmitted and then turns off the UART. The check for
transmitting data is a two-step process, ensuring that
the transmit buffer is empty, then checking to ensure
no byte is currently stored and being sent out.

SERIALOFF turns off serial communication.

          STA (UARTPTR),Y

          LDA IOBAUD              ; Set baud rate
          AND #$0F
          LDY #UART_CNTL
          STA (UARTPTR),Y

          LDA #01                 ; Enable UART
          LDY #UART_CMND
          STA (UARTPTR),Y

          LDY #UART_STAT          ; Wait for UART to start up
_WAIT     LDA (UARTPTR),Y
          AND #$40
          BEQ _WAIT

          PLY
          PLA

          RTS                     ; All done

SERIALOFF PHA
          PHY

          LDA IOMODE              ; Special check in case this was called incorrectly
          BEQ _DONE

_WAITBUF  LDY #UART_TXHD          ; Wait for any pending characters to transmit
          LDA (UARTPTR),Y
          LDY #UART_TXTL
          CMP (UARTPTR),Y
          BNE _WAITBUF

          LDY #UART_STAT          ; Wait for any pending byte to be sent out
_WAITBIT  LDA (UARTPTR),Y
          AND #$10
          BNE _WAITBIT

_SHUTOFF  LDA #0
          LDY #UART_CMND
          STA (UARTPTR),Y         ; Clear bit to stop UART

          LDY #UART_STAT
_WAITOFF  LDA (UARTPTR),Y         ; Wait for UART to stop
          AND #$40
          BNE _WAITOFF

_DONE     PLY
          PLA

          RTS
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To  transmit  data,  the  SERIALPUT routine  is  called
with a single byte. The routine checks to see if there's
room in the transmit ring buffer, and if not, blocks until
a space exists in the buffer.  Once a space exists, the
byte is added to the buffer and the head position of
the  buffer  incremented.  Calling  this  routine  when  a
UART is  not  running will  cause the  routine  to  block
indefinitely once the buffer is full.

The  SERIALPUT routine  enqueues  bytes  for
transmission.

Receiving data is handled by the SERIALGET routine.
It  checks  whether  a  byte  exists  in  the  receive  ring
buffer, and if so, copies the byte and increments the
receive buffer's tail position to consume it. If no byte
exists,  the  routine  returns  without  any  action  being

SERIALPUT PHA
          PHX
          PHY

          PHA                     ; Preserve character to store

_WAIT     LDY #UART_TXHD          ; Get current head position
          LDA (UARTPTR),Y

          INC A                   ; Increment by one (to test if overflow)
          AND #$07

          LDY #UART_TXTL          ; Compare to current tail position (equals means we overflow!)
          CMP (UARTPTR),Y
          BEQ _WAIT

          TAX                     ; Store new head position (we'll need it really soon)

          LDY #UART_TXHD          ; Use current head position to calculate offset
          CLC
          LDA (UARTPTR),Y
          ADC #UART_TXBF
          TAY

          PLA                     ; Store character in buffer
          STA (UARTPTR),Y

          LDY #UART_TXHD          ; Update head position
          TXA
          STA (UARTPTR),Y

          PLY
          PLX
          PLA

          RTS
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taken.  Because  a  value  of  zero  would  be  valid,  the
65C02's carry flag is used to indicate whether or not a
byte  was  read.  Unlike  the  SERIALPUT routine,  this
routine won't block if the UART wasn't turned on, but
neither will it read any data.

The SERIALGET routine reads a byte from the receive
buffer.

SCREEN OUTPUT

Cody  BASIC  has  a  set  of  routines  to  handle  text
output  to  the  screen.  Similar  in  some  ways  to  a
terminal  device,  the  routines  not  only  display

SERIALGET PHY

          LDY #UART_STAT          ; Get current control register
          LDA (UARTPTR),Y

          BIT #$06                ; Test that no error bits are set
          BNE _SYS

          LDY #UART_RXTL          ; Get current tail position
          LDA (UARTPTR),Y

          LDY #UART_RXHD          ; Compare to head position
          CMP (UARTPTR),Y

          BEQ _EMPTY              ; If they match then the buffer is empty

          CLC                     ; Calculate the buffer position and read the character
          ADC #UART_RXBF
          TAY
          LDA (UARTPTR),Y

          PHA                     ; Keep the character around for later

          LDY #UART_RXTL          ; Update tail position since we read from the buffer
          LDA (UARTPTR),Y
          INC A
          AND #$07
          STA (UARTPTR),Y

          PLA                     ; Pull the character we read off the stack

          PLY
          SEC                     ; Set carry to indicate a character was read
          RTS

_EMPTY    PLY
          CLC                     ; Clear carry to indicate no character read
          RTS

_SYS      JMP RAISE_SYS           ; Indicate we detected an IO error
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characters but will move the cursor location, clear the
screen,  and  change  the  foreground  and  background
colors of text based on control codes. The SCREENPUT,
SCREENDEL,  SCREENCLR,  SCREENADV,  and
SCREENPOS routines contain the necessary code for
screen output.

Screen  display  routines  share  a  few  zero  page
variables that encapsulate the current state of screen
output. The cursor position is actually represented two
different ways. The CURCOL and CURROW zero-page
variables contain the current x and y coordinates of the
cursor, while the CURSCRPTR and CURCOLPTR values
point  to  the  corresponding  positions  in  screen  and
color  memory.  Because  the  routines  also  allow
changes to foreground and background colors, another
zero-page  variable,  CURATTR,  contains  the  current
foreground  and  background  colors  to  use  for  new
output.

The SCREENPUT routine displays a single character
on  the  screen  at  the  current  cursor  position.  It  also
takes  into  account  special  control  codes  that  change
the  foreground  and  background  colors  or  clear  the
screen, and must also account for scrolling the screen
when the cursor reaches the bottom.
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Excerpt  showing  control  codes  handled  by
SCREENPUT.

Like other screen routines, it also has to ensure that
certain critical sections of code aren't changed by the
timer  interrupt,  which  could  happen  if  the  user
attempts to break out of the program. If this happened
at a particularly bad time, internal variables related to
the  cursor  position  could  be  corrupted.  This  would
cause future output to be broken and could potentially
have  knock-on  effects  for  the  rest  of  the  system,
particularly if the values of the pointers are corrupted.

SCREENPUT CMP #CHR_CLEAR            ; Clear screen
          BEQ _CLR

          CMP #CHR_REVERSE          ; Reverse field
          BEQ _REV

          CMP #CHR_NL               ; Newline (advance screen)
          BEQ _NL

          CMP #$F0                  ; Foreground color special character
          BCS _FG

          CMP #$E0                  ; Background color special character
          BCS _BG

          PHP                       ; Store flags and disable interrupts (cursor/pointer updates are critical section)
          SEI

          STA (CURSCRPTR)           ; Store the character in the screen buffer

          PHA                       ; Store the cursor attribute in the color memory buffer
          LDA CURATTR
          STA (CURCOLPTR)
          PLA

          INC CURSCRPTR+0           ; Increment screen memory location
          BNE _ATTR
          INC CURSCRPTR+1

_ATTR     INC CURCOLPTR+0           ; Increment color memory location
          BNE _DOIT
          INC CURCOLPTR+1

_DOIT     LDA CURCOL                ; Increment the cursor x position
          INC A
          STA CURCOL
          CMP #40
          BNE _INT

          STZ CURCOL                ; Increment the cursor y position (when needed)
          LDA CURROW
          INC A
          STA CURROW
          CMP #25
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Critical section in SCREENPUT that writes a character.

When  the  user  is  typing  and  wants  to  delete  a
character, we need to have a way to remove it from the
screen.  In  this  situation  SCREENDEL is  called,  which
clears  the  screen  content  for  the  cursor  and  the
previous position. To ensure everything matches up, it
also moves the cursor position and memory pointers
back  by  one,  also  taking  into  consideration  the
possibility that the cursor went back an entire line. This
routine is needed by READKBD when the user wants to
delete part of their newly-typed input.

          BNE _INT

          STZ CURCOL                ; Move the cursor to the start of the last row (0, 24)
          LDA #24
          STA CURROW

          PLP                       ; Out of critical section, copying memory can take a lot of cycles

          JMP _SCR                  ; Jump to scroll the memory (moved outside to make branches fit)

_INT      PLP                       ; Pull processor flags to re-enable the previous interrupt status

SCREENDEL PHA

          DEC CURCOL        ; decrement column
          BPL _DEL
          LDA #39           ; wrapped to previous column
          STA CURCOL
          DEC CURROW        ; decrement row since we wrapped around
          BPL _DEL
          STZ CURCOL        ; wrapped off screen, need to correct that
          INC CURROW
          BRA _DONE

_DEL      LDA #$20          ; clear current cursor position
          STA (CURSCRPTR)
          SEC               ; subtract one from the cursor pointer
          LDA CURSCRPTR+0
          SBC #1
          STA CURSCRPTR+0
          LDA CURSCRPTR+1
          SBC #0
          STA CURSCRPTR+1
          LDA #$20          ; replace the character with the current cursor attributes to clear it
          STA (CURSCRPTR)

          LDA CURATTR       ; clear current cursor position
          STA (CURCOLPTR)
          SEC               ; subtract one from the cursor pointer
          LDA CURCOLPTR+0
          SBC #1
          STA CURCOLPTR+0
          LDA CURCOLPTR+1
          SBC #0
          STA CURCOLPTR+1
          LDA CURATTR       ; replace with the current cursor attributes to clear it
          STA (CURCOLPTR)

183



SCREENDEL deletes  a  character  and handles  related
calculations.

Other  routines  also  exist  to  handle  particular
aspects  of  screen  output.  The  SCREENADV routine
advances  the  screen  by  a  single  line,  while
SCREENPOS moves the cursor position and memory
pointers  based on new column and row coordinates.
SCREENCLR clears the contents of screen memory and
sets  the  contents  of  color  memory,  also  moving the
cursor back to the top of the screen. These routines are
used  within  the  codebase  to  handle  special  output
needs.

_DONE     PLA

          RTS

SCREENCLR PHA

          PHP                   ; Disable interrupts (critical section)
          SEI

          STZ CURCOL            ; Reset the cursor x and cursor y to (0, 0)
          STZ CURROW

          STZ TABPOS            ; Reset tab position

          LDA #<SCRRAM          ; Reset the cursor pointer to the start of text memory
          STA CURSCRPTR+0
          LDA #>SCRRAM
          STA CURSCRPTR+1

          LDA #<COLRAM          ; Reset the cursor color pointer to the start of color memory
          STA CURCOLPTR+0
          LDA #>COLRAM
          STA CURCOLPTR+1

          PLP                   ; Restore interrupts (critical section)

          LDA #<SCRRAM          ; Fill the contents of text memory with spaces
          STA MEMDPTR+0
          LDA #>SCRRAM
          STA MEMDPTR+1
          LDA #<1000
          STA MEMSIZE+0
          LDA #>1000
          STA MEMSIZE+1
          LDA #$20
          JSR MEMFILL

          LDA #<COLRAM          ; Fill the contents of color memory with the current attribute
          STA MEMDPTR+0
          LDA #>COLRAM
          STA MEMDPTR+1
          LDA #<1000
          STA MEMSIZE+0
          LDA #>1000
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SCREENCLR clears  the  screen and moves  the  cursor
back to the top left.

          STA MEMSIZE+1
          LDA CURATTR
          JSR MEMFILL

          PLA

          RTS

185





Assembly Instructions

4



INTRODUCTION

This chapter describes how to build your own Cody
Computer,  including  the  assembly  of  a  small
mechanical  keyboard,  the main printed circuit  board,
and the computer's case. Each part is broken out into
its own section, and inside each section the assembly is
broken into multiple steps. Photos are also provided to
point out aspects of the assembly process. You should
read the chapter in its entirety before beginning the
build.

Just  because  something  worked  well  for  me
doesn't mean it will work as well for you. As you
go through the build, you'll want to consider what
you're doing and evaluate your own results.  The
Cody  Computer  is  more  like  a  garage  kit,
particularly  with  the  3D  printing  side,  so  you'll
want to build accordingly.

NOTES ON 3D PRINTING

The  Cody  Computer  is  heavily  dependent  on  3D
printing for its construction, so you will need to either
print the parts yourself or find someone who can print
them for you.  When developing the Cody Computer
we were able to print all the parts on a more or less
stock Ender 3 Pro,  with the only major modifications
being  a  glass  bed  and  an  eventual  extruder
replacement.
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Because  of  differences  between  3D  printers,  you
may  need  to  make  adjustments  to  obtain  suitable
results.  It's  assumed your printer  is  dialed in  with a
reasonably high level of accuracy. If not you should be
comfortable  making  your  own  adjustments  to  the
printer and ensuring the fit of finished parts as they
come  off.  The  OpenSCAD  design  files  are  also
provided if  you need to  make major  adjustments  to
some of the dimensions for the build.

It's also worth planning the order in which you print
the parts. One option is to print the parts for each step
as needed, checking for proper fit at that time. Another
option  is  to  print  the  parts  up  front,  perhaps  even
batching some of them together, and perform many of
the basic test-fits up front as well. Whatever approach
you  use,  make  sure  that  you  perform  the  test  fits
mentioned in the various assembly steps. If you decide
to  group  your  prints  together  by  color,  see  the
following:

Black PLA filament (Hatchbox Black, Inland Black,
or equivalent): 

Alphanumeric keycaps (KeycapA.stl
through KeycapZ.stl)
Cody keycap (KeycapCody.stl)
Meta keycap (KeycapMeta.stl)
Arrow keycap (KeycapArrow.stl)
Spacebar (Spacebar.stl)
Keyboard plate (KeyboardPlate.stl)
Case badge (CaseBadge.stl)
LED holder (LEDHolder.stl)
Left mounting bracket
(KeyboardBracketWithoutHoles.stl)

• 

◦ 

◦ 
◦ 
◦ 
◦ 
◦ 
◦ 
◦ 
◦ 
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Right mounting bracket
(KeyboardBracketWithHoles.stl)

Beige PLA filament (Inland Light Brown or
equivalent): 

Case top (CaseTop.stl)
Case bottom (CaseBottom.stl)

White PLA (if using paint) or various color PLA: 
Case badge inlay, red (CaseBadgeInlay.stl)
Case badge inlay, orange
(CaseBadgeInlay.stl)
Case badge inlay, yellow
(CaseBadgeInlay.stl)
Case badge inlay, green
(CaseBadgeInlay.stl)
Case badge inlay, blue
(CaseBadgeInlay.stl)

When printing consider the orientation of the parts
on the print bed. For large pieces such as the case top
and bottom, we printed them upside down to avoid the
large  overhead  of  supports  for  such  pieces.  The
keyboard brackets were printed upright despite a need
for some supports to avoid dimensionality problems
for  the magnet  and screw pilot  holes.  Keycaps were
printed face-down on a glass bed with good leveling
to minimize gaps for later application of the air-dry
clay.

◦ 

• 

◦ 
◦ 

• 

◦ 
◦ 

◦ 

◦ 

◦ 
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A Creality Ender 3 Pro printing the Cody Computer's
case  top.  Note  the  upside-down  print  orientation  to
avoid printing supports.

Also consider the infill and resolution settings when
you run the STL files through your slicer. For parts with
very  specific  dimensional  requirements,  such  as  the
keycaps  and  their  stems,  use  a  standard  or  high
resolution. For larger parts that take a long time and
require significant strength, such as the case top and
bottom, consider a lower resolution or draft print. You
will  want  to  take  into  account  your  own  printer's
characteristics and your tolerance for long builds when
making such decisions.

KEYBOARD ASSEMBLY

Your first step in building the Cody Computer is to
assemble  its  keyboard  module.  It's  a  good  place  to
start because it combines all the things you'll need to
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do in later  steps,  from 3D printing (with reasonably
tight tolerances) to soldering up a circuit board.

If  you  have  any  problems  in  this  step,  it  may
indicate that you want to work them out before going
on  to  later  steps.  For  example,  if  your  printer  isn't
calibrated  enough  or  you  need  to  make  your  own
adjustments to the design files, there's a good chance
you'll  find  that  out  here.  Likewise,  if  you  run  into
problems  with  soldering,  it's  better  to  solve  those
problems  now  before  you  start  soldering  the  main
logic board. In general, the keyboard is going to be a
lot more forgiving of mistakes.

MAKING THE KEYCAPS

In this step we'll print out and make the keycaps for
the keyboard. The keycaps have Cherry MX compatible
stems, but they have a smaller spacing, so you can't
use standard keycaps with the Cody Computer. There
are 30 keycaps including a spacebar key.

Many early  computer  keycaps were manufactured
using  "double-shot"  injection  moulding.  This  meant
that one color of plastic was shot into the mould for
the keycap itself,  while a second color of plastic was
shot into the mould for the legend on it.  You can do
something similar with 3D printing in multiple colors
(and we actually did that as well), but we obtained the
best results using air-dry clay deposited into recessed
legends in the 3D printed keycaps.
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Before your get too far into the build process,
it's a good idea to print a single keycap and test
the fit against one of the Cherry MX switches if
you haven't  done so already.  If  adjustments  are
needed  to  your  printer  or  to  the  OpenSCAD
models to work with your printer or keyswitches,
you want to do that before you've made a useless
set of keycaps.

For this step, you'll need the following:

26 alphanumeric keycaps (KeycapA.stl through 
KeycapZ.stl)
1 Cody keycap (KeycapCody.stl)
1 Arrow keycap (KeycapArrow.stl)
1 Meta keycap (KeycapMeta.stl)
1 Spacebar keycap (Spacebar.stl)
White air-dry clay (Sculpey Air-Dry or
equivalent)
Wet cloth
Dry cloth

Before beginning the assembly,  wash and dry the
keycaps. This will help the air-dry clay adhere to the
plastic. Once the keycaps are dry, do the following for
each keycap except the spacebar:

Take a small amount of air-dry clay and roll it
into the keycap legend.
Wipe away the excess from the keycap using
your finger.

• 

• 
• 
• 
• 
• 

• 
• 

1. 

2. 
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Clean up any remainder from the keycap surface
with the wet cloth. Be careful not to wipe away
much of the clay in the legends.
Dry off the top of the keycap by gently blotting
with the dry cloth. Be careful not to dislodge the
clay in the legends.

A close-up of some keycaps after the air-dry clay has
been applied.  From left  are  the Cody key,  the Meta
key, and the Arrow key.

MAKING THE KEYBOARD CABLE

You'll also need to make an 11-pin cable to connect
the  keyboard  to  the  Cody  Computer's  main  circuit
board. Rather than making a real cable it's a minimal
approach using some jumper wires and electrical tape
to create  a  cable  by taping the connectors  together.
One of the actual connectors the cable will connect to

3. 

4. 
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is  used  as  a  jig  to  hold  the  connectors  during  the
assembly.

For the jumper wire in this step, use the kind that
comes  in  a  strip  and  can  be  peeled  apart.  You're
basically trying to make a custom cable on the cheap,
so if  the wires  are  connected,  you can just  tape the
connectors  together  with  electrical  tape  and  end  up
with a reasonable substitute.  Jumper wire like this is
colloquially referred to as "jumper jerky" and can be
found at many retailers.

For this step you'll require only a few parts:

1 11-pin male .100" header, right angle
11 10cm jumper wire with .100" female connector
(from "jumper jerky")
Electrical tape
Scissors

Once you've collected the above, proceed with the
assembly:

Insert one end of the connected jumper wire onto
the right-angle header.
Wrap electrical tape around the female
connectors on that end to secure them together.
Remove the connected jumper wire from the
right-angle header.
Insert the untaped end of the connected jumper
wire onto the right-angle header.
As before, wrap electrical tape around the female
connectors to secure them together.
Remove the cable from the connector.

• 
• 

• 
• 

1. 

2. 

3. 

4. 

5. 

6. 
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The  assembled  keyboard  cable.  Note  the  electrical
tape holding the connectors on each end together.

ASSEMBLING THE KEYBOARD

Once you have  the  keycaps  it's  time to  build  the
keyboard. You need to be careful and follow the steps
in order. You'll be soldering a connector onto a board
that ends up hidden by a keyboard plate. You'll also be
inserting  switches  through  a  keyboard  plate  into  a
printed circuit board and then soldering them. If you
do the steps in  the wrong order,  you'll  end up in  a
situation  where  further  assembly  may  be
mechanically impossible.

This step requires the following:

30 keycaps including spacebar
31 keyswitches, 5 pin, PCB mount (Cherry MX or
equivalent)
1 11-pin male .100" header, right angle

• 
• 

• 
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Keyboard plate (KeyboardPlate.stl)
Keyboard cable
Solder
Soldering iron

Refer  to  the  above  caution  about  following  the
assembly  steps.  As  with  anything,  it's  worth  going
through the instructions using the parts as a dry run,
making sure you understand what you're doing. When
adding  the  spacebar  keycap,  equal  force  on  both
switches is necessary, and you may need to sand the
interior  of  the  spacebar  to  avoid  jamming.  When
you're ready, assemble the keyboard module through
the following steps:

Solder the 11-pin right angle male connector to
J1. Ensure the connector is flat and the solder
joints are good.
Place the keyboard plate over the keyboard
printed circuit board. Ensure the notch in the
keyboard plate aligns with the connector.
Insert the Cherry MX switches into the circuit
board through the keyboard plate. Ensure the
keyswitches are fully seated into the circuit board
and hold the plate securely.
Solder each of the keyswitches to the circuit
board.
Press each of the keycaps onto the appropriate
switch. Use the photo below to determine the
location for each key.
Connect one end of the keyboard cable to
connector J1. The cable should fit through the
notch in the keyboard plate.

• 
• 
• 
• 

1. 

2. 

3. 

4. 

5. 

6. 
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The  back  of  the  assembled  keyboard.  Note  the
placement  of  the  printed  circuit  board  inside  the
keyboard plate with the keyswitches soldered from the
bottom. Also note connector J1 soldered from the now-
hidden front of the board, now with attached keyboard
cable.
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The front of the assembled keyboard. Use this photo
as a reference when placing the keycaps.

PRINTED CIRCUIT BOARD
ASSEMBLY

The  next  step  is  to  assemble  the  printed  circuit
board  for  the  Cody  Computer.  This  board  is  the
motherboard or logic  board for the entire computer,
containing  all  the  chips  and  discrete  components
necessary for the computer to run (with the exception
of the keyboard).

It's  important  to  proceed  with  the  assembly
methodically  and  use  good  soldering  technique  at
each  step.  Ensure  that  components  are  held  to  the
board by a clamp or piece of tape if needed and check
for cold solder joints or solder bridges.
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INSTALLING INTEGRATED CIRCUIT SOCKETS

To begin we'll install the sockets for the integrated
circuits.  Rather  than  solder  the  chips  directly  to  the
board, we install sockets and add them at a later step.
While unlikely to ever happen, this makes it easier to
replace one of them if something goes wrong. It also
makes  it  less  likely  to  mess  one  of  them  up  while
soldering, as they're not installed until  the end. This
step requires:

3 40-pin wide DIP sockets
1 32-pin wide DIP socket
1 20-pin DIP socket
1 16-pin DIP socket
1 8-pin DIP socket

When  installing  the  sockets,  note  if  your  socket
contains a notch, dot, half-circle, or other identifier to
indicate the top of the IC. If so, ensure they are rotated
the same way as the silkscreen on the printed circuit
board. Once the sockets have been collected, proceed
with the assembly:

Solder a 40-pin wide DIP socket into U3 rotated
180 degrees.
Solder a 40-pin wide DIP socket into U5 rotated
180 degrees.
Solder a 40-pin wide DIP socket into U7 rotated
180 degrees.
Solder the 32-pin wide DIP socket into U6.
Solder the 20-pin DIP socket into U1 rotated 180
degrees.

• 
• 
• 
• 
• 

1. 

2. 

3. 

4. 
5. 
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Solder the 16-pin DIP socket into U8 rotated 90
degrees counterclockwise.
Solder the 8-pin DIP socket into U4.

The printed circuit board with the IC sockets soldered
in.  Note  the  varying  orientations  and  corresponding
notches in the IC sockets.

INSTALLING DIODES

In this step we'll install the diodes for the joystick
ports.  The  Cody  Computer  uses  the  same  circuit  to
read the joystick ports as it does to scan the keyboard.
Without these diodes, the joystick ports could interfere
with  each  other,  causing  false  reads  when  both
joysticks are in use. You will need:

10 1N4148 small-signal diodes

Note that diodes have a polarity. This means that if
you  solder  them  in  backwards,  they  won't  work  as

6. 

7. 

• 
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expected. Each diode has a stripe on it indicating the
diode's  cathode,  and  this  should  be  aligned  to  the
corresponding  stripe  on  the  silkscreen.  Proceed  with
the assembly starting in order on the PCB:

Solder 1N4148 diodes into D5, D3, D2, D1, D4, D9,
D6, D7, D8, and D10.

The diodes soldered next to U7 and the future joystick
port connectors. Note the stripes and their orientation.

INSTALLING DECOUPLING CAPACITORS

Next  we'll  install  the decoupling capacitors.  These
are small capacitors that help filter out tiny blips in the
Cody  Computer's  power  supply  and  ensure  reliable
operation.  They're  located next  to  the  power  supply
pins for the integrated circuits.  (One of these,  C6, is
actually part of the audio circuit, but as it has the same

1. 
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capacitance  value,  we  include  it  in  this  step.)  You'll
need the following:

9 0.1µF ceramic capacitors (KEMET
C315C104K1R5TA or equivalent)

These are ceramic capacitors and have no polarity,
so  you don't  have  to  worry  about  the  direction  you
solder  them  in  (other  than,  perhaps,  for  aesthetic
purposes). Make sure you solder all of the following:

Solder 0.1µF ceramic capacitors into C1, C2, C6,
C3, C4, C8, C9, C10, and C11.

The board with decoupling capacitors (plus C6, part of
the audio circuit) installed.

INSTALLING THE EXPANSION CONNECTOR

The Cody Computer has an expansion port for DIY
experiments,  cartridges,  or  third-party  peripherals.

• 

1. 
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The mechanical  connection  is  a  20-pin  right  angle  .
100" female connector.  For this step you'll  need the
following:

1 Raspberry Pi Pico stackable header

Because of their ubiquity, we use one from a set of
stackable Raspberry Pi Pico headers (the kind with the
long pins) and bend it to fit.  Note that the port isn't
electrically  compatible.  We're  just  using  the  header,
and  any  standard  right-angle  female  header  cut  to
size would also suffice. For this step do the following:

Insert the stackable header into J6 and bend until
aligned with the board edge.
Solder the stackable header to J6.

The board with the Raspberry Pi Pico stackable header
bent into place and soldered.

• 

1. 

2. 
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INSTALLING PULL-UP RESISTORS

In  this  step  we'll  install  several  pull-up  resistors.
Most of  these are used by the keyboard matrix,  but
there  are  also  others.  R2  is  used  to  pull  up  the
Propeller's RESET pin, R3 is used as a pull-up for I2C
EEPROM  communication,  and  R8  pulls  the  65C02's
RDY pin high to protect it in the event of a wait-for-
interrupt instruction.  This step requires the following
resistors:

8 10kΩ (brown-black-orange) resistors, 1/4 watt,
5% tolerance
1 3.3kΩ (orange-orange-red) resistors, 1/4 watt,
5% tolerance

Installation should proceed as follows:

Solder 10kΩ resistors to R3, R9, R10, R11, R12, and
R13.
Solder 10kΩ resistors to R2 and R14 in a vertical
orientation (see photo).
Solder the 3.3kΩ resistor to R8.

• 

• 

1. 

2. 

3. 
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A  close-up  of  some  of  the  resistors  after  being
soldered to the board. Note the vertical orientations of
R2 and R14.

INSTALLING POWER SUPPLY COMPONENTS

The Cody Computer's power supply circuit is located
at the top right of the printed circuit board. It consists
of  a  voltage regulator,  a  large  electrolytic  capacitor,
some connectors, and a resistor. This step requires the
following parts:

1 LM2937ET-3.3 voltage regulator IC
1 1000µF electrolytic capacitor (Rubycon
10ZLH1000MEFC8X16 or equivalent)
1 1kΩ (brown-black-red) resistor, 1/4 watt, 5%
tolerance
1 2.0x6.5mm DC barrel jack (CUI PJ-102A or
equivalent)
1 2-pin male .100" vertical header

• 
• 

• 

• 

• 
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The  voltage  regulator  needs  to  be  bent  at  a  90-
degree angle so that the body and heat sink match the
silkscreen  on  the  circuit  board.  The  electrolytic
capacitor is polarized and must be installed according
to  the  silkscreen.  For  this  assembly  step  do  the
following:

Solder the LM2937ET-3.3 to U2. Ensure the IC is
placed and bent horizontally as shown in the
photo.
Solder the 1000µF capacitor to C5. Verify the
longer lead is on the positive side and the stripe
on the case is on the negative side, following the
silkscreen.
Solder the 1kΩ resistor to R1.
Solder the DC barrel jack to J1.
Solder the male header pins to J2.

1. 

2. 

3. 
4. 
5. 
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The power  supply  circuit  including the  horizontally-
aligned  voltage  regulator  and  properly-oriented
electrolytic capacitor. Also note the DC barrel jack.

INSTALLING PROPELLER COMPONENTS

There are still some discrete components to install
for the Propeller. These include a 5 MHz crystal that
serves as the Propeller's external clock signal as well
as some resistors and capacitors used for audio and
video output. This step uses the following:

1 5Mhz 20pF HC-49/US crystal (ECS
ECS-50-20-4X or equivalent)
1 10µF electrolytic capacitor (KEMET
ESL106M050AC3AA or equivalent)
1 1.1kΩ (brown-brown-red) resistor, 1/4 watt, 1%
tolerance
1 560Ω (green-blue-brown) resistor, 1/4 watt,
1% tolerance

• 

• 

• 

• 

208



1 270Ω (red-violet-brown) resistor, 1/4 watt, 1%
tolerance
1 220Ω (red-red-brown) resistor, 1/4 watt, 1%
tolerance

Once you've found all  the components  solder  the
following:

Solder the 20pF crystal to Y1.
Solder the 1.1kΩ resistor to R6.
Solder the 560Ω resistor to R5.
Solder the 270Ω resistor to R4.
Solder the 220Ω resistor to R7.
Solder the 10µF capacitor to C7.

The extra components needed for the Propeller. To the
left  of  the  socket,  note  from  the  top  the  crystal
oscillator,  video  DAC  resistors,  and  capacitors  and
resistor for the audio circuit.

• 

• 

1. 
2. 
3. 
4. 
5. 
6. 
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INSTALLING ADDITIONAL REAR
CONNECTORS 

In  this  step  we'll  finish  adding  the  remaining
connectors  along  the  back  of  the  Cody  Computer.
These include the audio and video jacks, a jumper used
for firmware programming, and a four-pin connector
wired into the Propeller as a serial port. The RCA jack
colors are not required but are specified to help tell
the  video  and  audio  jacks  apart  once  the  Cody
Computer  is  assembled.  You'll  need  the  following
parts for this step:

1 RCA jack, black color (CUI RCJ-011 or
equivalent)
1 RCA jack, yellow color (CUI RCJ-014 or
equivalent)
1 2-pin male .100" header, vertical
1 4-pin male .100" header, right-angle

Add the following connectors:

Solder the 4-pin right-angle male header to J3.
Solder the 2-pin vertical male header to JP1.
Solder the black RCA jack to J5.
Solder the yellow RCA jack to J4.

• 

• 

• 
• 

1. 
2. 
3. 
4. 
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Additional  connectors  on  the  back  of  the  Cody
Computer.  Note  from  left  to  right  the  NTSC  video
output  jack,  audio  output  jack,  jumper  pins  (without
jumper attached), and Propeller Plug connector.

INSTALLING KEYBOARD AND JOYSTICK
CONNECTORS 

In this step we'll add the connectors for the joystick
ports and the keyboard. The DB9 connectors used for
the joystick  ports  as  they must  have a  very specific
shape to fit in the alloted space on the board. When
ordering you should check the mechanical diagrams to
ensure the parts will actually fit. Collect the following:

2 male DB9 connectors, .318" footprint (NorComp
182-009-113R531 or equivalent)
1 11-pin male .100" header, vertical

• 

• 
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Solder the remaining components:

Solder the 11-pin vertical male header to J7.
Solder the two male DB9 connectors to J8 and J9.

The Cody Computer's keyboard connector soldered at
the bottom of the board.

1. 
2. 
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The Cody Computer's joystick ports soldered along the
right side of the board.

POWER TEST

Now  that  the  printed  circuit  board  has  been
assembled (except for inserting the ICs), we can begin
to  test  the  circuit.  We'll  start  by  testing  the  power
supply to ensure we're getting the expected 3.3 volts.
If we're not, it's likely a sign of a solder bridge, PCB
problem, or an issue with the power supply. It's better
to find that out before we insert any chips into their
sockets. For this step you will need:

5-volt (or similar) DC power supply with 5.5mm
x 2.1mm connector
Voltmeter/multimeter

Any wall-wart transformer or power supply with a
suitable plug and an output voltage of 5V (or slightly

• 

• 
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above) should work well for this test. To test the circuit
do the following:

Ensure the printed circuit board is resting on a
nonconductive surface.
Plug the power supply's barrel plug into the DC
power jack on the circuit board.
Connect the power supply into a wall outlet.
Use your voltmeter to measure the voltage
across pins 1 (GND) and 2 (3.3V) on the
expansion port.
Verify the voltage is 3.3V or very close to it.
For advanced builders, find the power supply
pins on some of the IC sockets, and test those
also.
Disconnect the power supply.

If the test fails, check the power supply circuit on the
printed circuit board. Also check the voltage from the
DC power  supply  is  correct.  If  none of  this  yields  a
result, examine the rest of the printed circuit board for
defective traces or solder bridges.

1. 

2. 

3. 
4. 

5. 
6. 

7. 
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Use  a  voltmeter  to  check  that  the  output  from  the
power supply circuit is correct. You should measure a
steady voltage around 3.3 volts.

FIRMWARE PROGRAMMING

In this step we'll program the Propeller's firmware.
To do so you'll need to insert the first two integrated
circuits,  the  Propeller  and  its  32-kilobyte  EEPROM,
into the matching sockets on the board. Once you've
done that  you'll  use  Propeller  software  to  write  the
program into  the  EEPROM.  Before  you  begin,  you'll
want  to  download  the  software  (Propeller  IDE  or
similar)  for  your  computer  and  familiarize  yourself
with it.

Also  pay  attention  to  the  jumper  JP1  during
assembly.  When  closed,  the  Propeller's  reset  pin
connects to the Prop Plug's reset pin, allowing the Prop
Plug  to  reset  the  Propeller  and  enter  programming
mode. When open, the two are disconnected and the
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Propeller's  reset  pin  is  held  high.  The  latter
configuration  is  the  normal  mode  of  operation,  but
you'll want to remember the jumper exists in case you
ever program your own custom firmware.

You will need the following for this step:

1 Propeller P8X32A integrated circuit (DIP-40)
1 24LC256 32-kilobyte I2C EEPROM or
equivalent (DIP-8)
1 Prop Plug with USB cable
1 2-pin jumper/shunt (Harwin M7583-46 or
equivalent)
Computer running Propeller IDE (or similar
programming software)

When inserting the integrated circuits,  ensure that
they're fully seated into their sockets and none of the
pins are bent.

The exact steps for programming the firmware will
differ depending on the IDE you use, so you will need
to  refer  to  the  tool's  documentation for  exact  steps.
The overall procedure will be the same:

Ensure power is turned off to the printed circuit
board.
Insert the Propeller IC into U3 rotated 180
degrees.
Insert the 24LC256 I2C EEPROM into U4.
Place the jumper over both pins of JP1.
Plug the Prop Plug into J3. Verify the pinout (the
rightmost pin next to the jumper, pin 4, is GND).
Plug the Prop Plug's USB cable into your
computer.
Connect power to the printed circuit board.

• 
• 

• 
• 

• 
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Launch your Propeller software (for example,
Propeller IDE).
Open the main firmware (cody_computer.spin)
and write it.
Verify that the software states the program was
successfully written.
Turn off power to the printed circuit board.
Unplug the Prop Plug from J3.
Remove the jumper. To avoid losing it reattach to
only 1 pin on JP1.

If your programming software doesn't recognize the
Prop  Plug,  try  disconnecting  and  reconnecting  the
cable and/or Prop Plug. If that does not work, ensure
that the programming software has permissions to the
Prop Plug's USB.  If  programming the Propeller fails,
check the solder connections and ensure the Propeller
and its EEPROM are properly seated in their sockets.
Also ensure the jumper is correctly attached.

8. 

9. 

10. 

11. 
12. 
13. 

217



The  Prop  Plug  connected  to  the  serial  port  on  the
printed circuit board. Note jumper JP1 in the firmware
programming position with both pins covered.

INSTALLING THE INTEGRATED CIRCUITS

In this step we'll insert the remaining ICs into their
sockets. It's very important to make sure that power is
disconnected for this step. You will need:

1 74HC541 octal line driver (DIP-20)
1 W65C02 microprocessor (DIP-40)
1 AS6C1008 128-kilobyte static RAM (DIP-32)
1 W65C22 Versatile Interface Adapter (DIP-40)
1 CD4051 1-of-8 analog multiplexer (DIP-16)

It's also very important to check that the orientation
of the integrated circuits matches the silkscreen. Many
of the ICs are installed rotated by 90 or 180 degrees.

• 
• 
• 
• 
• 

218



As before, make sure that each IC goes into the socket
fully with no bent pins. Insert the ICs as follows:

Insert the 74HC541 into U1. Note U1 is rotated
180 degrees.
Insert the W65C02 into U5. Note U5 is rotated
180 degrees
Insert the AS6C1008 into U6.
Insert the W65C22 into U7. Note U7 is rotated
180 degrees
Insert the CD4051 into U8. Note U8 is rotated 90
degrees counterclockwise.

Close  up  of  several  integrated  circuts  securely
inserted  into  their  sockets.  Note  the  differing
orientations and how the notches on the ICs match with
the sockets and silkscreen markings.

1. 

2. 

3. 
4. 

5. 
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CASE ASSEMBLY

Once the printed circuit  board and keyboard have
been  assembled,  it's  time  to  begin  assembling  the
Cody Computer's case. We'll start with the top of the
case and its components, including the case badge and
power LED.  From there we'll  assemble the rest  from
the bottom up, installing the printed circuit board and
keyboard  brackets  into  the  case  bottom.  Once  the
bottom portion is finished we'll attach the keyboard to
it as well, connecting the keyboard cable to the main
printed circuit board. Lastly, we'll affix magnets to hold
the case together,  connect the power LED, and finish
our assembly.

CASE BADGE ASSEMBLY

First  we'll  assemble  the  case  badge.  You  should
have  already  printed  the  case  badge  and  the  case
badge inlays before beginning this step. Note that if
you  didn't  print  the  case  badge  inlays  in  different
colors,  you'll  have  to  paint  them  as  part  of  this
assembly step. For this step you'll need: 

1 case badge (CaseBadge.stl)
5 case badge inlays (CaseBadgeInlays.stl)
White air-dry clay
Cyanoacrylate glue
Optional: Paint (red, orange, yellow, green, and
blue) for inlays

• 
• 
• 
• 
• 
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Once you're prepared and have collected the parts,
proceed with the following:

Wash and dry the case badge and case badge
inlays. This will help the air-dry clay (and paint if
needed) adhere to the plastic.
Test-fit the case badge inlays into the slots on
the case badge. Sand if necessary.
Insert air-dry clay into the "CODY" legend on the
case badge. Wipe away excess with a cloth and
water.
If the inlays were not printed using color
filaments, paint the inlays (red, orange, yellow,
green, and blue).
Allow the air-dry clay to dry completely. If you
painted the inlays, allow these to dry then
remove any paint from the gluing surfaces.
Glue the inlays into the case badge slots (top:
red, orange, yellow, green, and blue).

1. 

2. 

3. 

4. 

5. 
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An  almost-completed  Cody  Computer  case  badge.
Air-dry clay was pressed into the legend and all but
the blue inlay have been glued into place.

POWER LED ASSEMBLY

Next  we  need  to  assemble  the  power  LED.  We're
going to solder some leads to the LED and make some
other adjustments so that it  can be inserted into the
Power  LED holder.  It  may be helpful  to  refer  to  the
attached photo. This step requires the following parts
and tools:

1 10mm LED (blue)
1 10cm jumper wire with .100" female connector
Electrical tape
Solder
Soldering iron
Scissors
Wire cutters

• 
• 
• 
• 
• 
• 
• 
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Sharpie (or other marker)

The assembly steps are as follows:

Bend the female jumper wire into two equal
lengths and secure the connector end with the
tape.
Cut the jumper wire into two pieces at the bend
and strip two or three millimeters from the cut
ends.
Twist and affix the wire ends onto the LED leads,
marking the wire connected to the cathode
(longer lead).
Solder the wire ends to the LED leads, then trim
the excess from the soldered LED leads.
Wrap some electrical tape around the soldered
portions of the leads to prevent shorts.

The power LED soldered to the jumper wire and female
connector.

• 
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CASE TOP ASSEMBLY

Once the case badge and power LED are ready, we
can attach them to the top of the case. In this step we'll
glue the case badge and power LED holder to the case,
then place the power LED in the holder. You'll need the
following:

1 case top (CaseTop.stl)
1 LED holder (LEDHolder.stl)
1 assembled case badge
1 assembled LED with connector
Cyanoacrylate glue

After  collecting  the  parts  proceed  with  the
assembly:

Test-fit the power LED in the power LED holder. It
should fit without a great deal of force.
Glue the case badge into the rectangular slot on
the case top.
Glue the LED holder (without the LED) into the
round slot on the case top.
Allow the glue to dry.
Place the LED into the LED holder from the front.
Don't worry if the LED is too loose as we'll be
removing it temporarily in a following assembly
step.

• 
• 
• 
• 
• 
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The case badge being glued into the case top. The LED
holder is visible in the background.

The power LED being inserted into the LED holder from
the front.
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CASE BOTTOM ASSEMBLY

In this step we assemble the bottom portion of the
case including the printed circuit board and keyboard
brackets.  This  step  is  somewhat  trick  as  it  involves
lining up the brackets,  board, and case bottom in an
inverted position, then screwing the case bottom to the
brackets. For this portion you will require:

1 case bottom (CaseBottom.stl)
1 left mounting bracket
(KeyboardBracketWithoutHoles.stl)
1 right mounting bracket
(KeyboardBracketWithHoles.stl)
4 M3 x 10mm self-tapping screws, round/pan
head (US #4 x 3/8")
Screwdriver

Once  you  have  the  parts  collected,  assemble  the
bottom of the case:

Place the printed circuit board flat on a table (or
other surface) with the components facing up.
Align the right mounting bracket on to the right
side of the printed circuit board. Test the fit for
the joystick and power connectors.
Align the left mounting bracket on to the left
side of the printed circuit board.
Flip the entire assembly upside down so that the
tops of the brackets are on the table and the
bottom of the board is facing up.
Align the case bottom (upside down) to the top
of the brackets. The rear ports should align with

• 
• 

• 

• 

• 
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the slots in the back of the case and the screw
holes should align with those in the brackets.
Screw the parts together ensuring that the
alignment is not disturbed. It may help to screw
in from opposite corners to ensure the case and
brackets remain aligned.

Testing the keyboard bracket's fit with the joystick and
power connectors.

6. 
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Assembling the case bottom, printed circuit board, and
keyboard brackets using screws.

INSTALLING THE KEYBOARD

Once  the  bottom  of  the  Cody  Computer  is
assembled  the  keyboard  module  must  be  attached.
The  keyboard  module's  cable  must  be  connected  to
the  keyboard  connector  on  the  main  printed  circuit
board.  Once  the  cable  is  connected  the  keyboard
module must be inserted into place. This step requires:

1 assembled case bottom
1 assembled keyboard module

Proceed with installing the keyboard as follows:

Test-fit the keyboard module ends against the
slots in the brackets. This can be done by sliding
from the outside of the brackets.

• 
• 

1. 
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Ensure that the keyboard cable is snugly
attached to the connector on the keyboard
module.
Note the wire that corresponds to pin 1 on the
keyboard module side of the conector.
Identify the matching pin 1 annotation on the
main printed circuit board.
Attach the keyboard connector to the main
printed circuit board. The cable will need to be
twisted around to line up.
Ensure the keyboard connector is still snugly
attached to both connectors.
Slide the keyboard into the slots in the brackets
from the inside, first one side, then the other.
Line up the sides of the keyboard module with
the sides of the brackets.

Connecting the  keyboard to  the  main  printed circuit
board. Note the intentional twist in the cable.

2. 

3. 

4. 

5. 

6. 

7. 

8. 

229



Sliding the keyboard module into the mounting slots
on the brackets. Start with one side and then slide in
the other.

INSTALLING MAGNETS

The case is held together with a set of eight rare-
earth  magnets  to  permit  easy  access.  As  an
educational  computer,  the  intention  is  to  make it  as
open  as  possible,  both  metaphorically  and  literally.
With magnets the case can be opened to show off the
interior. Be careful that your magnets are glued in with
the proper orientation. If you don't the case won't fit
together  correctly  because  the  magnets  will  repel
instead of attract. You'll need the following:

1 assembled case top
1 assembled case bottom
8 8mm x 2mm rare earth disc magnets (US 5/16"
x 5/64")

• 
• 
• 
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Cyanoacrylate glue

Assembly  is  rather  straightforward  except  for  the
warning about ensuring the magnets are aligned. One
option is to mark each magnet with a Sharpie or other
semi-permanent means. Proceed as follows:

Temporarily remove the power LED from the case
top. Place it in a safe location.
Test-fit the magnets into their holes and the
assembled case with the magnets in place.
Mark one side of each magnet with a marker. Be
sure that you are consistent with the side you are
marking or the case will not attach correctly.
Glue four magnets into the holes in the keyboard
slots with the marked side visible, ensuring that
the magnets are fully inserted. Be careful not to
get glue onto the keyboard by accident.
Glue four magnets into the holes in the case top
with the marked side not visible. Again, ensure
that the magnets are fully inserted.
Allow the glue to dry thoroughly.

• 
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Installing magnets into the case top.  Remember that
magnets with opposite orientation need to be installed
into the case bottom as well.

Watch out for the magnets as they're not to be
swallowed  by  man  or  beast.  If  you  have  issues
with the glue holding them into place,  you may
want to try a different adhesive.  If  this happens,
consider  printing  an  extra  part  off  for  testing
purposes.

FINAL ASSEMBLY

Once the keyboard is connected the only remaining
step is to attach the top part of the case to the rest of
the  Cody  Computer.  We'll  also  have  to  connect  the
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power LED prior to snapping the case together. You'll
need the two parts of the computer:

1 assembled case top
1 assembled case bottom

The assembly steps are as follows:

Reinsert the power LED into the LED holder on
the case top. If the LED is too loose, the LED leads
can be bent and tape affixed from the bottom to
hold it in place.
Connect the power LED connector to the printed
circuit board. Ensure that the wire you previously
marked as the cathode (the long LED lead) is
aligned to pin 1 on the LED connector.
Align the case top and place it onto the case
bottom and brackets, using the magnets to hold
the case tight. You may need to push on the LED
and/or LED wires to ensure a successful fit
without the LED popping out.

• 
• 

1. 

2. 

3. 

233



Close-up of  the  connected power  LED and magnets.
Note the magnets on the brackets have their marked
side outward while the magnets on the case have their
marked side inward.

The fully-assembled Cody Computer from the front.
The case is held together with magnets.
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INITIAL SETUP

Now that  the Cody Computer  is  built,  it's  time to
plug it in and test it out. You'll need a few last items
that you may have to get from the audiovisual section
of your local store:

RCA video and audio cable (red, white, and
yellow plugs)
RCA audio Y-splitter
DC power supply (from earlier steps)
Inline switch for power supply cable
(recommended)
Television with NTSC composite RCA inputs

You're  ready  to  connect  the  Cody  Computer  and
power it up for the first time:

Plug the splitter into the computer's audio port.
Plug the red and white audio cables into the
splitter.
Plug the yellow cable into the computer's video
port.
Plug the red, white, and yellow cables into the TV.
Plug the DC power supply cable into the inline
switch.
Plug the inline switch into the computer's power
jack.
Plug the DC power supply into the wall.
Turn on the television.
Flip the inline switch to turn on the Cody
Computer.

• 

• 
• 
• 
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The  Cody  Computer  with  audio,  video,  and  power
connected. Note the inline power switch to the right of
the computer.

If  all  goes  well,  after  a  second  or  two  the  Cody
Computer will boot into Cody BASIC. You'll see a short
welcome message, the READY prompt, and a blinking
cursor. From here you can learn to program the Cody
Computer as well  as load and save programs,  all  of
which we'll be covering in the next chapters.
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On startup the Cody Computer boots into Cody BASIC.
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Using Cody BASIC

5



INTRODUCTION

Now that you have your Cody Computer set up and
running, it's time to learn how to use it. In this chapter
you'll  learn  the  fundamentals  of  Cody  BASIC,  the
simple  programming  language  built  into  the  Cody
Computer.  Cody BASIC is  inspired by Tiny BASIC,  a
1970s  programming  language  written  for  resource-
constrained  hobbyist  computers.  It  also  has  a  lot  of
influence from Commodore BASIC, a BASIC originally
written  by  Microsoft  and  modified  by  Commodore.
Cody BASIC is a very simple BASIC but it provides a
good starting point for your explorations.

This chapter assumes that you have at least some
programming  background.  If  you  don't,  you  can
probably still follow along, but it won't be as easy. It
doesn't assume any particular familiarity with BASIC
dialects of the 8-bit era, which themselves were quite
different  from  any  modern  BASIC  you  may  have
encountered.

USING THE KEYBOARD

You'll be using the keyboard to enter commands in
Cody BASIC, so before we begin, we need to cover a
little  bit  about  how  to  use  the  Cody  Computer's
keyboard  and  its  special  keys.  The  keyboard  is  a
simplified  QWERTY  layout  with  a  total  of  26
alphabetic characters. Each key contains a letter of the
alphabet,  and most contain special characters on the
top-left and top-right. Pressing the key by itself will
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give you the letter, but pressing it with other special
keys will give you the special characters instead.

The  QWERTY  keys  as  an  example  of  the  Cody
Computer's  keyboard  layout.  Note  the  additional
characters on the top left and top right.

The Cody Computer's keyboard also contains three
additional keys used for special functions: The  Cody
key,  the  Meta key,  and  the  Arrow key.  These  are
similar  to  the  modifier  keys  on  more  modern
computers. On the Cody Computer, they let you type
the other  special  characters  just  discussed,  but  they
also have some other special functions.

The Cody Computer's special keys. From left, the Cody
key (a stylized depiction of Cody's pawprint), the Meta
key (depicted as a hollow square), and the Arrow key
(containing a left-pointed arrow).

The  Arrow key is the simplest of the three. When
pressed by itself, it acts as a Return key and enters the
current line of input. In combination with other keys it
can  also  be  used  to  delete  content  or  break  out  of
running programs.

The Meta key is used to make existing keys assume
some  other  function.  Pressing  it  with  one  of  the
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alphabetic  keys  generates  the  punctuation  or  math
symbol  printed  on  the  top  right  of  the  key.  For
example,  if  you  pressed  Meta followed  by  Q,  you
would get an exclamation mark. Holding it down when
pressing  Arrow deletes  the  character  previously
typed.

The Cody key is another special key. It can be used
to  obtain  extra  characters  or  for  system-related
functions. When it's pressed with an alphabetic key, it
generates the digit printed on the key's top left. If you
pressed  Cody followed by  Q,  you would actually get
the  number  1.  When  pressed  with  Arrow it  signals
Cody  BASIC  to  break  out  of  the  current  program.
When pressed with Meta, it toggles the shift mode so
that  alphabetic  keys  will  be  lowercase  instead  of
uppercase (or vice-versa).

THE READ-EVAL-PRINT LOOP

Cody BASIC is an interpreted language as opposed
to a compiled one. You can directly interact with Cody
BASIC by typing in statements and getting the results
back. If you do something that doesn't make sense to
it,  Cody  BASIC  will  tell  you  as  soon  as  it  finds  out
about it. You'll interact with the Cody BASIC interpreter
in what's called a Read-Eval-Print Loop (REPL), where
the Cody Computer reads what you typed, attempts to
evaluate it, and prints out a result of what happened if
relevant.

To see this in action, start up your Cody Computer.
After a moment you should see the welcome message
and  READY prompt  at  the  top  of  the  screen.  This
indicates  the  Cody  Computer  is  ready  for  your
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commands. At the blinking cursor, type  PRINT 3 + 4.
Once it's  typed in,  press  Arrow.  Cody BASIC should
print the result,  7, on the screen, followed by another
READY prompt.

Your first statement and its output.

If you encountered a syntax error, carefully review
what you typed in. Remember that when typing a line,
you can use Meta + Arrow to delete characters. Also
remember that you can use the  Cody and  Meta keys
to  enter  special  characters  such  as  numbers  or
punctuation. In the above example, to enter 3 + 4, you
would type Cody + E to get a 3, Meta + F to get a plus
sign, and Cody + R to get a 4.

TYPING AND EDITING PROGRAMS

When you want to run more than one command at a
time, you need to type in a program. Cody BASIC has a
built-in  way  to  enter  programs using  line  numbers.
First  you  type  in  the  line  number  followed  by  the
content  for  that  line,  then  press  Arrow.  The  line  is
entered into the program. The cursor moves on to the
next line.

   **** CODY COMPUTER BASIC V1.0 ****

READY.
PRINT 3+4
7

READY.
■
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Entering a single line into the current program.

To see the current program in memory, you can use
the LIST command. Entering LIST and pressing Arrow
will show each line in the program.

Listing your simple single-line program.

Because the program is stored in memory, it doesn't
run when you type it in. It's waiting for you to tell Cody
BASIC to run it, which you can do by entering the RUN
command.

Running the single-line example program from above.

If you later want to remove a line, entering the line
number by itself (with no spaces) and pressing Arrow
will delete it.

10 PRINT "HELLO"
■

LIST
10 PRINT "HELLO"

READY.
■

RUN
HELLO

READY.
■
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Removing line 10 from the program.

If you want to delete the entire program in memory,
you can use the NEW command instead of turning the
Cody  Computer  off  and  on.  The  NEW command
performs  a  soft  reset  of  Cody  BASIC,  clearing  out
program  memory  along  with  associated  data  and
variables.

Using NEW before each new program is entered.

INPUT AND OUTPUT

An important part of writing computer programs is
making them interact with the user. In Cody BASIC the
PRINT and  INPUT statements  handle  the  most
common  user  interaction.  PRINT lets  you  print  out
information  to  the  user,  while  INPUT lets  you  get
information from the user.

Both statements can use a variety of different types
of data, but for now, we'll begin with a simple example

10
LIST

READY.
■

NEW

READY.
■
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you should type in. Remember to run NEW first if you
had already typed other programs in.

A  small  program  demonstrating  PRINT and  INPUT
statements.

Line 10 prints out a message asking for the user's
name, while line 20 prompts the user and stores the
result as text in a variable called N$. Line 30 prints out
a  message  asking  for  the  user's  age,  while  line  40
stores the result as a number in a variable called  A.
The last line, line 50, prints out the user's name and
age in a message to the user.  The semicolons are a
special hint to the PRINT statement to avoid advancing
to another line on the screen, while the commas split
up the arguments to the PRINT statement.

If you run the program you'll get something like the
following:

An example run of the above program.

10 PRINT "WHAT IS YOUR NAME";
20 INPUT N$
30 PRINT "HOW OLD ARE YOU";
40 INPUT A
50 PRINT N$," IS ",A," YEARS OLD."
■

RUN
WHAT IS YOUR NAME? CODY
HOW OLD ARE YOU? 14
CODY IS 14 YEARS OLD.

READY.
■
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If you encounter any errors, remember that you can
LIST your  program and check  the offending line  for
any typos. If you find any, retype the line correctly and
re-run  the  program.  A  more  detailed  discussion  of
error messages is found later in the chapter if you get
stuck, but for this program, you probably won't need it.
Just  make  sure  what  you  typed  in  matches  the
program, and refer to the earlier section on typing in
programs whenever you need to.

VARIABLES, NUMBERS, AND
STRINGS

Variables are used to store data in your programs. In
the previous input-output example, variables held the
name (in variable  N$) and age (in variable  A) of the
user. Most programs will use variables for a variety of
purposes,  so  it's  important  to  understand  them and
what they can hold.

Variables can be one of two types, corresponding to
the two data types supported by Cody BASIC. Number
variables  contain  numbers,  while  string  variables
contain text. The two cannot be directly substituted for
one  another  in  a  program,  but  functions  exist  to
convert  between the two types.  Other functions also
exist for special operations that pertain to each type,
such  as  square  roots  for  numbers  or  extracting
substrings for strings.

NUMBERS AND NUMBER VARIABLES

Numbers in Cody BASIC are 16 bits and represent
integers  between  -32768  and  32767,  inclusive.
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Numbers  can  be  used  in  mathematical  expressions,
such  as  addition,  subtraction,  multiplication,  and
division, as well as in various mathematical functions.
They  are  also  the  return  type  of  most  Cody  BASIC
functions. Most data in a Cody BASIC program is likely
to be numeric in nature.

Number literals  are just  the number typed in,  for
example  10 or  1234.  These  values  can  be  used  just
about anywhere that a number is required.

Number  variables  are  represented  by  a  letter
between  A and  Z.  Number  variables  are  temporary
storage for numeric data in a program, and each can
hold one number in its assigned memory.

Number  variables  in  Cody  BASIC  are  somewhat
unique in that they also act as arrays. There are a total
of 128 indexes into a number array,  with each index
itself  a  number  between  0  and  127.  The  use  of  a
number  variable  without  an  index  is  actually  just  a
shorthand for the first element in the array, meaning
that A(0) and A are actually the same variable.

An example type-in program demonstrating numbers,
number variables, and arrays. Note how  A is used as
an alias for A(0).

10 A(0)=10
20 A(1)=20
30 PRINT A+A(1)*3
RUN
70

READY.
■
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STRINGS AND STRING VARIABLES

Strings  in  Cody  BASIC  are  text  information.  Each
string  can  consist  of  up  to  255  characters  plus  a
terminating NULL character, and internally strings are
represented as C-style byte arrays.  Cody BASIC has
somewhat  limited  support  for  strings  and  string
handling, but it does support a minimum set of string
functions suitable for most beginner-to-intermediate
programs.  These  functions  include  limited  string
concatenation and substring extraction.

String  literals  consist  of  characters  contained  in
double quotes. For example,  "HELLO" and  "1234" are
both string literals, even though the latter is a string
containing numbers.

Cody BASIC also has 26 string variables A$ through
Z$,  each  of  which  contains  a  single  string.  Each
variable has its own assigned memory and there is no
overlap with the number variables A through Z. String
arrays are not supported.

An  example  type-in  program  demonstrating  strings
and string variables.

10 M$ = "HELLO "
20 N$ = "WORLD!"
30 PRINT M$,N$
RUN
HELLO WORLD!

READY.
■
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CONTROL STATEMENTS

Cody BASIC has several statements that allow you
to  change  the  course  of  a  running  program.  Most
programs  need  to  be  able  to  do  this  to  respond  to
internal  or  external  situations as  well  as  to  perform
processing within a running program. The IF statement
allows the program to take different branches based
on  conditional  expressions.  The  GOTO statement
allows  the  program to  jump to  a  different  line  in  a
program. GOSUB and RETURN allow programs to call
subroutines  on  other  lines  and  return  back  to  the
calling  location.  FOR and  NEXT allow  a  program  to
loop for a defined number of iterations, incrementing a
variable as a side effect.

IF STATEMENTS

The  IF statement  makes  a  decision  based  on  the
result  of  an  expression.  These  statements  are  the
primary way of controlling the behavior of a program
based on data or user input. When the expression is
true,  the  portion  of  the  statement  after  THEN is
evaluated. If not, then the remainder of the statement
is skipped entirely.  IF statements are often combined
with GOTO or GOSUB to pass control to other parts of
the program based on the results of decision criteria.

For numeric data, the expression consists of numeric
expressions on the left hand and right hand sides. The
expression also contains a relational operator that acts
as the decision-maker, with the less-than (<), greater-
than  (>),  less-than-or-equal  (<=),  greater-than-or-
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equal (>=), equal-to (=), and not-equal (<>) relations
supported.

Example program using if-statements and relational
operators for numbers.

IF statements  can  also  use  strings  in  their
expressions.  The  same relational  operators  are  used
and  comparisons  are  performed  lexicographically
using the CODSCII value for each character.

Example program using if-statements with strings.

10 INPUT N
20 IF N<0 THEN PRINT "NEGATIVE"
30 IF N=0 THEN PRINT "ZERO"
40 IF N>0 THEN PRINT "POSITIVE"
RUN
? 3
POSITIVE

READY.
■

10 INPUT S$
20 IF S$<"B" THEN PRINT "LESS"
30 IF S$="B" THEN PRINT "EQUAL"
40 IF S$>"B" THEN PRINT "GREATER"
RUN
? BA
GREATER

READY.
■
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GOTO STATEMENTS

The  GOTO statement  behaves  like  a  high-level
version  of  a  jump  instruction,  moving  control  to
another  line  in  the  program  without  any  direct
possibility  of  returning.  GOTO statements  are  often
frowned upon in modern programming, but they were
a  common  technique  in  the  early  days  of  BASIC
programming.

A program using GOTO to skip to another line.

GOSUB AND RETURN STATEMENTS

The  GOSUB and  RETURN statements  implement
subroutine calls in Cody BASIC. The GOSUB statement
tells  the  program  to  call  a  subroutine  starting  at  a
specific line number. The  RETURN statement tells the
program to go back to the line after the most recent
GOSUB.

Using these together allows Cody BASIC programs
to have a simple form of subroutines similar to those
in  early  BASIC  interpreters.  The  statements  don't

10 PRINT "A"
20 GOTO 40
30 PRINT "B"
40 PRINT "Z"
RUN
A
Z

READY.
■
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support  additional  features  of  more  modern
languages, such as parameter passing or return values.
Such features need to be explicitly handled by passing
data in variables.

An  example  of  a  subroutine  using  GOSUB and
RETURN.

FOR AND NEXT STATEMENTS

The  FOR and  NEXT statements  implement  a
counting  loop  in  Cody  BASIC.  Each  FOR statement
takes a number variable (which can include an array
index), a starting number or expression, and an ending
number or expression.

The following  NEXT statement repeats the body of
the  FOR loop  until  the  variable  equals  the  ending
number  from the  FOR statement.  On each loop,  the
value of the variable is incremented by one.

10 PRINT "A"
20 GOSUB 50
30 PRINT "C"
40 END
50 PRINT "B"
60 RETURN
RUN
A
B
C

READY.
■
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A simple for-loop that prints out the loop variable's
value.

LOADING AND SAVING
PROGRAMS

You don't always have to type in programs to load
them.  Cody  BASIC  supports  LOAD and  SAVE
statements for loading existing programs and saving
the  current  program.  These  commands  rely  on  the
existence  of  another  device  connected  to  the  Cody
Computer via the Prop Plug, typically a computer or
mobile device running some type of terminal program.
BASIC programs are stored as plain text files that can
be transmitted and received by any terminal software
that has the appropriate features.

To  load  and  save  BASIC  programs  the  terminal
software you use will  need to support regular serial
communications at 19200 baud, 8-N-1 (eight data bits,
no parity bit, and 1 stop bit), and ASCII linefeeds for
the end-of-line character.  When transmitting files,  it

10 FOR I=1 TO 5
20 PRINT I
30 NEXT
RUN
1
2
3
4
5

READY.
■

254



should allow for a configurable per-line delay of up to
40  or  50  milliseconds.  This  final  requirement  is
necessary  so  that  Cody  BASIC  can  tokenize  an
incoming program.

Loading a Cody BASIC program from a Chromebook
Pixel running Ubuntu. The Linux version of CoolTerm is
used as the terminal program.

You  should  be  able  to  use  any  terminal
program  that  meets  the  above  requirements.  I
used  Roger  Meier's  cross-platform  CoolTerm
during  development  because  it  supports  all  the
necessary  features  to  transmit  and  receive  files
with  Cody  BASIC.  For  Android  devices,  Kai
Morich's  Serial  USB  Terminal is  a  good  choice
once you have the configuration sorted out.
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SAVING A PROGRAM

To save a program we'll need a program to save in
the  first  place.  Type  in  the  following  and  verify  the
program contents using the LIST command.

A  boilerplate  program  to  use  for  our  saving  and
loading example.

Once you have the program entered in, go to your
terminal  program on  the  other  computer.  Using  the
software, save a text file from the Prop Plug at 19200
baud, serial setting 8-N-1, and line feeds for the end
of line. The software should be waiting for you to save
the program.

At this time, run the SAVE command on I/O port 1,
the Prop Plug:

Saving the sample program.

Once you see the  READY prompt, the program has
been sent.  In  your  terminal  software,  stop receiving,
then verify the contents of the received file. You should
see  a  two-line  text  file,  one  containing  the  print
statement,  and  another  completely  blank  line
indicating  the  end  of  the  BASIC  program.  (If  you

10 PRINT "SAVED PROGRAM"
■

SAVE 1

READY.
■
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encounter problems during this step or the next, you
may want to examine the file in more detail using a
hex editor.)

Saved program from the terminal program. Note the
required blank line marking the end of the program in
the saved file.

LOADING A PROGRAM

Now that you've saved a program, it's time to load it
and verify that all is in working order. To begin, clear
out program memory using the NEW command, then
LIST the current program to verify nothing is there. The
LOAD command replaces the current program, but for
testing  purposes,  we  want  to  be  sure  before  we
proceed.

Once  you're  sure  there's  no  program in  memory,
run the LOAD command, We're loading from I/O port
1,  the Prop Plug,  in mode 0.  Mode 0 indicates we're
loading a Cody BASIC program, while mode 1 indicates
that we're loading a binary program, something we'll
cover later.

Loading the previously-saved program.

Now  that  the  Cody  Computer  is  waiting  for  the
program,  go  back  to  your  terminal  and  send  the
program. You'll want to send it as a text file, again at
19200  baud  and  8-N-1  with  ASCII  linefeeds  as  the

10 PRINT "SAVED PROGRAM"

LOAD 1,0
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end-of-line character. Also remember to insert a per-
line  delay,  perhaps  starting  around  40  or  50
milliseconds to be conservative.

Once  the  program  has  been  received,  the  LOAD
command  will  stop  with  a  READY prompt.  List  the
program to verify its contents, then run it.

Transcript  of  loading  and  verifying  the  sample
program.

If  you  encounter  any  problems,  verify  the  serial
connection  and  serial  software  is  working  correctly.
Also  note  that  the  per-line  delay  can  be  raised  or
lowered on a per-program basis, as the time required
to parse the longest line in the program depends on
the line's complexity.

READY.
LIST
10 PRINT "SAVED PROGRAM"

READY.
RUN
SAVED PROGRAM

READY.
■
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Cody BASIC actually  sends an ASCII  question
mark  before  waiting  for  the  next  line  of  the
incoming  program.  A  dedicated  program  or
peripheral  could  also  check  for  this  as  an
optimization  along  with  the  normal  line  delay.
This would speed up the loading of Cody BASIC
programs  without  having  an  effect  on  anything
else.

UNDERSTANDING ERROR
MESSAGES

Sometimes  when  entering  or  running  a  program,
things can go wrong. Cody BASIC has a small set of
error  messages  to  try  and  help  you  diagnose  the
underlying  problem.  Cody  BASIC  is  patterned  after
Tiny BASIC and has only three error types, but given
Cody BASIC's relative simplicity,  these are sufficient.
The  error  messages  are  inspired  by  the  later
Commodore BASIC, and while they may not tell you
everything, they should tell you enough to investigate
what happened.

The three error types represent syntax errors (when
Cody BASIC couldn't parse what you typed in), logic
errors (when your program tried to do something that
made no sense), and system errors (something about
the current computer's state made it impossible to do
what was asked).

Errors can occur when entering lines into the REPL or
when  a  program  is  run.  If  an  error  occurs  while  a
program is  running the line number in the program
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will  be  included  in  the  error  message.  If  the  error
occurs  in  REPL mode,  there isn't  any associated line
number, and none will be shown.

An  example  error  message  that  includes  a  line
number.

SYNTAX ERRORS

Syntax errors occur when something you've typed
in doesn't fit with Cody BASIC's grammar. Cody BASIC,
like any programming language, is defined by a strict
grammar specifying what statements and expressions
are valid. If you type in something that's invalid, Cody
BASIC can't understand what you mean and prints out
a syntax error.

A syntax  error  in  REPL  mode  resulting  from invalid
characters in a PRINT statement.

RUN

LOGIC ERROR IN 10

READY.
■

PRINT !!!

SYNTAX ERROR

READY.
■
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LOGIC ERRORS

Logic errors result when Cody BASIC is asked to do
something  nonsensical.  This  can  be  something
obvious,  such  as  attempting  to  divide  by  zero  or
specifying an invalid value for a character or constant.
It  can  also  be  something  less  obvious,  such  as
attempting to read data that doesn't exist or trying to
change the current position in the program in a way
that doesn't make sense.

A logic error in REPL mode resulting from a division by
zero.

SYSTEM ERRORS

System errors happen when Cody BASIC isn't able
to  perform  a  requested  operation  that's  otherwise
valid. This can occur if some of Cody BASIC's internal
data areas overflow, making it impossible to run some
of  its  control  structures  or  evaluate  complex
expressions. It can also happen during I/O operations
if  errors  are  detected or  if  invalid  data  is  passed to
certain functions.

PRINT 1/0

LOGIC ERROR

READY.
■
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A  system  error  in  a  program  caused  by  infinite
recursion in a GOSUB.

10 GOSUB 10
RUN

SYSTEM ERROR IN 10

READY.
■
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Advanced Cody BASIC

6



INTRODUCTION

Now that you're familiar with some of the basics of
Cody BASIC, it's time to learn about its more advanced
features. While "advanced" is relative and Cody BASIC
is  intentionally  simplified,  it  has  a  set  of  features
consistent  with  many  8-bit  BASIC  dialects.  It  has
support  for  minimal  mathematics  and  string
operations,  literal  data,  text  file  input  and  output,
reading and writing memory, and even the ability to
call into machine code from BASIC programs.

WORKING WITH NUMBERS

Cody BASIC supports  many of  the more common
mathematical  operations,  although  with  some
limitations.  Numbers  in  Cody  BASIC  are  integers
ranging from -32768 to 32767, so many mathematical
operations are limited by necessity. A handful of math
functions  are  also  implemented.  More  complicated
functions must be implemented by the user either in
BASIC or using machine language and calling it from
your program.

ARITHMETIC OPERATIONS

For  arithmetic  operations,  the  standard  addition,
subtraction, multiplication, and division are supported.
Cody  BASIC  obeys  the  normal  order  of  operations,
with  multiplication  and  division  performed  first,
followed by addition and subtraction. Expressions that
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are very complex may cause Cody BASIC's expression
stack to overflow and produce a system error.

Cody BASIC follows the order of operations.

Because  all  numbers  in  Cody BASIC  are  integers,
the result of division will sometimes be different than
you would expect. The result of a division is the integer
portion without  any remainder  because fractional  or
decimal values aren't supported.

Numbers  in  Cody  BASIC  are  integers,  so  integer
division is used.

Parentheses  are  used  to  group  subexpressions.
Expressions in parentheses are evaluated first, starting
with the most nested set of parentheses and working
outward.  As  with  expressions,  deeply  nested
parentheses can cause problems with the interpreter,
so it's best to keep expressions simple.

PRINT 4+5*6-10
24

READY.
■

PRINT 16/5
3

READY.
■
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Using nested expressions in Cody BASIC.

Negative  numbers  are  supported  by  adding  a
leading  minus  sign  (known  as  a  unary  minus).  The
leading minus works like it does in normal arithmetic,
so it can be used in front of variables and expressions
as well as in front of numbers.

An example  of  a  leading  minus  sign  in  front  of  an
expression.

In  fact,  number  variables  can  be  used  just  about
anywhere  that  a  number  would  be  used  in  Cody
BASIC. Unlike many BASIC dialects, both numbers and
numeric expressions can be used as the destination for
GOTO and GOSUB statements.

PRINT 3*((8+2)/2)
15

READY.
■

PRINT -(1+2)
-3

READY.
■
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A  program  showing  the  use  of  variables  in  an
expression.

MATHEMATICAL FUNCTIONS

Cody  BASIC  has  a  limited  set  of  mathematical
functions.  The  ABS() function  returns  the  absolute
value of  a  number.  Another  function,  SQR(),  returns
the square root of a number with the limitation that
only  the  integer  part  is  represented.  MOD() returns
the modulus (remainder left over after a division) of
two numbers.

10 A=20
20 B=2
30 PRINT -A*B
RUN
-40

READY.
■
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Examples of the ABS, SQR, and MOD functions.

The  RND() function  exists  to  generate  random
numbers  between  0  and  255.  The  function  has  two
forms, one that accepts a number as the random seed
value, and a no-argument form that returns the next
random  number  in  the  sequence.  For  a  given  seed
value the resulting sequence will always be the same.
A seed value of  zero is  invalid and will  be replaced
with the system's default seed value.

PRINT ABS(-10)
10

READY.
PRINT SQR(10)
3

READY.
PRINT MOD(8,5)
3

READY.
■
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Using  the  RND function  to  generate  pseudorandom
numbers.

A common trick is to use the TI time variable to seed
a random number sequence at the start of a program,
discarding the initial result. The TI variable is discussed
later in the section on timekeeping.

Seeding  the  RND function  with  the  current
timekeeping value.

PRINT RND(10)
0

READY.
PRINT RND()
186

READY.
PRINT RND()
57

READY.
■

PRINT RND(TI)
52

READY.
PRINT RND()
81

READY.
■
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BITWISE FUNCTIONS

Cody BASIC also has bitwise functions that perform
binary operations on numbers. These work on the raw
bits  in  each  number,  which  means  it's  important  to
consider how the numbers themselves are stored as
zeroes  and ones.  NOT() returns  the  negation  of  the
bits  in  the  number,  AND() returns  the  bitwise  and,
OR() returns  the  bitwise  or,  and  XOR() returns  the
bitwise exclusive-or.

A program that lets you experiment with the output of
bitwise functions.

TEXT MANIPULATION AND
STRINGS

Cody  BASIC  supports  rudimentary  string
manipulation.  Each  of  the  26  string  variables  is  a

10 INPUT A
20 INPUT B
30 PRINT "NOT ",NOT(A)
40 PRINT "AND ",AND(A,B)
50 PRINT "OR ",OR(A,B)
60 PRINT "XOR ",XOR(A,B)
RUN
? 1
? 0
-2
0
1
1

READY.
■
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separate  buffer  that  can  store  up  to  255  characters
plus a terminating null character (similar to a string in
the  C  programming  language).  A  separate  buffer
allows string concatenation in string expressions, and a
handful of functions exist to work with string data.

STRING CONCATENATION

Strings  can  be  concatenated  together  in  string
expressions.  Unlike  mathematical  expressions,  string
expressions  are  very  simple  and  can  contain  only
strings, string variables, and string functions, and the
only  supported  operator  is  the  addition  sign
(representing string concatenation in this case).

Because  Cody  BASIC  has  minimal  string  support,
string expressions can appear in a limited number of
places.  The  most  common  case  is  in  assignment  to
string  variables  where  the  right  hand  side  of  the
assignment is a string expression. String expressions
can  also  appear  as  arguments  in  PRINT statements,
where string functions are often used to print out only
portions of a string.

An example of a string expression in an assignment.

10 A$="HELLO"
20 B$="WORLD"
30 C$=A$+", "+B$+"!"
40 PRINT C$
RUN
HELLO, WORLD!

READY.
■
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STRING COMPARISONS

As mentioned in the previous chapter, IF statements
in Cody BASIC have a special case that supports string
comparisons. This form is more limited and requires a
string variable as the left hand side of the comparison
and a string expression as the right hand side of the
comparison. Usually the right hand side is just a string
or another string variable, but the right hand side may
be a full string expression if needed.

A contrived example of using string concatenation in
an IF statement.

FUNCTIONS IN STRING EXPRESSIONS

Cody BASIC has three string functions which may
appear  in  a  string  expression.  The  SUB$() function
returns a substring from a string variable. The CHR$()
function,  on  the  other  hand,  lets  you  build  a  string
from  one  or  more  numbers  representing  CODSCII
characters.  The last function,  STR$(),  returns a string
representation  of  a  number.  Functions  that  return

10 INPUT A$
20 INPUT B$
30 IF B$=A$+"!" THEN PRINT "MATCH"
RUN
? HELLO
? HELLO!
MATCH

READY.
■
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strings are marked by a dollar-sign ($) as their last
character, similar to Commodore BASIC.

The  SUB$() function  takes  three  parameters,  a
string  variable,  a  starting  position  within  the  string,
and  the  number  of  characters  to  extract.  The  first
argument must always be a string variable because of
Cody BASIC's internal implementation. String literals
are not  supported,  and string expressions cannot  be
nested like mathematical expressions.

Printing out a substring using the STR$ function.

To  generate  a  string  from  a  series  of  character
values, you use the CHR$() function. Much like a secret
code, strings in Cody BASIC are made up of CODSCII
characters  between  0  and  255.  (CODSCII  is  just  an
extended  ASCII  with  the  Commodore  graphical
characters moved into the extended ASCII range.) You
simply  pass  one  or  more  numbers  (or  numeric
expressions) to the function and it will return a string
with the equivalent  characters.  This  is  typically used
for printing control codes or graphical characters, but
can be used with any valid character code.

10 A$="POMERANIAN"
20 PRINT SUB$(A$,0,3)
RUN
POM

READY.
■
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Converting  numbers  to  characters  using  the  CHR$
function.

The last string function,  STR$(), converts a number
to its  string equivalent.  For example,  the number  10
would be converted to a string equivalent to the literal
"10". Many of these conversions happen automatically
in  PRINT statements,  but  using  the  STR$() function
directly lets you use the result in string expressions
and assignments.

A silly example of converting a number to a string for
later use.

ADDITIONAL STRING FUNCTIONS

Cody BASIC also has some functions that work with
strings but return numbers. To parse a string variable
containing a number, the  VAL() function can be used.

PRINT CHR$(67,111,100,121)
Cody
READY.

■

10 INPUT N
20 S$=STR$(N)
30 PRINT S$
RUN
? 123
123

READY.
■
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For finding the length of a string, the LEN() function is
available.  And for  returning the  CODSCII  value of  a
character in a string, the ASC() function exists.

The  VAL() function  is  relatively  simple  to  use.  It
takes a string variable and returns the number it was
able to parse from the beginning of the string. Leading
minus signs are supported.  In situations where there
were no valid digits to parse, the function returns zero.
In many respects this function can be considered the
inverse of the STR$() function.

Converting a string containing a number into an actual
number.

The  LEN() function  returns  the  length  of  a  string
variable, not including the terminating null character. If
a  stored  string  is  somehow  corrupted  or  poorly-
formed,  LEN() raises  a  system  error  when  the
terminating null is not found.

10 INPUT S$
20 N=VAL(S$)
30 PRINT N*2
RUN
? 10
20

READY.
■
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Finding the length of a string.

The  ASC() function returns the character  code for
the first character in a string variable. If the string is
empty, the null character is returned instead. In many
respects  this  is  the  inverse  operation  of  the  CHR$()
function, except that the ASC() function only works on
the first character of the string.

Obtaining the character code for the first character in a
string.

To  find  character  codes  for  other  than  the  first
character,  you  need  to  use  the  STR$() function  to
extract  a  substring  into  a  temporary  variable.  The
temporary variable can then be used as the input for
ASC().  This has significantly more overhead because

10 INPUT S$
20 PRINT LEN(S$)
RUN
? KODACHROME
10

READY.
■

10 INPUT S$
20 PRINT ASC(S$)
RUN
? CARRABELLE
67

READY.
■
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of the temporary string,  but in situations where it  is
needed, this is the typical solution.

Obtaining  a  different  character  code  using  a
temporary string.

PRINT FORMATTING

Cody  BASIC's  PRINT statement  provides  ways  of
formatting  your  output.  The  formatting  can  be  very
simple,  such as  moving the  cursor  on  the  screen or
aligning data in columns. More complicated formatting
can  include  clearing  the  screen,  changing  the
foreground and background colors on a per-character
basis,  or  using  graphical  characters  alongside  the
typical letters, digits, and punctuation marks.

PRINT statements support output formatting in two
ways.  One  is  using  the  special  formatting  functions
AT() and  TAB().  The other is  to print  special  control
character codes using the  CHR$() function which are
later handled by the Cody BASIC interpreter.

10 INPUT S$
20 INPUT N
30 T$=SUB$(S$,N,1)
40 PRINT ASC(T$)
RUN
? FOLKSTON
? 2
76

READY.
■
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POSITIONING THE CURSOR

The current  cursor  position can be updated within
PRINT statements  using  the  AT() function.  The  AT
function takes two numbers as arguments, one for the
new cursor column and the other for the new cursor
row. When called the current output buffer (anything
before  this  that  hasn't  been  printed  yet)  will  be
printed to the screen and the cursor moved to the new
position.

Moving the cursor using the  AT() function. When the
program is actually run the output will start at the top
left corner of the screen.

Note  that  the  AT() function  only  works  when  the
output is going to the screen. If you are writing to a file
over  a  serial  device  (discussed  below),  cursor
positioning makes no sense.

10 FOR I=0 TO 9
20 PRINT AT(I,I),"HELLO, WORLD!"
30 NEXT
RUN
HELLO, WORLD!
 HELLO, WORLD!
  HELLO, WORLD!
   HELLO, WORLD!
    HELLO, WORLD!
     HELLO, WORLD!
      HELLO, WORLD!
       HELLO, WORLD!
        HELLO, WORLD!
         HELLO, WORLD!

READY.
■
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ALIGNING OUTPUT WITH TABS

In  many  programs,  particularly  those  concerned
with displaying calculations, summaries, or reports, it
helps to be able to align output into columns.  Cody
BASIC  doesn't  handle  every  possible  case,  but  the
TAB() output function does allow you to align output
to specific columns on the screen.

The function takes only one argument, the column
number  from  0  to  39.  When  it  runs,  it  generates
spaces  in  the  output  buffer  until  the  next  output
position matches the desired position. This means that
on  a  line-by-line  basis  you  can  ensure  the  same
information will be printed on the same columns, so
long  as  the  data  isn't  so  big  that  it  overflows  the
available space.
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Aligning output  to  specific columns using the  TAB()
function.

This function is also useful when writing to output
files.  As  you'll  learn  in  the  upcoming  section  on
reading and writing to files, it's usually easier to store
one piece of information on each line when writing to a
file. However, if you decide to store multiple pieces of
information on the same line,  aligning each piece to
known columns will make it easier to split apart when
you read it back in later.

CLEARING THE SCREEN

The  simplest  control  code  clears  the  screen.
Character code 222 will clear the screen and move the
cursor back to the very top. This can be useful to start
from a known position in your Cody BASIC programs.
It's also a good way to focus the user on what you want

10 FOR I=1 TO 10
20 PRINT I,TAB(5),I*I,TAB(20),"MESSAGE"
30 NEXT
RUN
1    1              MESSAGE
2    4              MESSAGE
3    9              MESSAGE
4    16             MESSAGE
5    25             MESSAGE
6    36             MESSAGE
7    49             MESSAGE
8    64             MESSAGE
9    81             MESSAGE
10   100            MESSAGE

READY.
■
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them  to  see  by  clearing  out  any  leftover  input  or
output from earlier.

Clearing the screen using the clear control code. When
run  in  Cody  BASIC  the  last  READY statement  will
appear at the top of a new, blank screen.

SETTING THE FOREGROUND COLOR

The  foreground  color  can  be  changed  using
character codes between 240 and 255. Each code maps
to one of the Cody Computer's 16 colors, each of which
can  be  found  in  the  reference  in  the  back  of  the
manual. To choose a specific foreground color, just take
the color's number and add it to 240.

Printing out each foreground color using control codes.

10 PRINT CHR$(222)
RUN

READY.
■

10 FOR I=0 TO 15
20 PRINT CHR$(240+I),240+I
30 NEXT
40 PRINT CHR$(241)

RUN
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The  Cody  Computer's  foreground  colors  displayed
using control codes.

SETTING THE BACKGROUND COLOR

The  background  color  can  be  changed  using
character codes between 224 and 239. This works in a
very similar way to setting the foreground color except
that the background is changed instead. Just add the
color  code  to  224  to  calculate  the  appropriate
character code for the new background color.
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Printing  out  each  background  color  using  control
codes.

The  Cody  Computer's  background  colors  displayed
using control codes.

REVERSING FOREGROUND AND
BACKGROUND

It'a also possible to reverse the current foreground
and background colors.  Character  code 223 reverses
the  foreground  and  background  colors.  The  current
foreground  color  will  be  replaced  with  the  current

10 FOR I=0 TO 15
20 PRINT CHR$(224+I),224+I
30 NEXT
40 PRINT CHR$(230)

RUN
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background color, while the current background color
is replaced with the current foreground color.

This  is  the  Cody  Computer's  equivalent  of  the
"reverse field" mode on Commodore computers.  The
Cody  Computer  has  unique  foreground  and
background attributes for each screen location and its
character set doesn't contain inverted versions of each
character.  Instead  it  just  swaps  the  attributes
themselves.

Swapping foreground and background colors using the
reverse control code.

PRINTING GRAPHICAL CHARACTERS

As  mentioned  elsewhere,  the  Cody  Computer's
CODSCII character set is just a customized, extended
ASCII.  The  normal  control  codes,  letters,  digits,  and
punctuations are all  the same as any other ASCII  or
ASCII-derived character set. As you've just learned, at
the high end of the CODSCII range are control codes
that  can  control  various  output  attributes  on  the
screen.  However,  there's  one  part  of  the  CODSCII
character set we haven't discussed yet.

Commodore computers used their own character set
called  PETSCII,  named  after  the  Commodore  PET

10 INPUT S$
20 PRINT CHR$(223),S$,CHR$(223)
RUN
? HELLO, WORLD!
HELLO, WORLD!

READY.
■
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computer it first appeared in. Because the Commodore
PET  had  no  graphics  functionality  of  its  own,  the
designers included graphical characters that could be
used to make pictures and even games. This character
set continued on for the rest of the Commodore 8-bit
computer line.

The Cody Computer includes the graphical PETSCII
subset in its own character set starting at character 128.
You can use these characters  in  your  own programs
and  games  just  like  people  did  in  the  Commodore
days, and all you need to do is include the appropriate
character code for each one.

Program that  prints  a  table of  the Cody Computer's
PETSCII subset. In the actual output the ellipsis will be
replaced by a table.

10 FOR I=0 TO 66
20 IF MOD(I,6)=0 THEN PRINT
30 PRINT 128+I," ",CHR$(128+I)," ";
40 NEXT
50 PRINT
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The program output showing the PETSCII subset in the
Cody Computer's CODSCII character set.

FILE INPUT AND OUTPUT

Cody BASIC has the ability to read and write text
files from within BASIC programs. Within a program,
the  OPEN and  CLOSE statements  can  be  used  to
redirect the program's input and output to one of the
Cody Computer's two serial ports. From that point on,
PRINT statements write to the serial port, while INPUT
statements read from it.  A  CLOSE statement returns
back to the screen and keyboard.

Note that this approach, while simple,  also has its
own challenges. Much like loading programs, the user
must be careful that data lines aren't sent to the Cody
Computer faster than the BASIC program can process
them. Large per-line delays may be necessary. It also
makes no provision for reading or writing binary data
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as only text  is  supported.  For  binary data,  dropping
into machine language is recommended, and it may be
advisable to write your entire program in assembly or
another compiled language if speed is that critical.

A similar strategy of reading and writing data
files by input and output redirection was used in
the OSI Challenger's version of Microsoft BASIC.
In that system, LOAD and SAVE commands within
a  program  directed  output  to  the  cassette,
allowing INPUT and PRINT statements to read and
write from the cassette port.

Note  that  when  running  programs  that  read  and
write files to the serial ports, the other device must be
configured appropriately.  The steps required are the
same as those discussed in the previous chapter. The
baud rate  specified in  Cody BASIC must  match that
configured for the external device, the external device
must be configured for 8-N-1 (8 data bits,  no parity
bit, 1 stop bit), and a single ASCII linefeed should be
set as the newline character. When reading from the
device, line delays will be required on a per-program
basis depending on the processing required.

WRITING TO A FILE

Writing to a file from within a Cody BASIC program
requires you to open the correct I/O device, write your
data  to  it,  and  then  close  the  I/O  device.  For  most
purposes your I/O device will  be device 1,  the serial
port wired to the Prop Plug connector at the back of
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the computer. A second serial port is wired to pins on
the  expansion slot  and can be  used to  interact  with
your own projects and custom peripherals.

Opening the I/O device is performed by the OPEN
statement, which takes two arguments. The first is the
I/O  device  number  (1  or  2)  and  the  second  is  a
constant representing one of 15 different baud rates.
This constant is the same as the value passed directly
to the UART in the Propeller and can be any number
between 1 (50 baud) and 15 (19200 baud). Once the
port  is  opened,  PRINT statements  will  print  to  the
serial port until a CLOSE statement is encountered.

A program that writes the names of the space shuttles
and number of flights to a text file.

10 OPEN 1,15
20 PRINT "ENTERPRISE"
30 PRINT 5
40 PRINT "COLUMBIA"
50 PRINT 28
60 PRINT "CHALLENGER"
70 PRINT 10
80 PRINT "DISCOVERY"
90 PRINT 39
100 PRINT "ATLANTIS"
110 PRINT 33
120 PRINT "ENDEAVOUR"
130 PRINT 25
140 PRINT "EOF"
150 CLOSE
160 PRINT "DONE"
RUN
DONE

READY.
■
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Because the INPUT statement in Cody BASIC works
on a per-line basis,  it's  important that  the data you
write also be readable on a per-line basis. One option,
such as in this example, is to put each unique piece of
data on its own line. The other option is to split up a
line  of  data  when  read  using  the  STR$() function,
though this brings other complications with it.

The data file generated by the above sample program.
Note how each piece of data is on its own line.

READING FROM A FILE

Reading from a file is very similar to writing to one.
The device must  be opened using  OPEN and closed
using  CLOSE.  All the same caveats about baud rates
and serial  modes also apply.  The main difference is
that instead of writing data using PRINT you read data
line by line using INPUT. Another difference is that, as
your  program  is  reading  data,  you  may  need  to
configure a line delay on the device sending you data
so that your program can keep up.

As mentioned above, the  INPUT statement in Cody
BASIC works  a  little  differently  than  in  Commodore
BASIC or similar.  Each input variable reads an entire
line, so each piece of data should also be on its own

ENTERPRISE
5
COLUMBIA
28
CHALLENGER
10
DISCOVERY
39
ATLANTIS
33
ENDEAVOUR
25
EOF
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line in the data file. The only way around this would be
to read the line, then split out each part of it into its
own substring, something we won't tackle here.

Remember that while a device is  open,  both input
and output are redirected to it. That means that while
you're reading from the external device, whatever you
print will be sent to it, not to the screen. You will need a
temporary  storage  area  to  keep  whatever  counts  or
tallies are needed until reading is done. In some cases
this can be easy, while in other cases, designing your
temporary  storage  can  be  difficult  given  the
constraints of Cody BASIC.
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A program that reads the space shuttle data file from
the previous example. As a simple example, a string is
used to collect the output until processing is complete.
Note the check for a special end token to determine
the  end  of  the  file.  (A  blank  line  is  another  good
option.)

10 OPEN 1,15
20 INPUT S$
30 IF S$="EOF" THEN GOTO 70
40 INPUT N
50 O$=O$+S$+" ("+STR$(N)+")"+CHR$(10)
60 GOTO 20
70 CLOSE
80 PRINT O$
RUN
ENTERPRISE (5)
COLUMBIA (28)
CHALLENGER (10)
DISCOVERY (39)
ATLANTIS (33)
ENDEAVOUR (25)

READY.
■
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Even  when  input  and  output  have  been
redirected to a  serial  port,  the  INPUT statement
still sends an ASCII question mark before waiting
for the next line. Just like we discussed in the last
chapter  about  loading  programs,  a  terminal
program or other application that recognizes this
could send the next line as soon as it's asked for
rather than waiting for a delay on each line. This
would help speed up the loading of data files over
serial connections.

INCLUDING DATA IN PROGRAMS

Another way to use data in a Cody BASIC program
is  hardcode  it  using  DATA statements.  Like
Commodore BASIC and many other Microsoft BASIC
dialects,  Cody  BASIC  lets  you  add  data  in  DATA
statements and read it  later using  READ statements.
Unlike  other  BASICs,  however,  Cody  BASIC  requires
that  all  data  be  numeric  in  nature.  Strings  are  not
supported.

The data is  read using  READ statements.  A  READ
statement  takes  one  or  more  number  variables  as
arguments  and  fetches  the  next  entries  from  DATA
statements,  starting at  the top of the program. If  no
more data exists, a logic error is raised to indicate an
out of data condition.

DATA statements  can  be  placed  anywhere  in  the
program. If  one is encountered by the program, it  is
ignored. Only READ statements use DATA statements.
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To reread data starting from the beginning of  the
program, the RESTORE statement can be used.

Calculating  totals  and  averages  from  numbers  in
DATA statements.  A  negative  number  is  used  as  a
sentinel value to stop processing.

DATA and  READ statements can be very helpful in
programs that contain a lot of raw data or data tables.
Games  are  a  classic  example  as  they  contain
sequences  of  bytes  representing  the  game's  sprites,
tiles,  backgrounds,  and more.  If  a  program needs to
use portions of machine code to speed up operations
or perform special operations, storing the assembled
code  in  DATA statements  is  also  common.  Lastly,
programs  with  mathematical  computations  can  use
DATA statements  to  store  lookup  tables  for  part  of
their  calculations.  Consider,  for  example,  a  program
that  estimates  model  rocket  flights  using  tables  of
rocket engine data.

10 READ I
20 IF I<0 THEN GOTO 60
30 T=T+I
40 C=C+1
50 GOTO 10
60 PRINT "TOTAL ",T
70 PRINT "COUNT ",C
80 PRINT "AVERAGE ",T/C
90 DATA 3,10,12,7,6
100 DATA 3,15,8,2,-1
RUN
TOTAL 66
COUNT 9
AVERAGE 7

READY.
■
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TIMEKEEPING

Cody  BASIC  has  a  limited  form  of  timekeeping
using  the  TI variable.  More  of  a  pseudovariable,  TI
stores  the  number  of  jiffies  since  the  computer
powered  on.  The  value  starts  at  zero,  counts  up
through the positive numbers, wraps around through
the  negative  numbers,  and  repeats.  A  single  jiffy  is
1/60th of a second, so the full range of  TI is a little
over 18 minutes. For longer time periods you can check
in on the TI variable and update a seconds or minutes
counter accordingly.

Using  TI is  preferable  to  hardcoded  delays  from
loops in your Cody BASIC programs. However, direct
comparisons between two values are not meaningful
because TI will loop around through both positive and
negative values. Instead, you must subtract the current
value of TI from your previous value, then compare the
difference. Because of the nature of signed arithmetic
and modular arithmetic, this will calculate the correct
difference in jiffies.
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Sample  program  that  waits  for  a  given  number  of
seconds before stopping.  Note the conversion of  the
delay from seconds to jiffies (multiplying by 60), as
well as the inline calculation subtracting the current TI
from the initial value.

READING AND WRITING MEMORY

While  Cody  BASIC  is  more  high-level  than
assembly language, it's still very low-level compared
to  most  modern  languages.  In  the  8-bit  era,
interpreted BASICs commonly manipulated hardware
directly,  generally  through  reading  and  writing  to
memory.  Communication  with  support  chips  and
peripherals often occurred by direct reads and writes
to  registers,  and  passing  data  to  machine  language
routines required similar access to reserved memory
locations.

Cody BASIC, like most BASICs, provides the  POKE
statement to write to memory and the PEEK statement
to read from it. It's important to be careful when using
these parts of Cody BASIC as you can easily freeze up
the  Cody  Computer  or  worse.  However,  once  you
understand  how  they  work  and  learn  the  Cody
Computer's  memory  map,  most  of  the  computer's

10 INPUT D
20 D=D*60
30 I=TI
40 IF TI-I<D THEN GOTO 40
RUN

READY.
■
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features will be open to you from BASIC alone. While
many  programs  at  this  level  are  better  written  in
assembly language, BASIC provides a solid foundation
to begin from.

It's  worth  noting  that  the  65C02's  address  space
ranges from 0 to 65535 because its address bus is 16
bits wide.  Cody BASIC numbers are also 16 bits,  but
they  are  signed  numbers,  not  unsigned,  and  they
range from -32768 to 32767. Fortunately, Cody BASIC
automatically parses unsigned number literals as the
equivalent signed value, so you won't have a problem
working with  memory addresses  in  Cody BASIC.  For
example,  you  can  type  50176  (the  default  start  of
screen memory) directly into your program and have
it  work.  However,  if  you print  the number out,  Cody
BASIC will print -15360, the signed number equivalent
for the same bit pattern as 50176.

WRITING TO MEMORY

The POKE statement writes to memory. It takes two
arguments, a memory address and a value to write to
that address. The address can be anything within the
65C02's address space, ranging from 0 to 65535 (or
the  signed-number  equivalent  as  discussed  above).
The  value  written  to  that  address  should  be  a  byte
from 0 to 255.
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Program  that  directly  writes  to  screen  and  color
memory to draw graphical  characters in a variety of
colors.  Exactly  why  this  works  is  discussed  in  the
chapter on graphics programming.

A POKE statement won't work correctly in memory
areas that are read-only on the Cody Computer. The
top 8 kilobytes of the Cody Computer's memory are
essentially a ROM with Cody BASIC and the default
character set, and these can't be modified by writing to
them. Some registers are also read-only.

READING MEMORY

The  PEEK() function  reads  a  memory  address.  It
takes one argument, a memory address just like those
used in the POKE statement. It returns the byte at that
address in memory as a number between 0 and 255.

10 S=50176
20 C=55296
30 FOR I=0 TO 999
40 POKE S+I,128+MOD(RND(),32)
50 POKE C+I,RND()
60 NEXT
RUN

READY.
■
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Program that  reads  a  memory location representing
the  first  keyboard  row.  The  memory  location  is
automatically updated by a keyboard scanning routine
in Cody BASIC.  Your  program can read the memory
location and determine what keys are held down at the
moment.

PEEK() functions  aren't  dangerous  like  POKE
statements because they don't change the contents of
memory.  However,  it's  still  important  to  understand
the  memory  map  and  use  the  correct  addresses.
Otherwise  your  programs  might  not  work  correctly,
and at  such a  low level,  it  can be difficult  to  debug
them.

USING MACHINE CODE

High-performance  programs  for  the  Cody
Computer  should  probably  be  written  in  assembly
language and loaded as binary programs. However, it's
possible to include some of the benefits of assembly
language in  your  Cody BASIC programs.  To  do this,
you write small portions of assembly language (either

10 PRINT "PRESS Q TO QUIT..."
20 IF AND(PEEK(16),1)=1 THEN GOTO 10
30 PRINT "Q PRESSED"
RUN
PRESS Q TO QUIT...
PRESS Q TO QUIT...
PRESS Q TO QUIT...
Q PRESSED.

READY.
■
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using  an  assembler  or  by  hand),  then  load  the
machine code into memory as part of your program.

When you want to call the machine code, you use
Cody  BASIC's  SYS command,  which  temporarily
passes control  to  a  machine-language subroutine of
your choosing. It even handles swapping the 65C02's
accmulator,  X,  and Y  registers  in  and out  of  special
memory locations so you can use them in your code.

This  topic  is  difficult  enough  that  it's  worth  a
detailed  walkthrough.  For  a  very  simple  example,
imagine we want a machine code routine that takes the
values in the accumulator, X register,  and Y register,
then  increments  each  by  one  before  returning  to
BASIC. First we need to write the assembly language
routine  that  would  do  this  for  us.  (Our  example  is
simple enough to assemble by hand, but an assembler
is recommended for more advanced ones.)

A  snippet  of  65C02  assembly  that  increments  the
accumulator, X, and Y registers.

Once we have the assembly language code, we need
to load it into a memory location that's otherwise not
in  use.  Somewhere  very  high  in  BASIC  program
memory or another free spot in the memory map are
ideal.  We  include  the  numbers  for  our  assembled
machine code in one or more DATA statements, using
READ to  get  each  byte  and  POKE to  load  it  into
memory starting at that address.

To  actually  call  the  code,  we  would  use  the  SYS
statement. It takes only one argument, the address to

  INC A       ; $1A (decimal 26)
  INX         ; $E8 (decimal 232)
  INY         ; $C8 (decimal 200)
  RTS         ; $60 (decimal 96)
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call.  It  calls  that  address  using  the  65C02's  JSR
instruction  and  returns  back  to  your  program  once
your machine code executes an RTS instruction.

You  can  pass  parameters  back  and  forth  to  your
machine code from Cody BASIC using POKE and PEEK
to  addresses  used  by  the  machine  code  routine.
However, SYS also has another way to do much of this
for you. It copies the values at the first three memory
locations,  $00 through $02,  into the accumulator,  X
register,  and Y register  before  calling your  machine
code. When done, it copies the current values of those
registers back to those same memory locations. Your
BASIC program only needs to POKE values into those
addresses before the call, then  PEEK them to get the
results after it's done.
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Using  the  above  machine  code  in  a  Cody  BASIC
program.  The  instructions  are  poked  into  memory,
user-entered data is moved into designated memory
locations,  and  the  routine  called  using  the  SYS
statement. When done the updated data is read back
and displayed.

Using  machine  code  from  within  a  Cody  BASIC
program  isn't  an  easy  thing  to  do,  but  in  certain
situations, it can be quite beneficial. Effectively doing
so requires  a  good understanding not  only  of  Cody

10 P=25856
20 READ B
30 IF B<0 THEN GOTO 70
40 POKE P+I,B
50 I=I+1
60 GOTO 20
70 INPUT A
80 INPUT X
90 INPUT Y
100 POKE 0,A
110 POKE 1,X
120 POKE 2,Y
130 SYS P
140 PRINT "A=",PEEK(0)
150 PRINT "X=",PEEK(1)
160 PRINT "Y=",PEEK(2)
170 DATA 26,232,200,96,-1
RUN
? 1
? 4
? 9
A=2
X=5
Y=10

READY.
■
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BASIC but of the Cody Computer's memory map and
of 65C02 assembly language itself.

If you find yourself using this approach, it might
be worth asking yourself if you're better off just
writing  the  entire  program  in  assembly  or  a
compiled  language.  On  the  other  hand,  some
BASIC programs in the 8-bit era took advantage
of similar features. The most critical parts of the
code were written in assembly language, but most
of the program was written in BASIC.

PROGRAMMING HINTS

Along with all  the details involved in Cody BASIC
programming,  it's  important to be aware of some of
the  other  important  aspects  when  writing  your
programs. Many of these are less technical, but no less
important.  You  want  your  programs  to  be
understandable both for yourself and for others. You
also want your programs to be easily changeable as
your  requirements  change,  or  if  someone  else  uses
one of your programs and needs to modify it.  These
skills are generally the same as in any programming
language,  but  Cody  BASIC's  quirks  add  some
additional things to consider.

DOCUMENTING YOUR PROGRAMS

In your program you should make use of  REM,  or
remark,  statements.  These  are  the  8-bit  BASIC
equivalent  of  code  comments  and  were  used  to
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document  programs.  Programs  often  started  with
remarks  about  the name of  the program,  its  author,
and a description of what it did. In the program itself,
remarks  often  marked  different  sections  or  routines
within the program. They were also added to provide
some  additional  information  on  particularly
complicated parts.

Unlike  comments  in  modern  compiled  languages,
REM statements take up space in the interpreter, have
to be loaded and saved, and also have to be skipped
over at runtime. Therefore, while they're a no-op, they
don't  come  without  a  cost.  That  said,  it's  good  to
document your programs.

Many programs were shared in books or magazine
articles that provided the main documentation for both
users and programmers (in that era, more often than
not one and the same).  In today's world it  might be
helpful to include a text file, a Markdown document, or
even a simple HTML file with your programs. 

USING LINE NUMBERS

Along  with  documenting  your  programs,  it's
important  to  structure  them so  that  they're  easy  to
read  and  modify.  While  that's  harder  in  an
environment  like  Cody  BASIC,  it's  not  impossible.
Because Cody BASIC, like most retro basics, has a line-
oriented editing system,  much of  your structure will
relate to the line numbering you use.

One  tactic  for  maintainable  programs  is  to  be
generous with your use of line numbers. For example,
numbering  lines  by  multiples  of  10  gives  you
additional room to go back and make changes without
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having to  renumber an entire  program.  It  also gives
someone  else  the  ability  to  experiment  and  make
changes more easily.

It  can  also  be  helpful  to  have  gaps  between  line
numbering in unrelated parts of the program. Doing
this along with  REM statements at the beginning can
help show where your subroutines begin and end, as
well as what they do.

You also have the option to cheat and use a modern
PC.  Cody  BASIC  programs  are  stored  as  plain  text,
unlike Commodore BASIC programs that were kept in
a tokenized format.  They're also written in extended
ASCII  with  the  important  non-graphical  characters
understood by any modern computer. This means you
can load saved Cody BASIC files in any text editor that
won't mangle the file's encoding or line endings, make
changes,  and  send  them  along.  You  can  also  write
programs from scratch in a text editor and then send
them over to the Cody Computer just like any saved
program.  You  just  need  to  be  careful  about  line
endings. You also must ensure that your programs end
with a blank line indicating the end of the file.

AN EXAMPLE PROGRAM

Below is  an  example  program using  some of  the
above advice. It's a very contrived example that only
adds  two numbers  together,  and in  real  life,  such a
simple  program  wouldn't  need  nearly  so  much
boilerplate.  The  example  is  intentionally  simple  to
demonstrate how the techniques above might be used
in a larger program, without having to wade through
the code of a larger and more complex program itself.
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An  admittedly  overengineered  program
demonstrating some of the techniques in this section.
Note the REM statements, line numbering, and spacing
of subroutines.

10 REM ADDITION BY FJ MILENS III
20 GOSUB 1000
30 GOSUB 2000
40 GOSUB 3000
50 END
1000 REM GET 1ST NUMBER
1010 PRINT "1ST NUMBER";
1020 INPUT A
1030 RETURN
2000 REM GET 2ND NUMBER
2010 PRINT "2ND NUMBER";
2020 INPUT B
2030 RETURN
3000 REM CALC AND PRINT ANSWER
3010 C=A+B
3020 PRINT "THE SUM IS ",C,"."
3030 RETURN
RUN
1ST NUMBER? 6
2ND NUMBER? 5
THE SUM IS 11.

READY.
■
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Graphics Programming

7



INTRODUCTION

The Cody Computer is equipped with its own system
for  generating  video  graphics,  the  VID  or  Video
Interface Device. Implemented as a software peripheral
inside the Parallax Propeller chip, it presents itself as
hardware  on  the  65C02's  system  bus.  Writing  to
dedicated registers and memory regions allows you to
construct 8-bit mulitcolor graphics.

The VID produces a character-based screen with a
resolution of 160 pixels by 200 pixels. Each character
is four pixels by eight pixels in size, using a fat-pixel
ratio  similar  to  that  used  by  the  Commodore  64's
multicolor  graphics  mode.  Up  to  256  different
characters can exist within a single character set, and
multiple character sets can be used on different parts
of  the  screen.  A  bitmapped  mode  is  available  that
essentially configures all of screen memory to become
addressible in character-like tiles. Screen contents can
also  be  fine-scrolled  in  hardware  by  setting
appropriate values.

Sprites are also supported by the VID, allowing you
to have multicolor graphics that hover over the normal
screen.  These are 12 pixels across and 21 pixels tall,
and each also has a fat-pixel ratio. The memory layout
is  very  similar  to  the  Commodore  64's  multicolor
sprites except that the colors are less constrained. The
Cody  Computer's  VID  doesn't  support  other  sprite
features like scaling or collision detection. It's there to
move sprites around and draw them.

The  VID  supports  16  colors  inspired  by  the
Commodore  64's  color  palette.  These  colors  can  be
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used on the screen and on sprites,  though are there
are some limitations in how many colors can be used
together.  Characters  on  the  screen  have  two  unique
colors  and two colors  shared with  the  entire  screen,
while  sprites  have  two  unique  colors  and  one  color
shared with other sprites.

Lastly, the VID allows you to change graphics on the
fly using what are called row effects.  Similar to old-
school  raster  interrupts,  where  video  options  were
switched out at specific character rows on the screen,
you  can  program  the  VID  to  change  sprite  banks,
character banks, scroll amounts, and even the colors on
each  character  row  as  it  draws  a  frame.  Further
intervention by the programmer is not required.

CHANGING THE BORDER COLOR

A  good  introduction  to  graphics  programming  is
learning how to change the Cody Computer's border
color.  The  border  can  be  set  to  any  of  the  sixteen
colors supported by the Cody Computer. To change it,
all you have to do is update the low four bits of the
color register located at position $D002 in memory.

The high four bits of the color register contain the
position of color memory, something we don't want to
change right now. Instead, what we have to do is read
the current value of the color register,  mask out the
low four bits with an AND, and then OR them together
with our desired color code.

This can be done from assembly language, but the
Cody BASIC  PEEK and  POKE will let us directly read
and write  memory.  We just  need to  use  the  correct
address, 53250, the decimal equivalent of $D002.
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Simple  program  that  changes  the  border  color.  The
user types in a number which is put into the low four
bits  of  the  color  register.  Entering  7  will  return  the
screen to its normal yellow border.

WORKING WITH SCREEN MEMORY

Now that you know how to change the border color
using PEEKs and POKEs, we'll start using those same
operations to change the screen contents themselves.
The Cody Computer's screen is set up as a range of
1000  bytes,  each  of  which  represents  a  single
character on a 40 column by 25 row screen. You can
change the screen contents by changing the contents
of memory in this region, and in fact that's what Cody
BASIC does internally to display text.

UPDATING SCREEN MEMORY

As  a  simple  example,  we  can  fill  the  screen  with
data. By default the screen starts at memory address

10 PRINT "BORDER COLOR (0-15)";
20 INPUT C
30 IF C<0 THEN END
40 POKE 53250,OR(AND(PEEK(53250),240),C)
50 GOTO 10
RUN
0
1
2
-1

READY.
■
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$C400 or  decimal  50176.  If  we  populate  the  1000
bytes  starting  at  that  location  with  numbers
corresponding to CODSCII  characters,  we'll  see them
show  up  on  the  screen.  Each  number  references  a
single character in the character set, so the number we
POKE will be the character that we see.

Directly populating screen memory. Each POKE writes
one  of  the  lowercase  characters  in  the  CODSCII
character  set  to  a  position in  screen memory.  When
run,  the  program  will  overwrite  the  screen  with
lowercase letters.

RELOCATING SCREEN MEMORY

The default screen starts at $C400, but it's possible
to move the screen elsewhere, a capability often used
in  games  and  other  graphics-intensive  applications.
Theoretically, screen memory can exist anywhere in a
16-kilobyte  area  of  memory  starting  at  memory
address  $A000, with the restriction that the memory
must be on a 1-kilobyte boundary.

However, in practice we have to avoid certain parts
of memory. The VID itself uses a page at $D000 for its
own register banks. The SID and UARTs take up a page
at  $D400.  Memory must also be set  aside for color
memory  and  character  memory,  two  video-related
topics  we'll  get  to  in  this  chapter.  When using such
techniques in your own programs, begin with the Cody

10 FOR I=0 TO 999
20 POKE 50176+I,97+MOD(I,26)
30 NEXT
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Computer's  memory map and sketch out  where you
want things to be placed.

Setting up another region to use as screen memory
is just like the previous example. You just need to write
the appropriate bytes to reference the characters that
should be drawn. However, once you've done that, you
still need to tell the Cody Computer where it lives. The
base register  at  $D003 sets  the starting location of
both  character  memory  and  screen  memory,  with
screen memory stored in the high four bits.

To determine what value to plug into the high four
bits,  you need to do a simple math calculation.  Four
bits can contain one of 16 values, which is convenient
because a 16-kilobyte area of memory can contain 16
regions aligned at 1-kilobyte boundaries (just what we
have).  Just  subtract  the  start  of  your  desired screen
memory location from $A000, then divide by 1024 to
get  the  result.  If  your  screen  memory  started  at
$A000 you would use a value of 0 because you're in
the  initial  1-kilobyte  region.  For  the  default  screen
memory location at $C400, you would use a value of
9.
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Temporarily  relocating  screen  memory.  Another
region in memory is specified and its base calculated.
That same region is populated with lowercase letters.
The base register is then updated with the new screen
memory base, the program waits for five seconds, and
then sets the screen memory base back to the default.

WORKING WITH COLOR MEMORY

Screen memory specifies what characters to draw on
the screen, but color memory specifies what colors to
draw them in. Characters on the Cody Computer can
have up to four colors, two of which can be unique for
each  column-row  position  on  the  screen.  These  two
colors  are  loaded  from  the  corresponding  color
memory for the screen.

Much  like  screen  memory,  color  memory  is  a
contiguous array of 1000 bytes, and there is a one-to-
one  correspondence  between  screen  memory  and
color  memory  locations.  Cody  BASIC  updates  color
memory  locations  for  you  in  PRINT statements,  but
you can also do so by yourself using POKEs.

10 A=41984
20 B=(A-40960)/1024
30 FOR I=0 TO 999
40 POKE A+I,97+MOD(I,26)
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),15),B*16)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),15),9*16)
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UPDATING COLOR MEMORY

Color memory begins by default at address $D800
or decimal 55296. Much like for screen memory, we
need to POKE data into this region to see the contents
of the screen change. In this case, instead of poking in
numbers  for  characters,  we  poke  in  numbers  that
represent  the foreground and background colors  for
each  character.  The  foreground color  code goes  into
the top four bits of the number and the background
color code goes into the bottom four bits.

Program that updates the default color memory with
new foreground and background colors.

RELOCATING COLOR MEMORY

Just  like  screen  memory,  color  memory  can  be
moved to a different location. As with screen memory,
the  region of  memory starting  at  $A000 is  divided

10 A=55296
20 PRINT "FOREGROUND COLOR (0-15)";
30 INPUT F
40 PRINT "BACKGROUND COLOR (0-15)";
50 INPUT B
60 C=F*16+B
70 FOR I=0 TO 999
80 POKE A+I,C
90 NEXT
RUN
FOREGROUND COLOR? 13
BACKGROUND COLOR? 0

READY.
■

314



into  1-kilobyte  blocks,  and  the  same  caveats  and
restrictions  on  their  use  apply  here  as  well.  To
calculate  the  base  for  a  particular  color  memory
location, you can use the same formula that you used
for screen memory in the prior section.

Once  you've  decided  on  a  new  location  for  color
memory,  you  need  to  update  the  color  register  at
$D002. You updated the low four bits of this register
to  change  the  border  color  at  the  beginning  of  this
chapter,  but  now you'll  update the high four bits  to
specify the base location for color memory.
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Program that temporarily relocates color memory to a
different location. A second color memory region is set
up  with  the  colors  selected  by  the  user.  The  color
register  is  then temporarily  updated to  point  to  the
new  region  before  returning  back  to  the  default
location.

CHARACTERS AND CHARACTER
MEMORY

Screen  memory  specifies  what  characters  to  draw
and color memory specifies what colors to draw them
in, but character memory specifies what the characters
themselves  look  like.  A  character  set  on  the  Cody
Computer  consists  of  up  to  255  unique  characters,
each of which is four pixels across and eight pixels tall.

10 PRINT "FOREGROUND COLOR (0-15)";
20 INPUT F
30 PRINT "BACKGROUND COLOR (0-15)";
40 INPUT B
50 C=F*16+B
60 A=41984
70 B=(A-40960)/1024
80 FOR I=0 TO 999
90 POKE A+I,C
100 NEXT
110 POKE 53250,OR(AND(PEEK(53250),15),B*16)
120 T=TI
130 IF TI-T<300 THEN GOTO 130
140 POKE 53250,OR(AND(PEEK(53250),15),14*16)
RUN
FOREGROUND COLOR? 15
BACKGROUND COLOR? 12

READY.
■
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CHARACTERS IN ROM

The  Cody  Computer  contains  the  full  default
CODSCII character set in a 2-kilobyte area of memory
starting  at  $E000 or  decimal  57344.  When  the
computer  starts  up,  the  BASIC  ROM  copies  this
character set into memory at  $C800, where it can be
seen by the Video Interface Device and used to draw
the  screen.  You  can  always  access  these  characters
yourself  to  see  what  data  they  contain  in  numeric
format.

A Cody BASIC program that reads a character's bytes
from the character ROM.

This means that  in your own programs,  you don't
have to worry about clobbering the existing characters
in video memory, or preserving them somewhere else.

10 INPUT S$
20 C=ASC(S$)
30 A=57344+C*8
40 FOR I=0 TO 7
50 PRINT PEEK(A+I)
60 NEXT
RUN
? A
0
4
17
17
21
17
17
17

READY.
■
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You can just modify or overwrite them, and then copy
the  original  characters  from the  ROM back  to  video
memory to clean up.

A program that copies the lowercase characters over
the  uppercase  characters,  temporarily  making
everything  on  the  screen  lowercase.  When  done  it
copies  the  original  uppercase  characters  from  ROM
back into video memory. Note that this isn't changing
the  screen  memory  contents  at  all.  Instead,  it's
changing the characters themselves.

CUSTOM CHARACTERS

As  mentioned,  characters  on  the  Cody  Computer
actually have four colors.  Two of the colors, 0 and 1,
are  unique to  each character  position on the screen.
Those  colors  are  read  from  the  color  memory  you
learned about earlier.  The other two colors,  2 and 3,
are shared as common colors by every location on the
screen.

The  shared  colors  are  kept  in  the  screen  colors
register at location $D005 or decimal 53253 and have
a similar format to color memory. Color 2 is stored in

10 S=51200+97*8
20 D=51200+65*8
30 FOR I=0 TO 207
40 POKE D+I,PEEK(S+I)
50 NEXT
60 T=TI
70 IF TI-T<300 THEN GOTO 70
80 S=57344+65*8
90 D=51200+65*8
100 FOR I=0 TO 207
110 POKE D+I,PEEK(S+I)
120 NEXT
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the low four bits and color 3 is stored in the high four
bits of the register.

You  don't  notice  these  colors  when  the  Cody
Computer starts up because the default character set
only uses colors 0 and 1, the two colors that are unique
to a  given screen position.  This  works  nicely for  the
character  set  as  we  can  specify  the  foreground  and
background colors independently for each position on
the  screen.  However,  in  more  graphical  applications
such as games, it helps to have more colors.

To  use  them,  you  have  to  define  your  own
characters. Each character consists of eight bytes, with
each pixel in a character represented by two bits. Bit
combinations  00 and  01 reference  the  two  screen
colors at that location, while bit combinations 10 and 11
reference  the  common colors  in  the  screen  register.
Each  character  is  four  pixels  wide  and  eight  pixels
high, and the data in character memory is stored from
the top  of  the  character  to  the  bottom.  Within  each
byte, the pixel data goes from the leftmost pixel in the
two  highest  bits  to  the  rightmost  pixel  in  the  two
lowest bits.

To design your own character you work out the bit
combinations for your own 4-by-8 pixel pattern, then
POKE that  data  somewhere  in  the  current  character
set.  Remember that characters don't actually have to
be characters as such. They can be any kind of image,
including tiles for games or portions of a background
picture.  You can even use different character sets on
different  screen  rows  if  you  need  more  unique
characters  (for  example,  using  one  character  set  for
the  user  interface  and  another  for  the  game  world
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itself).  This  can  even  be  a  substitute  for  bitmap
graphics if used wisely.

Example  program  that  defines  a  new  character  that
consists  of  four  colored blocks,  then fills  the  screen
with it. Two of the new character's colors are unique to
the character  itself  and stored in  the color  memory.
The other two are shared by all the characters on the
screen and are stored in the screen colors register.

RELOCATING CHARACTER MEMORY

Like  screen  memory  and  color  memory,  character
memory  can  be  relocated.  Like  screen  memory,  the
base location of character memory is specified in the
base register at $D003 or decimal 53251. The base for
character memory is stored in the low four bits of the
register, and the base can be calculated similar to that
for  screen  and  color  memory:  Subtract  the  base
address from  $A000 or decimal 40960, then divide
by 2048 in this case. Character sets take 2 kilobytes
and must be aligned on a 2048-byte boundary, unlike
screen and color  memory that  take 1000 bytes  and
must be aligned on a 1024-byte boundary.

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 POKE 53253,1
100 DATA 80,80,80,80,250,250,250,250
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A  program  that  fills  another  2-kilobyte  region  of
memory  with  test  patterns,  then  temporarily  points
the  base  of  character  memory  to  it.  In  a  real
application  the  character  data  would  be  a  new
character  set,  game  tiles,  or  similar.  Note  the  2-
kilobyte alignment of the character set's start address
and division by 2048 for calculating the base.

Relocating  character  memory  becomes  very
important when used in combination with row effects,
which we'll cover later in this chapter. Row effects let
you specify a different base for the character set on
each  character  row,  allowing  you  to  switch  out
character sets within a single video frame.

This  technique  can  be  used  for  video  games,  for
example  using  different  character  sets  for  the  main
game  area  as  opposed  to  the  surrounding  graphics
and status displays. It's also how the Cody Computer
can display fully-bitmapped graphics  by breaking a
bitmap into a series of tiles.

WAITING FOR BLANKING

In this section you've been making a lot of changes
to the Cody Computer's video registers. One thing we

10 A=40960
20 B=(A-40960)/2048
30 FOR I=0 TO 2047
40 POKE A+I,MOD(I,2)*85
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),240),B)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),240),5)
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haven't  discussed  yet  is  what  happens  if  you  make
changes when the video hardware is in the middle of
drawing  a  frame.  The  answer  is  that  while  it  won't
break anything, there's the chance for screen tearing,
jerky motion, and other weird visual glitches popping
up in the middle of a frame.

One way to avoid those problems is to update the
video  registers  and  the  active  video  memory  only
when the video device  isn't  generating a  frame.  The
blanking  register  at  $D000,  or  decimal  53248,
indicates  the current  state.  A zero indicates  that  the
visible  area  of  the  screen  is  being  drawn,  while  a  1
indicates  that  the  blanking  area  or  top  and  bottom
borders are being drawn instead.

A common technique is to poll the blanking register
until  it  transitions  from a  0  to  1,  then  perform any
required  updates  for  the  next  frame.  This  usually
works  better  in  assembly  language  because  of  its
increased  speed,  but  we  can  still  use  the  same
approach in Cody BASIC as an example.
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A  program  that  prints  a  message  whenever  a  new
frame begins, then waits for it to end before repeating.
The program will run forever until you break using the
Cody +  Arrow key  combination.  Note  that  the
program likely won't  print  on every frame in reality
because  of  the  time  required  for  Cody  BASIC  to
execute each line.

SCROLLING THE SCREEN

The  Cody  Computer's  Video  Interface  Device  also
has  features  to  support  vertical  and  horizontal
scrolling  with  hardware  assistance.  Two  types  of
scrolling  exist  with  different  levels  of  support.  One
type of  scrolling,  fine scrolling,  allows you to adjust
the vertical and horizontal position up to a full column
or row. Once you've adjusted it up to that level, you
need to use coarse scrolling, where scrolling occurs at
a column or row basis. Fine scrolling is supported by
the  scroll  register,  while  coarse  scrolling  is  usually

10 IF PEEK(53248)=0 THEN GOTO 10
20 PRINT "NEW FRAME"
30 IF PEEK(53248)=1 THEN GOTO 30
40 GOTO 10
RUN
NEW FRAME
NEW FRAME
NEW FRAME
NEW FRAME
BREAK IN 10

READY.
■
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implemented  as  a  side  effect  of  relocating  screen
memory.

FINE SCROLLING WITH REGISTERS

Two different registers are involved in fine scrolling.
Fine scrolling is enabled using the control register at
$D001 or  decimal  53249.  When  set  to  a  1,  bit  1
enables vertical scrolling and bit 2 enables horizontal
scrolling.  Vertical  and  horizontal  scrolling  can  be
enabled individually or at the same time.

Enabling  scrolling  affects  the  screen  dimensions.
Vertical  scrolling  decreases  the  displayed  vertical
screen  size  by  one  row.  Horizontal  scrolling  on
decreases the displayed horizontal screen size by two
columns. The actual screen and color memory layout
are unaffected but the space on the screen is replaced
by expanded borders.

Once  scrolling  has  been  enabled  for  a  particular
direction, the amount to scroll must be specified in the
scroll  register  at  $D004 or  decimal  53252.  The
horizontal scroll  amount is stored in the higher four
bits  while the vertical  scroll  amount is  stored in the
lower four bits.  Horizontal scrolling supports a value
between 0 and 3  while  vertical  scrolling  supports  a
value between 0 and 7. The difference occurs because
pixels  are  wider  than  they  are  tall  on  the  Cody
Computer, much like how a character has 4 horizontal
pixels but 8 vertical pixels.
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A program that lets you experiment with vertical and
horizontal scrolling at the same time. The code accepts
vertical  and  horizontal  scroll  values  from  the  user,
then turns on scrolling and pokes the values into the
scroll  register.  At  the  end  the  normal  settings  are
restored.

COMBINED SCROLLING

Fine scrolling works well for simple effects,  but to
make a scrolling game it's  not  enough by itself.  For
that  you  need  to  combine  it  with  coarse  scrolling,
where you move the entire screen by a row or column.
Unfortunately,  much like  its  Commodore inspiration,
the Cody Computer has no direct support for coarse
scrolling. Instead, what you do is draw a second screen,
then flip to it when you need to scroll, using the same

10 PRINT "H SCROLL (0-3)";
20 INPUT H
30 IF H<0 THEN GOTO 100
40 PRINT "V SCROLL (0-7)";
50 INPUT V
60 IF V<0 THEN GOTO 100
70 POKE 53249,OR(PEEK(53249),6)
80 POKE 53252,H*16+V
90 GOTO 10
100 POKE 53249,AND(PEEK(53249),249)
110 POKE 53252,0
RUN
H SCROLL? 2
V SCROLL? 4
H SCROLL? -1

READY.
■
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techniques  you  learned  earlier  in  this  chapter  for
relocating the screen and color memory.

That's  a  lot  of  memory to  draw,  and moving that
much data around on a  per-frame basis  is  typically
reserved  for  assembly  language  applications.  Even
then, it's typically an optimized process where part of
the  screen  and  color  memory  is  drawn  behind  the
scenes during each fine-scrolled frame so that it's all
ready  to  go.  In  some  respects  the  Cody  Computer
makes this easier because the color memory can also
be  relocated,  unlike  its  fixed  position  on  the
Commodore 64.

However, just because we can't do it fast enough in
Cody  BASIC  doesn't  mean  we  can't  at  least  give  a
simple  example  of  how  it  works.  The  following
program demonstrates most of the techniques needed,
but it keeps the screen design simple so that we only
have to generate two example screens at the start. It
also doesn't change the colors so we don't need to do
anything about the color memory.

10 A(0)=40960
20 A(1)=41984
30 B(0)=(A(0)-40960)/1024
40 B(1)=(A(1)-40960)/1024
50 FOR I=0 TO 999
60 C(0)=20
70 C(1)=20
80 IF MOD(I,2)=1 THEN C(0)=194
90 IF MOD(I,2)=0 THEN C(1)=194
100 POKE A(0)+I,C(0)
110 POKE A(1)+I,C(1)
120 NEXT
130 S=0
140 POKE 53252,0
150 POKE 53249,OR(PEEK(53249),4)
160 M=S/4
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A simple combined scrolling example in Cody BASIC.
Two  screens  are  generated  with  repeating  patterns
offset by one column. Horizontal scrolling is enabled
and  the  screen  is  fine-scrolled  one  pixel  on  each
frame.  Every  fourth  frame  the  screen  memory  is
toggled between the two screen regions we set up to
handle the coarse scrolling. When the user presses the
Q  key,  the  program  terminates  and  restores  the
normal video configuration.

MOVING GRAPHICS WITH SPRITES

The  Cody  Computer  supports  sprites,  movable
graphical objects on the screen often used in games.
Sprites are independent of the screen background and
hover over it. Each sprite is 12 pixels wide and 21 pixels
tall  with  a  total  of  three  colors  plus  a  transparent
option. Two colors are unique to each sprite while one
is shared by all the sprites on the screen. Sprites can
be  positoned  anywhere  on  the  screen  as  well  as
partially  off  the  screen  on  both  the  vertical  or
horizontal axes.

Sprite data uses a total of 63 bytes of memory, with
the amount being rounded up to 64 as a power-of-

170 IF M=0 THEN B(2)=B(0)
180 IF M=1 THEN B(2)=B(1)
190 IF PEEK(53248)=0 THEN GOTO 190
200 POKE 53252,MOD(S,4)*16
210 POKE 53251,OR(AND(PEEK(53251),15),B(2)*16)
220 S=MOD(S+1,8)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230
250 GOTO 160
260 POKE 53251,OR(AND(PEEK(53251),15),9*16)
270 POKE 53249,AND(PEEK(53249),251)
280 POKE 53252,0
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two.  Each  byte  contains  four  pixels  in  a  multicolor
format  like  those  used  by  the  character  memory.
Sprite memory is organized from left to right, with the
top-left  portion  of  the  sprite  beginning  at  the  first
location in memory.  Within each byte,  the left-most
pixel data is stored in the higher bits and moves to the
lower bits.

Each color is represented by two bits, with a value of
0  indicating  a  transparent  pixel.  Values  of  1  and  2
represent the two unique sprite colors, while a value of
3 represents the common color shared by all sprites
on the screen. Sprite memory is organized from left to
right, with the top-left portion of the sprite beginning
at the first location in memory.

Programming  sprites  is  somewhat  difficult  in  the
beginning.  In addition to the sprite data that defines
the image of a sprite, registers must be programmed
to set up the sprite, specify its location, unique colors,
and base address of its image data. In order to support
a large number of sprites on the screen, an entire page
of memory is set aside as sprite register banks,  and
this must also be taken into account.

DISPLAYING A SPRITE

To display a single sprite we have to do a few things
first.  We need to copy the sprite's image data into a
64-byte-aligned  location  in  the  16-kilobyte  area
beginning at  $A000.  As  with  similar  operations,  we
also need to ensure that it won't collide with registers
or data already there.

Once we have a location picked out, we need to use
it  to  calculate  the  sprite's  base  pointer,  which  is
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calculated in  a  similar  way to  the screen,  color,  and
character  memory  base  pointers.  You  subtract  your
sprite's starting address from the start of the region at
$A000, then divide the result by 64 to determine the
base  pointer.  Conveniently  there  are  256  possible
locations aligned at 64-byte boundaries, so this value
fits into a single byte.

Once the data is  loaded for  a sprite,  you need to
program the sprite registers to tell the computer how
to display it. Sprite registers begin at location $D080
or  53376  decimal,  and  each  sprite  takes  up  four
consecutive bytes starting at the beginning. The first
byte specifies the sprite's x-position, the second byte
specifies  the  sprite's  y-position,  the  third  byte
specifies the sprite's two unique colors, and the fourth
and  final  byte  specifies  the  base  pointer  for  the
sprite's  image  data.  (Multiple  sprites  can  reuse  the
same image data, such as in old games where the bad
guys reused the same picture in different colors.)

The sprite's position on the screen, notably, does not
start at (0,0) at the top-left corner. Sprites can slide in
from  the  sides  of  the  screen  and  be  only  partially
displayed.  To support  this,  a  margin is  added to the
normal  screen  dimensions.  Because  sprites  are  12
pixels wide, a 12 pixel margin is added to either side of
the screen. Likewise, because sprites are 21 pixels tall,
a 21 pixel margin is added to the top and bottom. This
margin isn't displayed on the screen, but it allows the
sprite  to  be  partially  positioned  off  the  screen.  This
also  means that  the  first  screen location that  would
fully display the sprite is at (12,21).

A sprite's unique color data is stored in a format like
the color memory. Two colors are stored in one byte,
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with sprite color 1 stored in the lower half of the byte
and  sprite  color  2  stored  in  the  upper  half.  The
common color, color 3, shared by all sprites is stored
in  the  sprite  register  at  $D006 or  decimal  53254,
where it's kept in the low half of the byte. The color
codes are the same as those used in color memory.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 IF PEEK(53248)=0 THEN GOTO 140
150 POKE 53376+0,P(0)
160 POKE 53376+1,P(1)
170 P(0)=P(0)+D(0)
180 P(1)=P(1)+D(1)
190 IF P(0)=12 THEN D(0)=-D(0)
200 IF P(0)=160 THEN D(0)=-D(0)
210 IF P(1)=21 THEN D(1)=-D(1)
220 IF P(1)=200 THEN D(1)=-D(1)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230
250 GOTO 140
260 POKE 53376+0,0
270 POKE 53376+1,0
280 DATA 0,20,0,1,85,64,5,85
290 DATA 80,5,85,80,21,125,84,21
300 DATA 215,84,21,213,84,21,213,84
310 DATA 21,215,84,5,125,80,5,85
320 DATA 80,5,85,80,13,85,112,12
330 DATA 93,48,12,93,48,3,28,192
340 DATA 3,12,192,3,12,192,0,142
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A sprite demo that bounces a balloon sprite around on
the  screen.  The  sprite's  data  is  kept  in  DATA
statements  and  POKEd  into  memory.  The  sprite's
position and velocity are kept in arrays and updated
on each frame. The code waits for the blanking interval
and  updates  the  sprite  position  using  the  numbers
from the arrays. Pressing the Q key exits the program
and restores the default settings.

A single sprite in the form of a balloon.

DISPLAYING MULTIPLE SPRITES

Up to eight sprites can be displayed on the same
part of the screen at any one time. You only need to
set up the other sprite registers just as you did the first
one  in  the  previous  example.  As  mentioned  before,
each sprite is more or less independent of the screen,

350 DATA 0,0,170,0,0,170,0,131
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and in  fact  sprites  are  more  or  less  independent  of
each other.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 FOR I=0 TO 7
90 POKE 53376+I*4+2,1*16+(I+7)
100 POKE 53376+I*4+3,B
110 X(I)=13+MOD(RND(),147)
120 Y(I)=22+MOD(RND(),177)
130 U(I)=1
140 V(I)=1
150 IF MOD(RND(),2)=0 THEN U(I)=-U(I)
160 IF MOD(RND(),2)=0 THEN V(I)=-V(I)
170 NEXT
180 IF PEEK(53248)=0 THEN GOTO 180
190 FOR I=0 TO 7
200 POKE 53376+I*4+0,X(I)
210 POKE 53376+I*4+1,Y(I)
220 X(I)=X(I)+U(I)
230 Y(I)=Y(I)+V(I)
240 IF X(I)=12 THEN U(I)=-U(I)
250 IF X(I)=160 THEN U(I)=-U(I)
260 IF Y(I)=21 THEN V(I)=-V(I)
270 IF Y(I)=200 THEN V(I)=-V(I)
280 NEXT
290 IF AND(PEEK(16),1)=0 THEN GOTO 320
300 IF PEEK(53248)=1 THEN GOTO 300
310 GOTO 180
320 FOR I=0 TO 7
330 POKE 53376+I*4+0,0
340 POKE 53376+I*4+1,0
350 NEXT
360 DATA 0,20,0,1,85,64,5,85
370 DATA 80,5,85,80,21,125,84,21
380 DATA 215,84,21,213,84,21,213,84
390 DATA 21,215,84,5,125,80,5,85
400 DATA 80,5,85,80,13,85,112,12
410 DATA 93,48,12,93,48,3,28,192
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A program that bounces multiple balloons around the
screen. The program is similar to the previous example
except that all eight sprites in the first sprite bank are
in use. Program flow is largely the same, though loops
are added to iterate over each sprite, its coordinates,
and its velocity. Pressing Q will exit the program.

All eight sprites in use with the same balloon image
but different color values.

Here we only used 8 sprites that can move around
the entire screen. So far we've only been using the first
sprite bank that begins at $D080 and continues for 32
bytes (4 bytes for each of 8 sprites). Up to 32 sprites
can be displayed using sprite banks and row effects,
something  covered  when  we  discuss  row  effects  in
more detail. 

In those situations, multiple sprite banks with their
own information are swapped in and out by the Video

420 DATA 3,12,192,3,12,192,0,142
430 DATA 0,0,170,0,0,170,0,131

333



Interface Device as it draws the frame. The top half of
the sprite register at  $D006 is used to select one of
the sprite banks, and this value can be overridden at
the start of each subsequent character row by a row
effects  setting.  However,  there  can  still  only  be  a
maximum of 8 sprites on any row.

DISABLING VIDEO OUTPUT

The VID also allows you to turn off the video display
entirely, for example if you don't want the user to see
the  screen  slowly  being  drawn in  Cody  BASIC.  One
workaround would be to relocate the screen and color
memory to another location,  but a quicker way is to
just shut off the video temporarily.

This can be done using the control register at $D001
or decimal 53249. When bit 0 is set to 1, the display
output  is  turned  off  and  replaced  with  the  current
screen border color. When the bit is cleared back to a
0, screen output returns as expected.

A simple example that turns off the video output for 5
seconds.

Because  the  VID  is  implemented  inside  the
Propeller  and  uses  its  internal  memory,  disabling
video output doesn't speed up the 65C02. Many older
computers  turned  off  video  generation  to  speed  up
computations as the video hardware no longer shared

10 POKE 53249,1
20 T=TI
30 IF TI-T<300 THEN GOTO 30
40 POKE 53249,0
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the bus,  but  in the Cody Computer,  our system just
doesn't work like that.

ROW EFFECTS

One last feature of the Video Interface Device is its
ability to switch out graphics while the screen is being
drawn.  Many 8-bit  computers of the past had raster
interrupts that notified the processor when a particular
line  was  drawn  on  the  screen,  and  if  the  computer
could respond fast enough, it could actually swap out
some of the data. The Cody Computer has a built-in
way of doing this.

The  Cody  Computer  supports  a  system  of  row
effects, where the VID can be programmed to replace
the contents of certain registers on specified character
rows.  The base register,  scroll  register,  screen colors
register,  and sprite  register  can all  be overridden at
any  character  row  boundary  using  this  mechanism.
Once applied, the change remains for the rest of the
current frame or until  another value is specified.  On
the  next  frame  the  process  begins  anew  with  the
original register values.

Using the row effects unlocks the full capacity of the
Cody  Computer's  graphics  system.  You  can  have
multiple banks of  sprites on the screen at  the same
time,  so  long  as  they  are  partitioned  into  different
rows on the screen. You can change the shared screen
and sprite colors to have a more colorful output and
avoid  color  attribute  clashes.  You  can  have  split
scrolling so that a game screen can be scrolled while
status bars remain fixed in place. You can dynamically
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swap  out  character  sets  and  create  a  very  detailed,
dynamic screen without resorting to bitmap mode.

ROW EFFECTS REGISTER BANKS

The mechanism works by having two dedicated row
effects register banks of 32 bytes each. The first bank,
starting  at  $D040 or  decimal  53312,  contains  the
control values for each row effect. These values tell the
VID  where  to  perform  the  replacement  and  what
register  to  replace.  The  second  bank,  starting  at
$D060 or  decimal  53344,  specify  the  replacement
values that should be used.

The  control  bytes  consist  of  several  pieces  of
information packed into a single byte. Bits 0 through 5
contain the row number to begin the replacement on.
Bits  6  and  7  contain  a  two-bit  value  specifying  the
target  register  to  override.  The  last  bit,  bit  8,  is  an
enable bit that must be set to 1 for that specific row
effect to be applied. The two-bit destination code is as
follows:

Destination 00 replaces the base register.
Destination 01 replaces the scroll register.
Destination 10 replaces the screen colors
register.
Destination 11 replaces the sprite register.

Row effects  must  also  be  enabled globally  in  the
control register at  $D001 or decimal 53249. Bit 3 of
the  control  register  must  be  set  to  1  to  enable  the
effects  regardless  of  the  enable  bit  on  each  control
byte in the row effect bank.

• 
• 
• 

• 
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SCREEN COLORS AND ROW EFFECTS

One of the typical uses for row effects is increasing
the number of colors on the screen. As you may recall,
each location on the screen has two unique colors and
two shared colors. With row effects, the shared colors
can  be  swapped  for  other  colors  starting  at  any
character row boundary.

Programs can use this  ability to divide the screen
into  different  shared  color  regions  for  different
reasons. Games might use this to have different shared
colors in different areas, for example, different shared
colors  for  sky,  ground,  and  ocean.  Paint  programs
could use this to permit more colors on the screen for
artwork.  And  for  more  detailed  graphics,  the  same
principle applies, allowing more colors to be used in
detailed images or backgrounds than would normally
be possible.

To  do  this,  we  need  to  select  the  screen  colors
register as our destination using code 10, then ensure
that  the  replacement  value  is  loaded  into  the
corresponding row effect data register. The format of
the data in the row effect data register is the same as it
would  be  if  directly  stored  to  the  screen  colors
register.
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A modified version of the sample program for defining
custom  characters.  As  in  that  example  a  character
pattern using four different colors is programmed in
and  filled  to  the  entire  screen.  Unlike  the  earlier
example, the two common colors on the characters will
be different for each row. This is because we told the
Cody Computer to change the shared screen colors on
each row using row effects.

SPRITE COLORS AND ROW EFFECTS

While not as broadly useful, the shared sprite color
can  also  be  changed  on  a  per-row  basis  using  the
sprite register row effect. The sprite register contains
both the sprite bank base (in the high four bits) and
the sprite shared color (in the low four bits).

By using  11 as our destination code to replace the
sprite register, we can target the sprite register for a
row  effect.  To  change  only  the  sprite  color,  our
replacement value in the corresponding data register

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 FOR I=0 TO 24
100 POKE 53312+I,OR(192,I)
110 POKE 53344+I,MOD(I,16)*16+MOD(I+8,16)
120 NEXT
130 POKE 53249,OR(PEEK(53249),8)
140 DATA 80,80,80,80,250,250,250,250
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would have the sprite bank register held constant but
use a different color code in the low four bits.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 FOR I=0 TO 24
150 POKE 53312+I,OR(224,I)
160 POKE 53344+I,MOD(I,16)
170 NEXT
180 POKE 53249,OR(PEEK(53249),8)
190 IF PEEK(53248)=0 THEN GOTO 190
200 POKE 53376+0,P(0)
210 POKE 53376+1,P(1)
220 P(0)=P(0)+D(0)
230 P(1)=P(1)+D(1)
240 IF P(0)=12 THEN D(0)=-D(0)
250 IF P(0)=160 THEN D(0)=-D(0)
260 IF P(1)=21 THEN D(1)=-D(1)
270 IF P(1)=200 THEN D(1)=-D(1)
280 IF AND(PEEK(16),1)=0 THEN GOTO 310
290 IF PEEK(53248)=1 THEN GOTO 290
300 GOTO 190
310 POKE 53376+0,0
320 POKE 53376+1,0
330 DATA 0,20,0,1,85,64,5,85
340 DATA 80,5,85,80,21,125,84,21
350 DATA 215,84,21,213,84,21,213,84
360 DATA 21,215,84,5,125,80,5,85
370 DATA 80,5,85,80,13,85,112,12
380 DATA 93,48,12,93,48,3,28,192
390 DATA 3,12,192,3,12,192,0,142
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A modified version of the balloon sprite example.  In
this program we have also added row effects to change
the common sprite color on each row. As the balloon
travels  the  screen  the  shared  color  will  pulsate  and
change  depending  on  the  rows  the  balloon  sprite
hovers over. Press Q to quit.

SPRITE BANKS AND ROW EFFECTS

As you may have guessed during the above section
on sprite color row effects, the sprite banks can also be
changed  when  the  sprite  register  is  used  in  a  row
effect.  Different  sprite  banks  can  contain  different
sprites  and  the  row  effects  can  change  the  bank  at
different  rows  on  the  screen.  This  approach  is  quite
powerful as it allows more than eight sprites to be on
the screen at the same time. The only limitation is that
only one sprite bank can be used on any single row.

This technique is very useful in games so long as
your game logic is designed to support it. An arcade
game could have up to 8 airplanes in a sky region, up
to 8 tanks on a ground region, and up to 8 ships in a
water  region,  all  on  the  same  screen.  A  similar
approach  could  be  used  for  flying  versus  ground
enemies in a sidescroller. A player sprite that needs to
transit  multiple  regions  can  be  programmed  into
multiple  banks  with  the  same  information,  so  that
regardless  of  its  current  location  it's  drawn
appropriately on the screen.

400 DATA 0,0,170,0,0,170,0,131

10 A=41984
20 B=(A-40960)/64
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A sprite  example  with  multiple  sprite  banks  in  use.
Based on the  multiple  sprite  example  earlier  in  the
chapter, this program sets up a total of 32 sprites in
four  sprite  banks.  The  sprites  are  split  into  four
horizontal  regions  and  the  first  four  row  effects

30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 FOR I=0 TO 31
80 POKE 53376+I*4+0,13+18*MOD(I,8)
90 POKE 53376+I*4+1,25+(I/8)*48
100 POKE 53376+I*4+2,9*16+MOD(I,16)
110 POKE 53376+I*4+3,B
120 NEXT
130 FOR I=0 TO 31
140 POKE 53312+I,0
150 NEXT
160 FOR I=0 TO 3
170 POKE 53312+I,OR(224,I*6)
180 POKE 53344+I,I*16
190 NEXT
200 POKE 53249,OR(PEEK(53249),8)
210 IF PEEK(53248)=0 THEN GOTO 210
220 FOR I=0 TO 31
230 T=PEEK(53376+I*4)+1
240 IF T>174 THEN T=0
250 POKE 53376+I*4,T
260 NEXT
270 IF AND(PEEK(16),1)=0 THEN GOTO 300
280 IF PEEK(53248)=1 THEN GOTO 280
290 GOTO 210
300 FOR I=0 TO 31
310 POKE 53376+I*4+0,0
320 POKE 53376+I*4+1,0
330 NEXT
340 DATA 0,20,0,1,85,64,5,85
350 DATA 80,5,85,80,21,125,84,21
360 DATA 215,84,21,213,84,21,213,84
370 DATA 21,215,84,5,125,80,5,85
380 DATA 80,5,85,80,13,85,112,12
390 DATA 93,48,12,93,48,3,28,192
400 DATA 3,12,192,3,12,192,0,142
410 DATA 0,0,170,0,0,170,0,131
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registers  set  up  to  switch  out  sprite  banks  at  those
screen-split locations. Pressing Q will quit.

A  total  of  32  sprites  on  the  screen  thanks  to  row
effects. Note how each group of eight sprites exists in
its own horizontal region on the screen.

SCROLLING WITH ROW EFFECTS

Row effects can also be used to set different fine-
scroll  amounts  on  different  parts  of  the  screen.  The
contents of the scroll register can be overridden using
destination code  01 and the  new value of  the  scroll
register in the corresponding row effect data register.
Horizontal or vertical scrolling must be enabled in the
control register separately.

This approach can be useful for games that require
a  split-screen  effect.  Many  games  include  a  static
status area with health/life, timer, inventory, or other
information while the main game area scrolls  along.
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Splitting the screen into multiple scroll areas can help
with this, and the split can even be combined with the
double-buffering  approach  mentioned  in  the  earlier
section on fine and coarse scrolling.

An example of split-screen scrolling. The row effects
registers  are  cleared  and  then  set  up  to  have  two
different horizontal scrolling values, zero for the first
three rows and a changing amount for the remainder
of the screen. Horizontal scrolling and row effect are
switched  on  and  the  main  loop  updates  the  scroll
amount.  Pressing  the  Q  key  ends  the  program  and
shuts off the extra effects.

RELOCATIONS USING ROW EFFECTS

The  base  register  can  be  updated  when  the
destination  code  is  set  to  00.  This  can  be  used  to
update the base of screen memory on the fly, but in

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 FOR I=0 TO 31
50 POKE 53312+I,0
60 NEXT
70 POKE 53312+0,OR(160,0)
80 POKE 53344+0,0
90 POKE 53312+1,OR(160,3)
100 POKE 53249,12
110 S=0
120 IF PEEK(53248)=0 THEN GOTO 120
130 POKE 53344+1,S*16
140 S=MOD(S+1,4)
150 IF AND(PEEK(16),1)=0 THEN GOTO 180
160 IF PEEK(53248)=1 THEN GOTO 160
170 GOTO 120
180 POKE 53249,0
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general is going to be used to change the character set
base portion of the register instead. Doing this allows
more than 256 characters to be used on the screen at
the same time.

The format used for the row effect's data register is
the  same  as  that  used  for  the  register  itself.  For
example, to change the character set,  keep the same
screen memory base but use a different character set
base.

This can be useful in games. For example, imagine a
full character set used as tiles for the game world, and
a  separate  character  set  used  for  the  text  and  user
interface at the top and bottom of the screen.

Using row effects to change the base address of the
character set in the middle of a frame. A test pattern
from a previous example is programmed into a second
character set,  then switched out in the middle of the
frame  using  a  row  effect.  The  Q  key  will  quit  the
program.

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 A=40960
50 B=(A-40960)/2048
60 FOR I=0 TO 2047
70 POKE A+I,MOD(I,2)*85
80 NEXT
90 FOR I=0 TO 31
100 POKE 53312+I,0
110 NEXT
120 POKE 53312,OR(128,12)
130 POKE 53344,9*16+B
140 POKE 53249,8
150 IF AND(PEEK(16),1)=1 THEN GOTO 150
160 POKE 53249,0
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BITMAPPED GRAPHICS

The Cody Computer also supports a limited form of
bitmap  graphics.  In  this  mode,  each  byte  in  screen
memory is expanded to eight bytes containing the bit
pattern  to  draw  at  the  location.  The  layout  of  each
eight-byte section is exactly the same as in character
memory,  and the same color  limitations apply as in
the normal character graphics mode. This also expands
the size of video memory from 1000 bytes to 8000
bytes. Bitmap mode is enabled by bit 4 of the video
control register at $D001 or decimal 53249.

In  many  respects  the  bitmap  mode  is  more  of  a
hybrid mode between character graphics and a fully-
bitmapped screen. The first eight bytes represent the
first 4x8 tile, the next eight bytes represent the second
4x8 tile,  and so on for  the remainder of  the screen.
While this makes the implementation easier within the
Cody Computer's firmware (and also more faithful to
how  things  actually  worked  on  the  Commodore
computers), it does make plotting pixels more difficult.

To find where to plot a pixel, it's necessary to begin
with the (x,y) coordinate on the screen's 160x200 grid.
First divide the y-coordinate by 8 (the number of lines
in a character) rounding down, then multiply by 320
(the number of bytes in a row of 40 tiles). Then divide
the x-coordinate  by 4 (the number  of  columns in  a
character)  rounding  down,  then  multiply  by  8  (the
number of  bytes in a character).  This  gets us to the
beginning of the bytes for that section of the screen.
We add the remainder from the earlier division of the
y-coordinate to get the final byte we need to update.
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To select the actual pixel within that byte, however,
we still have a bit of work to do. We need to mask out
the portion of the byte we want to change and replace
it with the color we want to draw. Just like in character
memory, each byte is represented by two bits, with the
highest two bits representing the leftmost dot in the
line  of  pixels.  This  means  that  we'll  need  a  two-bit
mask  that  we  shift  right  the  appropriate  number  of
two-bit increments, and we'll need to do the same with
the color value we'll insert.

It's  not  an  easy  operation,  though  once  you've
walked through the steps, it'll become clearer. It also
means that it's a lot more time-consuming than just
updating a single byte to change an entire tile on the
screen.  Bitmapped graphics  have their  place,  but  for
things  like  video  games,  many  of  the  most  action-
intense  ones  will  need  to  rely  on  the  character
graphics  mode  over  the  bitmapped  mode:  A  slow
retro-style system like the Cody Computer just isn't
going to push that many pixels.

Below  we  have  a  Cody  BASIC  program  that
demonstrates the bitmap mode by setting it  up and
randomly plotting some pixels.  We have to  relocate
our screen memory so that we have enough space for
the bigger memory, clear out the memory, set up our
colors,  and  finally  enter  a  loop  where  we  randomly
plot  pixels  into  the  screen  area.  The  complicated
calculation  discussed  above  is  implemented  as  a
subroutine in Cody BASIC to make it a little easier to
follow.

10 FOR I=40960 TO 48960
20 POKE I,255
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Plotting random pixels in bitmap mode. It will take a
little  while  to  run  as  it  clears  out  screen  memory
before beginning to plot pixels.  When ready to exit,
press  the  Q key  and  the  screen  will  be  restored  to
character graphics mode.

30 NEXT
40 FOR I=55296 TO 56296
50 POKE I,RND()
60 NEXT
70 POKE 53253,1
80 POKE 53250,224
90 POKE 53251,5
100 POKE 53249,OR(PEEK(53249),16)
110 X=MOD(RND(),160)
120 Y=MOD(RND(),200)
130 C=MOD(RND(),4)
140 GOSUB 300
150 IF AND(PEEK(16),1)=0 THEN GOTO 200
160 GOTO 110
200 POKE 53253,22
210 POKE 53250,231
220 POKE 53251,149
230 POKE 53249,AND(PEEK(53249),15)
240 END
300 P=40960
310 P=P+Y/8*(40*8)
320 P=P+X/4*8
330 P=P+MOD(Y,8)
340 M=192
350 C=C*64
360 R=MOD(X,4)
370 IF R=0 THEN GOTO 420
380 M=M/4
390 C=C/4
400 R=R-1
410 GOTO 370
420 POKE P,OR(AND(PEEK(P),XOR(M,255)),C)
430 RETURN
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HIGH RESOLUTION GRAPHICS

High-resolution  character  and  bitmap  graphics
modes  are  also  available.  These  allow  programs  to
increase the screen resolution to 320 pixels by 200
pixels  at  the  cost  of  disabling  many  of  the  Cody
Computer's  more  advanced  video  features.  The
horizontal  resolution is  doubled but  only two colors
may appear in any 8-by-8 pixel region. Features such
as sprites and scrolling are disabled. Row effects are
still possible but many of them have no effect because
of the lack of sprites and other features. To enable the
high-resolution mode you must turn on bit  5 of the
video control register at $D001 or decimal 53249.

Pixel data is similar to the low-resolution multicolor
mode except that there are only two choices for colors.
As a result, each pixel is represented by a single bit. A
single byte of pixel data represents eight pixels, each
of  which  can  have  only  one  of  two  colors.  A  0  bit
selects the low nibble in color memory for a particular
location while a 1 bit selects the high nibble in color
memory. 

Character  graphics  in  high  resolution  mode  are
identical to those in the normal graphics modes. The
only difference is in the format of the data in character
memory,  which  uses  the  one-bit-per-pixel  layout
described  above.  Otherwise  it  behaves  exactly  the
same  way  as  for  the  four-color  mode  you  already
learned about.

A  simple  example  below  will  load  some  abstract
high-resolution  designs  into  unused  spaces  in
character memory, then show them on the screen in a
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high-resolution  mode.  You  will  also  notice  how  the
default  characters  look  different  (but  are  often
nonetheless readable) even when switched into high-
resolution  mode.  This  occurs  because  the  two-bit
multicolor patterns are being interpreted as single-bit
on-or-off values instead.

An  example  of  the  high-resolution  character  mode.
Four  characters  at  the  top  of  character  memory  are
reprogrammed  as  high-resolution  characters.  High-
resolution mode is enabled and the color and screen
memory updated with random colors and values.  At
the  end  you  press  enter  to  exit  from  the  high-
resolution mode. 

A  high-resolution  bitmap  mode  is  also  possible.
While most of the additional graphics features are not
available in high-resolution mode, bit 4 of the video
control  register  at  $D001 or  decimal  53249 can  be
used together with bit 5 to enable the high-resolution
bitmap mode. As with the character mode, the overall

10 FOR I=0 TO 31
20 READ M
30 POKE 51200+252*8+I,M
40 NEXT
50 POKE 53249,OR(PEEK(53249),32)
60 FOR I=0 TO 999
70 POKE 50176+I,252+MOD(RND(),4)
80 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
90 NEXT
100 PRINT "PRESS ENTER TO EXIT";
120 INPUT X$
130 POKE 53249,AND(PEEK(53249),15)
140 DATA 1,3,7,15,31,63,127,255
150 DATA 0,128,192,224,240,248,252,254,255
160 DATA 255,127,63,31,15,7,3,1
170 DATA 255,254,252,248,240,224,192,128,0
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memory layout is the same. The only difference is the
pixel data, which must conform to the same one-bit-
per-pixel layout described for character pixel data.

Plotting a specific pixel on the screen also follows
the  same  algorithm  as  described  for  the  normal
multicolor  bitmap  mode.  Again  divide  the  y-
coordinate by 8 and multiply by 320.  However,  you
must divide the x-coordinate by 8 instead of 4 because
there are eight pixels across per character rather than
four, then multiply that result by 8. As before, add the
remainder from dividing the y-coordinate to get the
actual  byte.  The  bit  mask  operation  also  works  in  a
similar  fashion except  that  the mask is  only one bit
and is shifted in one-bit increments.

The following example is very similar to the bitmap
example  shown  previously.  However,  it  has  been
adjusted  to  support  the  high-resolution  two-color
mode instead of the lower-resolution multicolor mode.
Note the changes to portions of the code related to the
x-coordinate and bit-shifting in particular.

10 FOR I=40960 TO 48960
20 POKE I,0
30 NEXT
40 FOR I=55296 TO 56296
50 POKE I,RND()*16
60 NEXT
70 POKE 53250,224
80 POKE 53251,5
90 POKE 53249,OR(PEEK(53249),48)
100 X=MOD(RND()+RND()*2,320)
110 Y=MOD(RND(),200)
120 C=MOD(RND(),2)
130 GOSUB 300
140 IF AND(PEEK(16),1)=0 THEN GOTO 200
150 GOTO 100
200 POKE 53250,231
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A modified bitmap example for  the two-color  high-
resolution mode. As with the earlier bitmap example,
pressing  the  Q  key  returns  to  the  default  graphics
mode.

210 POKE 53251,149
220 POKE 53249,AND(PEEK(53249),15)
230 END
300 P=40960
310 P=P+Y/8*(40*8)
320 P=P+X/8*8
330 P=P+MOD(Y,8)
340 M=128
350 C=C*128
360 R=MOD(X,8)
370 IF R=0 THEN GOTO 420
380 M=M/2
390 C=C/2
400 R=R-1
410 GOTO 370
420 POKE P,OR(AND(PEEK(P),XOR(M,255)),C)
430 RETURN

351





Sound and Music
Programming

8



INTRODUCTION

The  Cody  Computer  supports  sound  and  music
through the Sound Interface Device or "SID," a copy of
the famous SID from the Commodore 64.  The Cody
Computer's  SID  supports  many,  but  not  all,  of  the
same  features  as  its  predecessor.  It's  intended  as  a
simplified  sound  generator  suitable  for  the  curious
hobbyist or casual user, but with a significant degree
of compatibility. Like the Cody Video Interface Device,
the Cody SID is implemented as a software peripheral
in the Propeller.

Like  the  original  SID,  the  Cody  SID  relies  on
principles  of  digital  audio  synthesis  to  generate
sounds.  Unlike  modern  computers  which  essentially
play back raw audio data (often after processing the
signal  in  some  way),  the  SID  generates  sound
mathematically. Counters and mathematical formulas
are  used  to  produce  sound-like  waves  and  combine
them together, with the exact characteristics of these
waves under the control of the programmer.

The  Cody  SID  supports  up  to  three  voices,  or
independent sounds, at the same time. Each voice can
generate a sound at  a different frequency,  and each
sound can consist of either a triangle wave, a sawtooth
wave,  a  pulse  wave,  and  white  noise.  These  are
combined with another wave called an envelope, which
determines how loud the sound gets, how quickly, and
how slowly it fades away when turned off.

The envelope is defined using attack (how fast the
sound reaches a peak volume),  decay (how long the
sound  drops  to  its  normal  value  after  the  peak),
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sustain (how loud the sound stays), and release (how
long the sound takes to fade out). This ADSR envelope
shapes  the  underlying  sound  for  each  voice  and  is
capable  of  mimicking  many  instruments  and  sound
effects.

The original SID chips in the Commodore 64 family
had  other  features,  including  filters  that  let  the
programmer emphasize certain high-frequency, low-
frequency,  or  middle  portions  of  each sound.  Filters
could vary greatly between SID chips, and in order to
keep the  Cody Computer  a  fun learning tool,  filters
aren't supported by the Cody Computer's SID. Some
sounds and songs, even if ported to work on the Cody
Computer,  won't  sound  quite  right  as  a  result,  but
most  results  are  at  least  passable.  Also  unlike  the
Commodore SID, the Cody SID doesn't permit the user
to select multiple waveforms for the same voice: you
have to pick one, and only one, type of sound for each
voice at any one time.

MAKING A SOUND

To program sounds, you poke values into memory
registers. Each voice has seven registers, and there are
a  total  of  three  voices,  starting  at  memory  location
$D400 (decimal 54272). Global settings for the SID,
including volume, are controlled by a handful of other
registers immediately following the voice registers.

For  each  voice,  the  registers  are  organized  in  the
same order. The first two registers contain the low and
high  bytes  for  the  voice's  sound  frequency  as  a
number from 0 to 65535 (these map, more or less, to
a  range  between  0  and  4  kilohertz  as  audio
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frequencies).  Following  those  are  two  registers  only
used for pulse waveforms, containing the low and high
bytes of the pulse wave's duty cycle (how long it is on
relative  to  how  long  it  is  off).  The  pulse  value  can
range from 0 to 4095,  with a zero being off  all  the
time and 4095 being on all the time. (If you're curious,
the  more  limited  range  of  the  pulse  width  occurs
because the top half of the pulse wave's high byte is
unused, just as it was on the C64.)

After  that,  the  fifth  register,  the  control  register,
allows you to  select  the  type of  sound you want  to
produce. The high four bits contain the type of sound
while  the  lower  four  bits  contain  other  control
information, including turning the voice on and off. Bit
4 selects a triangle wave, bit 5 selects a sawtooth wave,
bit  6 selects a pulse wave,  and bit  7 selects a white
noise wave.  The lowest bit,  bit  0,  is the gate bit  that
turns the voice itself  on and off.  (The other  bits  are
used  for  more  advanced  features  that  we'll  cover
later.)

The  sixth  and  seventh  registers  define  the  ADSR
(attack-decay-sustain-release)  envelope  that  was
mentioned in  the introduction.  The attack  and decay
are  set  by  the  sixth  register.  The  attack  value  (how
long the sound takes to reach maximum volume ater it
starts) is stored in the top half of the sixth register. The
decay value  (how long the  sound takes  to  decrease
from its maximum to its sustain level) is stored in the
bottom  half.  Both  range  from  0  to  15  but  cover
different time ranges. The attack range covers between
0 and 8 seconds while the decay range covers between
0 and 24 seconds. The relationship is not linear, so you
need to consult the table below to find the exact value.
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The  seventh  and  final  voice  register  contains  the
other  part  of  the  ADSR  envelope,  the  sustain  and
release values. The sustain value (the volume the voice
stays at after the decay phase) is stored in the top half
of the register. The release value (the time it takes the
sound to fade out after it's turned off) is stored in the
bottom half. The sustain value ranges from 0 to 15 and
represents  a  volume  level.  The  release  value  also
ranges from 0 to 15 but represents a time value, with
its possibilities being the same as those for the decay
value.

Value (dec)
Value
(hex)

Attack
(ms)

Decay/Release
(ms)

0 $0 2 6

1 $1 4 24

2 $2 16 48

3 $3 24 72

4 $4 38 114

5 $5 58 168

6 $6 68 204

7 $7 80 240

8 $8 100 300

9 $9 250 750

10 $A 500 1500

11 $B 800 2400

12 $C 1000 3000

13 $D 3000 9000

14 $E 5000 15000

15 $F 8000 24000
The attack, decay, and release values and their rates.
Note that sustain values are not included in the table
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because the sustain setting is a volume, not a time
constant. 

In many respects, sound programming can be more
difficult  than  video  programming.  While  video
programming has many complicating factors to get a
picture on the screen,  the overall  concepts of  pixels,
characters, and sprites are usually somewhat familiar.
Sound programming, absent any personal experience
with musical instruments or signal processing, can take
longer to understand.

For that reason, we'll  start with a simple example.
The following BASIC program will generate a triangle
wave at 440 hertz, which is common in music as the A
note above middle C. This particular frequency is used
as a standard to tune instruments, and we'll use it here
to get started.

A program that plays an A note on voice 1.  The SID
registers are reset to 0, then the values for a note on
voice 1 are poked into memory. A brief delay occurs
before the sound is turned off.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,AND(7382,255)
60 POKE 54273,7382/256
70 POKE 54277,2*16+4
80 POKE 54278,14*16+6
90 POKE 54276,16+1
100 T=TI
110 IF TI-T<120 THEN GOTO 110
120 POKE 54276,16
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The  program  begins  by  clearing  out  all  the  SID
registers.  This  is  very important  in  any case,  as  you
may have  noticed  earlier  in  the  book  when running
one program messes up the environment for a later
one. For the SID it's particularly important so that any
existing sounds or settings get cleared out.

After the SID is cleared out,  the program sets the
volume  to  maximum.  The  volume  is  poked  into  the
lower  half  of  the  main  volume  control  register  at
$D418 or  decimal  54296.  The  440  Hz  frequency  is
converted  to  its  corresponding  SID  value,  7382,  and
then  poked  into  the  frequency  registers  at  $D400
(decimal  54272)  and  $D401 (decimal  54273).  (To
calculate  the  frequency  value  to  poke  in,  an  old
formula for the Commodore SID can be used, dividing
the desired frequency by 0.0596. If you forget that, a
reasonable  approximation  can  be  made by recalling
that  the range of  frequencies  goes from 0 to  about
4000, and the register value goes from 0 to 65535;
you won't get the exact value, but you can solve it like
any other proportion.)

The attack and decay values are poked into register
$D405 or decimal 54277. Relatively small values are
used  for  this  example,  with  an  attack  value  of  2
corresponding to  a  mere  16 milliseconds.  The decay
value of 4 isn't much bigger, corresponding to about
114 milliseconds. Sustain and release values are then
poked into the following register at $D406 or decimal
54278. A relatively high sustain volume of 14 is poked
along  with  a  relatively  short  decay  value  of  6
(corresponding to around 204 milliseconds).

To start  the sound,  the program pokes the voice 1
control  register at  $D404.  Bit  4 is  set  to enable the
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triangle wave sound, while bit 0 is also set to begin the
sound. A timer loop waits for about two seconds, and
then the control register is poked with bit 0 turned off
to end the sound.

CREATING SOUNDS WITH
NUMBERS

This may be the first time you're hearing of triangle
waves, sawtooth waves, pulse waves, so we'll go over a
brief example of each one. The exact values, including
the  frequencies  and  ADSR  values,  aren't  the  main
focus here. The intent is to give you an idea of how the
different sounds actually sound.

TRIANGLE WAVES

A triangle wave is basically what it sounds like. The
wave goes up to a maximum in a straight line, peaks,
goes down to a minimum in a straight line, and then
repeats. Triangle waves are enabled by setting bit 4 in
a voice's control register.

The  triangle  wave  is  also  special  in  that  it's  the
closest  the  SID  can  produce  to  an  actual  sine  wave.
Because of its audio characteristics, it can be described
as sounding like something between a square wave (or
pulse) and a sine wave.
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A Cody BASIC program that produces a triangle wave.
The  exact  SID  register  values  were  taken  from  an
emudev.de article on the Commodore 64's sounds.

SAWTOOTH WAVES

A sawtooth wave is kind of like a triangle wave with
special characteristics. Instead of going up and down in
a  linear  fashion,  it  goes  up  to  a  maximum,  then
immediately  drops  to  its  minimum.  This  produces  a
waveform that looks a lot like the teeth on a saw blade.
Sawtooth  waves  are  enabled  with  bit  5  in  a  voice's
control register.

Sawtooth waves tend to sound very harsh and sharp.
They  can  be  made  to  sound  similar  to  a  buzzer  in
many situations. Yet when set up with the appropriate
characteristics, they can also be very useful for other
sound effects and even music.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,22
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,17
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An example of a sawtooth wave. The exact SID register
values were taken from an emudev.de article on the
Commodore 64's sounds.

PULSE WAVES

A pulse wave may be what most people think of as
an  electronically-generated  sound.  It  goes
immediately  to  its  maximum,  stays  there  for  a
particular  time,  and  then  drops  to  its  minimum,
staying there for a while until the process repeats. A
pulse wave has a duty cycle that indicates how long
the  wave  is  on  compared  to  how  long  it  is  off:  For
example,  a  wave  with  a  duty  cycle  of  75%  is  at  its
maximum  three  times  longer  than  its  minimum.  A
square wave is just a special case of the pulse wave
with  a  duty  cycle  of  50%.  Pulse  waves  are  enabled
using bit 6 in a voice's control register.

In  addition  to  being  useful  to  generate  very
electronic  beeps  and  blips,  different  duty  cycles  for
each wave can produce a variety of unique sounds. On
the SID the pulse wave is unique in that in addition to
the frequency value, the pulse is also programmable
using some of the voice's registers.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,195
60 POKE 54273,10
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,33
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An example of  a  pulse wave.  The exact  SID register
values were taken from an emudev.de article on the
Commodore 64's sounds.

NOISE

Noise  is  similar  to  the  white  noise  that  you  may
have  heard  from  a  white  noise  sound  machine.
Different  techniques  can  be  used  to  generate  noise,
but one of the most common is to use what is called a
linear feedback shift register. It's similar to a normal
shift register, but it has taps at different places along
the shift register's path to obtain output or feed back
into the circuit. Noise output is enabled using bit 7 of a
voice's control register.

Noise is useful for a variety of sound effects, but it
can  also  be  used  in  various  musical  sounds.  Nor
should noise be considered as something to be used
for static in sound effects. Consider that a white noise
sound  with  the  appropriate  frequency,  fade-in,  and
fade-out,  could  be  used  to  mimic  the  sound  of  the
ocean.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54274,15
80 POKE 54275,15
90 POKE 54277,105
100 POKE 54278,252
110 POKE 54276,65
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An  example  of  noise  output.  The  exact  SID  register
values were taken from an emudev.de article on the
Commodore 64's sounds.

EXPERIMENTING WITH DIFFERENT VALUES

Now that you've heard how the Cody Computer can
generate  sounds,  try  the  following  program  to  see
what other kinds of sounds can be produced. Instead of
writing  many  different  programs  with  different
settings, you can use the one below to enter different
values  and hear  the  results  immediately.  This  won't
work  as  an  exhaustive  example  of  every  sound  the
Cody Computer  can make using its  SID,  but  it  gives
you a place to begin.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,129

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 PRINT "AVAILABLE SOUNDS:"
50 PRINT "1. TRIANGLE"
60 PRINT "2. SAWTOOTH"
70 PRINT "4. PULSE"
80 PRINT "8. NOISE"
90 PRINT "SOUND (1, 2, 4, OR 8)";
100 INPUT C
110 PRINT "FREQUENCY (0-65535)";
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A tool for experimenting with simple SID sounds. On
each loop the user is prompted for some SID values,
and the program plugs them into the SID registers for
voice 1.

To use the program you just need to load and run it.
You specify the type of sound you want to generate by
entering a number corresponding to the voice settings
in the top half of the control register. After that you

120 INPUT F
130 W=0
140 IF C<>4 THEN GOTO 170
150 PRINT "PULSE WIDTH (0-4095)";
160 INPUT W
170 PRINT "ATTACK RATE (0-15)";
180 INPUT A
190 PRINT "DECAY RATE (0-15)";
200 INPUT D
210 PRINT "SUSTAIN LEVEL (0-15)";
220 INPUT S
230 PRINT "RELEASE RATE (0-15)";
240 INPUT R
250 PRINT "OVERALL VOLUME (0-15)";
260 INPUT V
270 POKE 54296,V
280 POKE 54272,AND(F,255)
290 POKE 54273,F/256
300 POKE 54274,AND(W,255)
310 POKE 54275,W/256
320 POKE 54277,A*16+D
330 POKE 54278,S*16+R
340 PRINT "PRESS ENTER TO PLAY";
350 INPUT X$
360 POKE 54276,C*16+1
370 PRINT "PRESS ENTER TO STOP";
380 INPUT X$
390 POKE 54276,C*16
400 PRINT "AGAIN (Y/N)";
410 INPUT X$
420 IF X$="N" THEN END
430 PRINT ""
440 GOTO 10
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enter the raw values for the frequency, attack, decay,
sustain, and release, along with the overall volume. If
you're trying out a pulse wave you'll also be prompted
for the pulse's duty cycle. The program doesn't do any
error checking, so if you enter an invalid value, you'll
get some strange results.

You should experiment with different values to see
how they sound, but below are some examples from a
1984  edition  of  the  Commodore  64  User's  Manual.
One table contains the suggested values to resemble
the sounds of different musical instruments. Another
table shows a subset of the musical scale, giving you
one  octave's  worth  of  constants  to  try  out  different
notes.

Instrument Sound Pulse Attack Decay Sustain Release

Piano 4 225 0 9 0 0

Flute 1 0 0 6 0 0

Harpsichord 2 0 0 9 0 0

Xylophone 1 0 0 0 15 0

Accordion 1 0 6 6 0 0

Trumpet 2 0 6 0 0 0

Noise 4 0 0 0 0 0
A table  of  settings  copied  from a  1984  edition  of  the
Commodore 64 User's Manual. Each is intended to be a
rough first approximation of a musical instrument.

The  exact  sound  values  you  use  are  largely  the
result of experimentation, and the above table is only
a beginning. As Commodore's own data sheet for the
SID  noted  long  ago,  the  exact  characteristics  of  an
instrument are vital when determining what values to
plug  in.  A  violin  often  builds  up  somewhat  slowly
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when  bowed  and  reaches  an  intermediate  volume
before  fading out.  As  a  first  guess,  one might  try  a
somewhat slow attack, a middle-range sustain volume,
and  a  shorter  decay  and  longer  release  time.  A
percussion  instrument,  on  the  other  hand,  generally
reaches  a  peak  volume  suddenly,  then  goes  away
entirely. In the end, the correct values to plug in are
those that sound best for the song or effect that one is
trying to achieve.

Along  with  the  ADSR  settings,  however,  is  the
frequency. We discussed before that you can calculate
the frequency value by dividing the frequency in hertz
by 0.0596, and it helps to use this formula when you
need  to.  Below  is  a  brief  table  of  notes  and  their
corresponding frequency register values for the fourth
octave,  including  the  440  hertz  A  note  you  played
earlier.

Note Frequency (Hz) Value (dec) Value (hex)

C4 261.63 4389 $1125

D4 293.66 4927 $133F

E4 329.63 5530 $159A

F4 349.23 5859 $16E7

G4 392.00 6577 $1981

A4 440.00 7382 $1CD6

B4 493.88 8286 $205E
A subset of the musical note frequency values from
the Commodore SID 6581 data sheet. Values for the
fourth octave (excluding sharps) are included as an
example.

Don't  limit  yourself  to  trying  to  play  musical
sounds.  The SID can be used for  a  variety of  sound
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effects  as  well.  Also  try  to  familiarize  yourself  with
how the different settings work in practice. Listen for a
faster or slower buildup as you adjust the attack rate,
and note how the decay and sustain portions of  the
sound change as you alter their values.  Try different
release  values  to  learn  how a  sound can  quickly  or
slowly fade off.

PLAYING A SIMPLE SONG

The  same  approach  can  be  used  to  play  simple
songs in Cody BASIC. To play an entire song, however,
the musical notes and their lengths need to be taken
into account. A musical note is just a frequency, so the
corresponding frequency register value can be used to
represent each note at a low level. The time for each
note can be represented as a time constant of some
sort.

To play a note, a program would load the instrument
data from the above table,  load the frequency value
for the note to play, and then start playing by setting
the gate bit  to 1.  The program then waits for a time
associated with the length of a note before turning the
note off and moving on to the next one.

In music, a common standard for timing is 4/4 time,
in which a whole note lasts for an entire portion of a
song  called  a  measure.  The  rest  of  the  system  is
fractional,  with  a  half-note  lasting  for  half  of  a
measure,  a  quarter  note  lasting  for  one-fourth  of  a
measure,  and  so  on.  A  corresponding  symbol,  the
whole rest, indicates that no note should be played for
the  entire  measure.  These  also  have  fractional

368



divisions such as the half-rest and quarter-rest. These
concepts can easily be represented on a computer.

To  see  how  this  could  work,  we'll  look  at  an
introductory  example  from  one  edition  of  the
Commodore  64  User's  Manual  as  translated  to  the
Cody  Computer.  In  it,  a  simple  program  of  POKEs,
FOR/NEXT statements, and DATA statements is used
to play a portion of the chorus from the American folk
song "Tom Dooley."

10 S=54272
20 FOR Z=S TO S+24
30 POKE Z,0
40 NEXT
50 POKE S+24,15
60 POKE S+2,255
70 POKE S+3,0
80 POKE S+5,9
90 POKE S+6,0
100 READ H,L,D
110 PRINT H," ",L," ",D
120 IF H=0 THEN END
130 POKE S,L
140 POKE S+1,H
150 POKE S+4,65
160 FOR Z=1 TO D*4
170 NEXT
180 POKE S+4,64
190 FOR Z=1 TO 400
200 NEXT
210 GOTO 50
220 DATA 18,104,250,18,104,500,18,104,250
230 DATA 20,169,500,24,146,500,30,245,1000
240 DATA 30,245,1000,18,104,250,18,104,500
250 DATA 18,104,250,20,169,500,24,146,500
260 DATA 27,148,2000,18,104,250,18,104,500
270 DATA 18,104,250,20,169,500,24,146,500
280 DATA 27,148,1000,27,148,1000,27,148,250
290 DATA 27,148,500,30,245,250,24,146,500
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A  modified  program  from  the  1984  edition  of  the
Commodore  64  User's  Manual.  It  clears  the  SID
registers and then plays a portion of the American folk
song "Tom Dooley."

As in the earlier example, the SID registers are all
reset  to  zero.  The  configuration  data  is  then  POKEd
into voice 1 on the SID before the song is played. The
song data is kept in DATA statements at the end of the
program, with each set of three numbers representing
a  note:  The  first  number  is  the  high  byte  of  the
frequency value, the second number is the low byte of
the frequency value, and the third number is the note's
length. A value of 1000 represents a whole note, 500
represents half-note and 250 a quarter-note.

To play the song, the three pieces of data are read in
a  loop.  Just  as  in  the  C64  example,  an  inner  loop
counts  down for  the  length of  the  note.  The note  is
then turned off and a brief delay occurs between notes
for a folk-song feel. When a sequence of zero values
is read at the end of the music data, the program stops.

There are, of course, many improvements that could
be  made  to  even  a  simple  program  such  as  this.
Storing the notes and their delays as values for a loop
worked well on the C64, but on the Cody Computer we
have to make adjustments because the simpler Cody
BASIC interpreter loops faster. The notes could instead
be encoded using some other scheme, and the delays
could be implemented by looking at the TI variable to
determine elapsed time as in our graphics examples.
However, the example serves its purpose, and it also

300 DATA 20,169,500,24,146,1500,0,0,0
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demonstrates  the level  of  compatibility  between the
Cody SID and the real SID of the Commodore 64.

Keep in mind that this is a simple example that only
uses one voice and doesn't show the best approach to
playing  music.  On  the  Commodore  64,  music  was
often  written  as  self-contained  programs  called  SID
files, which were loaded into memory and called on a
periodic basis to play a song.

Many of the simpler or earlier SIDs are playable on
the  Cody  Computer,  though  there  are  also  many
incompatible ones because of differences in memory
layouts  and  system  features.  Compute!  magazine's
SIDPLAYER, similar to a real MIDI-like computer music
system,  would  likely  be  a  better  fit  for  the  Cody
Computer.

A simple SID player for PSID files,  CodySID, is
included  as  an  assembly  language  example
program later  in  the  book.  While  not  perfect,  it
does show how to load a SID file and play it  in
memory,  and some recommended SID files  that
are known to work with it are mentioned. Writing a
player for the MIDI-like SIDPLAYER system is left
for the future or as an exercise for the reader.

SOUND EFFECTS

The  SID  can  also  be  used  for  a  variety  of  sound
effects. In addition to the more obvious ones, it's also
possible  to  update  the  values  in  the  SID  registers
themselves  to  make  even  more  interesting  sounds.
Many music players did exactly this, and games also
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took  advantage  of  the  ability  to  control  sound
parameters on top of what the SID was already doing.
(On the  Cody SID,  however,  you'll  want  to  be  a  bit
more  careful.  If  you  change  values  in  the  Cody SID
registers too quickly, the sound system may not pick
up there was a change.)

The best way to come up with sound effects for your
programs is to play around and come up with some
yourself.  There's  no  exact  science  to  the  process.
Additionally, given that the C64 was at one point one
of the most popular computers in the world, you'll find
many  resources  on  SID  sounds  that  can  be  easily
ported  to  the  Cody  Computer.  A  few  examples  are
provided below to get you started.

AN EXPLOSION

The following program makes a quick explosion-like
sound using the noise output from the Cody SID. The
sound's  attack  and  decay  values  are  set  to  zero  to
produce an immediate effect, and the sustain level is
set to a reasonably high value of 11. A release value of
10 ensures that the explosion sound takes a little while
to fade away.
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A  short  Cody  BASIC  program  that  makes  an
explosion-like  sound.  Something  like  this  could  be
used for a depth charge dropped on a submarine or a
photon torpedo hit against a starship.

AN ALERT SIREN

This example produces a sound like an alert or siren.
To get a sharp, Klaxon-like sound, a sawtooth wave is
used  as  the  basis  for  the  sound  generation.  ADSR
values suitable for a siren were also plugged in. Also,
because sirens or alerts go from high to low and back
again, the program contains a FOR loop that turns the
sound on and off three times as it plays. Brief delays
during each part of the sound guarantee that the user
will hear both the attack and release stages.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,0
80 POKE 54278,186
90 POKE 54276,129
100 T=TI
110 POKE 54276,128
120 IF ABS(TI-T)<90 THEN GOTO 120
130 POKE 54276,0
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This  program produces  an  alert  or  siren-like  sound.
Something like this could call a ship's crew to general
quarters, or perhaps set the mood aboard a distressed
space station.

AN ENERGY BEAM

This  program  makes  a  sound  suitable  for  use  in
games  as  an  energy  beam  on  a  far-off  spaceship
defending the frontier,  or  perhaps a  deranged robot
trying to zap the player in a sidescrolling platformer. It
uses a pulse wave for the sound but randomly changes
the low byte of the frequency value while the sound is
playing.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,176
80 POKE 54278,249
90 FOR I=1 TO 3
100 POKE 54276,33
110 T=TI
120 IF ABS(TI-T)<60 THEN GOTO 120
130 POKE 54276,32
140 T=TI
150 IF ABS(TI-T)<60 THEN GOTO 150
160 NEXT
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A short Cody BASIC program that makes a laser-beam
or energy-beam sound effect.

A COMMODORE 64 EXAMPLE

Also remember that the Cody SID is  essentially a
simplified  version  of  the  SID  chip  used  in  the
Commodore  64.  Not  everything  will  be  completely
compatible, but a lot of it will be, even if you have to
make  some  minor  changes  to  a  program.  To
demonstrate  that,  let's  take  a  look  at  the  program
below.

This  program is  a  translation  of  another  program
from  the  Commodore  64,  this  one  a  sound  effects
program  used  to  show  off  the  C64  and  SID's
capabilities to new users. It will play one of six possible
sounds  in  a  loop,  allowing you to  select  a  new one
when it's done. When done, break out of the program
using the Cody and Arrow key combination.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54273,40
60 POKE 54275,8
70 POKE 54276,0
80 POKE 54277,0
90 POKE 54278,192
100 POKE 54276,65
110 T=TI
120 POKE 54272,RND()
130 IF ABS(TI-T)<60 THEN GOTO 120
140 POKE 54276,0
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10 PRINT "WHICH SOUND EFFECT:"
20 PRINT "1. WAILING"
30 PRINT "2. SHOOTING"
40 PRINT "3. SIREN"
50 PRINT "4. ROCKET"
60 PRINT "5. CRASH"
70 PRINT "6. MACHINE GUN"
80 INPUT X
90 S=54272
100 FOR I=S TO S+24
110 POKE I,0
120 NEXT
130 K=-1
140 T=TI
150 GOSUB 1000+X*100
160 POKE S+2,P(2)
170 POKE S+3,P(1)
180 POKE S+5,A(1)
190 POKE S+6,A(2)
200 POKE S+1,N(1)
210 POKE S,N(2)
220 IF Q=2 THEN Q=3
230 IF Q<>2 THEN GOTO 260
240 POKE S+1,64
250 POKE S,188
260 POKE S+4,W(1)
270 IF Q<>1 THEN GOTO 360
280 FOR I=1 TO 40
290 N(2)=200-I*5
300 POKE S,N(2)
310 NEXT
320 FOR I=1 TO 30
330 N(2)=150-I*5
340 POKE S,N(2)
350 NEXT
360 L=15
370 POKE S+24,L
380 IF L=V THEN GOTO 440
390 IF X=4 THEN GOTO 440
400 L=L+K
410 FOR I=1 TO D
420 NEXT
430 GOTO 370
440 POKE S+4,W(2)
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450 IF ABS(TI-T)>300 THEN GOTO 10
460 IF Q<>3 THEN GOTO 200
470 Q=2
480 GOTO 230
1100 V=15
1105 N(1)=65
1110 N(2)=0
1115 W(1)=65
1120 W(2)=64
1125 P(1)=9
1130 P(2)=255
1135 A(1)=15
1140 A(2)=0
1145 D=1
1150 Q=1
1155 RETURN
1200 V=0
1205 N(1)=40
1210 N(2)=200
1215 W(1)=129
1220 W(2)=128
1225 P(1)=0
1230 P(2)=0
1235 A(1)=15
1240 A(2)=15
1245 D=1
1250 Q=0
1255 RETURN
1300 V=0
1305 N(1)=36
1310 N(2)=85
1315 W(1)=33
1320 W(2)=32
1325 P(1)=0
1330 P(2)=0
1335 A(1)=136
1340 A(2)=129
1345 D=350
1350 Q=2
1355 RETURN
1400 V=0
1405 N(1)=25
1410 N(2)=100
1415 W(1)=129
1420 W(2)=128
1425 P(1)=0
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The sound effects example from the Commodore 64
manual, updated to run on Cody Basic. While not the
easiest  program  to  follow,  even  in  its  original  C64
version,  it  demonstrates the variety of  sound effects
possible even in simple BASIC programs.

The  vast  majority  of  the  program  consists  of  the
values to plug in for different sounds. You can look at
the initial register values by reading the appropriate
lines in the program (a GOSUB branches to the setup
code  for  a  particular  sound).  A  collection  of  POKE, 

1430 P(2)=0
1435 A(1)=9
1440 A(2)=129
1445 D=50
1450 Q=0
1455 RETURN
1500 V=0
1505 N(1)=5
1510 N(2)=251
1515 W(1)=129
1520 W(2)=128
1525 P(1)=0
1530 P(2)=0
1535 A(1)=129
1540 A(2)=65
1545 D=50
1550 Q=0
1555 RETURN
1600 V=15
1605 N(1)=34
1610 N(2)=75
1615 W(1)=129
1620 W(2)=128
1625 P(1)=0
1630 P(2)=0
1635 A(1)=8
1640 A(2)=1
1645 D=50
1650 Q=0
1655 RETURN
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FOR, and IF statements take the values and use them
to generate the selected sound.

The  code  for  playing  a  sound  is  actually  quite
complicated, mostly because like the original program
it uses the same code for playing all six sounds. Some
values are changed on different loops, which adds to
the complexity. For a particular sound in the example,
it's  best  to  just  follow  the  code  path  to  understand
what it does. You can then use a similar approach in
your own programs.

A PRACTICAL SOUND PROGRAM

Sound effects aren't  just  for games.  In addition to
creating music, sound effects can be used in a variety
of more serious applications. Sounds can provide cues
in a program, tell the user when something happened,
or even be the main output of a program. Below is a
simple Morse code generator that takes an input string
and generates the corresponding dots and dashes.

The  program  uses  many  of  the  things  you've
learned in previous chapters on Cody BASIC. It accepts
input from the user,  processes each character  in the
input  string,  and  uses  IF statements  to  look  up  the
corresponding sequence of dots and dashes for each
character.  In  addition  to  printing  out  the  dots  and
dashes,  it  uses sound effects to play short  and long
tones  corresponding  to  each  part  of  the  translated
Morse code output.

100 REM MORSE CODE GENERATOR
110 U=10
120 GOSUB 700
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130 PRINT "MESSAGE";
140 INPUT M$
150 PRINT
160 GOSUB 200
170 PRINT
180 GOTO 110
200 REM SEND MESSAGE
210 IF M$="" THEN RETURN
220 A=ASC(M$)
230 M$=SUB$(M$,1,LEN(M$))
240 REM CHECK DELAY BETWEEN WORDS
250 IF A<>32 THEN GOTO 300
260 PRINT "<SPACE>"
270 D=7
280 GOSUB 800
290 GOTO 200
300 REM PROCESS NEXT LETTER
310 PRINT CHR$(A),TAB(20);
320 GOSUB 600
330 IF C$<>"" THEN GOTO 360
340 PRINT "NO CODE"
350 GOTO 520
360 REM SEND DOTS AND DASHES
370 B=ASC(C$)
380 C$=SUB$(C$,1,LEN(C$))
390 PRINT CHR$(B);
400 POKE 54276,65
410 IF B=45 THEN D=3
420 IF B=46 THEN D=1
430 GOSUB 800
440 POKE 54276,0
450 REM DELAY BETWEEN BEEPS
460 D=1
470 GOSUB 800
480 IF C$<>"" THEN GOTO 360
490 REM DELAY BETWEEN LETTERS
500 D=3
510 GOSUB 800
520 PRINT
530 GOTO 200
600 REM GET MORSE
601 IF A>=97 THEN A=A-32
602 C$=""
603 IF A=65 THEN C$=".-"
604 IF A=66 THEN C$="-..."
605 IF A=67 THEN C$="-.-."
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606 IF A=68 THEN C$="-.."
607 IF A=69 THEN C$="."
608 IF A=70 THEN C$="..-."
609 IF A=71 THEN C$="--."
610 IF A=72 THEN C$="...."
611 IF A=73 THEN C$=".."
612 IF A=74 THEN C$=".---"
613 IF A=75 THEN C$="-.-"
614 IF A=76 THEN C$=".-.."
615 IF A=77 THEN C$="--"
616 IF A=78 THEN C$="-."
617 IF A=79 THEN C$="---"
618 IF A=80 THEN C$=".--."
619 IF A=81 THEN C$="--.-"
620 IF A=82 THEN C$=".-."
621 IF A=83 THEN C$="..."
622 IF A=84 THEN C$="-"
623 IF A=85 THEN C$="..-"
624 IF A=86 THEN C$="...-"
625 IF A=87 THEN C$=".--"
626 IF A=88 THEN C$="-..-"
627 IF A=89 THEN C$="-.--"
628 IF A=90 THEN C$="--.."
629 IF A=48 THEN C$="-----"
630 IF A=49 THEN C$=".----"
631 IF A=50 THEN C$="..---"
632 IF A=51 THEN C$="...--"
633 IF A=52 THEN C$="....-"
634 IF A=53 THEN C$="-...."
635 IF A=54 THEN C$="--..."
636 IF A=55 THEN C$="---.."
637 IF A=56 THEN C$="----."
638 IF A=57 THEN C$="....."
639 RETURN
700 REM SET UP SOUND
705 FOR I=0 TO 6
710 POKE 54272+I,0
715 NEXT
720 POKE 54296,14
725 POKE 54272,0
730 POKE 54273,30
735 POKE 54275,8
740 POKE 54276,0
745 POKE 54277,0
750 POKE 54278,192
755 RETURN
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This  program  generates  Morse  code  for  an  input
string, displaying the dots and dashes on the screen as
the corresponding sounds are played.

The provided Morse code example printing the codes
for  the  word  'RADIOACTIVITY'.  Note  that  when  run
you'll also hear the dots and dashes.

RING MODULATION

Ring  modulation  modifies  one  voice  using  the
output of another voice, allowing the programmer to
construct a variety of interesting sounds. In addition to
producing sound effects, bell-like or gong-like sounds
can also be generated using this approach.

800 REM DELAY
810 T=TI
820 L=D*U
830 IF ABS(TI-T)<L THEN GOTO 830
840 RETURN
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Ring modulation on the Cody SID, like the original
SID,  requires  two  voices  and  has  some  important
limitations. Only triangle waves are supported, so the
primary voice must be set to output a triangle wave
along with the ring modulation bit (bit 2) in the control
register.  Also  unlike  real  ring  modulation,  ring
modulation for the SID only relies on multiplying the
signs of the signals, rather than a full multiplication as
in true ring modulation.

The secondary voice  that  supplies  the other  input
for  ring  modulation  must  also  be  set  up  with  a
frequency for any of this to work. Other settings on the
secondary  voice  are  ignored  and  otherwise  has  no
effect on the ring modulation. The corresponding voice
used  for  the  secondary  voice  in  ring  modulation  is
hardwired: Voice 1 uses voice 3, voice 2 uses voice 1,
and voice 3 uses voice 2.

For  an  example  of  ring  modulation,  see  the
following  Cody  BASIC  example  that  generates  a
somewhat-technological  humming sound.  In addition
to the typical ADSR envelope, it uses voice 1 and voice
3 together. Voice 1 is set up as a triangle wave with ring
modulation  turned  on,  and  voice  3  is  set  up  with  a
separate frequency to modulate voice 1's output.
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A program that produces a low, fading hum. A sound
like  this  could  be  used  for  some  kind  of  futuristic
machinery or perhaps a teleport between game levels.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,40
70 POKE 54277,160
80 POKE 54278,251
90 POKE 54286,0
100 POKE 54287,10
110 POKE 54276,21
120 T=TI
130 IF ABS(TI-T)<120 THEN GOTO 130
140 POKE 54276,20
150 T=TI
160 IF ABS(TI-T)<120 THEN GOTO 160
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Input and Output
Programming
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INTRODUCTION

The Cody Computer has multiple input and output
devices  built  into  it.  Using  the  Propeller  it  has  two
UARTs for serial communication, one connected to the
Prop Plug port and the other to the expansion port on
the back. Another chip, the 65C22 Versatile Interface
Adapter,  implements two 8-bit  I/O ports  along with
some miscellaneous signals and a programmable shift
register.

Some of these capabilities are already in use by the
Cody Computer. For example, Port A on the 65C22 I/O
chip is used to read the keyboard matrix and joystick
ports, while port A's control signals are used to check
if a cartridge is plugged into the expansion port. Port
B,  on  the  other  hand,  is  connected  directly  to  the
expansion  port  for  use  in  your  own  programs  and
projects.

Being  able  to  connect  your  own  circuits  and
peripherals to the Cody Computer opens up many new
options  and  projects.  You  could  write  your  own
machine-language  games  and  store  them  on  a
cartridge, effectively turning the Cody Computer into
an 8-bit game machine. You could implement modern
protocols for communicating with other chips, such as
I2C or SPI, and use them to interface with the outside
world. Projects requiring simple serial communications
(such as reading NMEA sentences from a GPS) could
be built  with  either  of  the  Cody Computer's  UARTs,
provided the  external  devices  can  support  the  Cody
Computer's  slower  (by  modern  standards)  speeds.
And  for  projects  that  require  extra  capabilities,  you
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could  even  wire  another  microcontroller  to  the
expansion port to extend the base system.

Wiring stuff into the expansion slot or ports is
one of the few ways that you could easily destroy
your  Cody  Computer.  While  modern  electronics
aren't as brittle or likely to fry as they once were,
incorrect connections or voltages could still result
in  doom.  Also  be  aware  that  while  the  Cody
Computer's chips can drive 3.3-volt digital signals,
you'll want to follow good design practices when
connecting up motors, relays, and higher voltages
or currents. Think through what you're doing and
refer to the 65C22 and Propeller data sheets as
well as the Cody Computer's schematics. 

KEYBOARD AND JOYSTICK INPUT

We  covered  the  Cody  Computer's  keyboard  in
chapter  2,  including  a  discussion  of  the  keyboard
matrix and how the joystick ports are actually treated
as the last two rows of the keyboard. The keyboard is
wired to the 65C22 I/O chip's Port A, which scans the
keyboard and joystick using three of its pins. The three
pins are decoded into one of eight rows by a 1-of-8
decoder chip, with the five pins for that row or joystick
port read back into the 65C22.

In  assembly  language  programs  you  will  have  to
scan the keyboard and joystick by communicating with
the  65C22's  Port  A  directly.  However,  in  your  Cody
BASIC programs this is handled automatically by the
BASIC  interpreter.  It  has  an  interrupt  in  the
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background  that  scans  the  keyboard  and  joystick
matrix many times per second, updating a portion of
memory with the data. You can access the values with a
PEEK statement.

Memory  locations  $10 (decimal  16)  through  $15
(decimal 21) are populated with the scanned key rows.
Memory locations $16 (decimal 22) and $17 (decimal
23) store the scans for joystick ports 1 and 2. Because
of the Cody Computer's keyboard wiring, the bits are
actually inverted, meaning that a 0 indicates a key or
button that is pressed, while a 1 indicates that it's not
pressed.

To  see  this  in  action,  try  the  below  Cody  BASIC
program.  It  loops  over  the  values  in  the  memory
region we just mentioned, then prints out each bit as
well as the entire number. You can press keys on your
keyboard or use your joystick, then watch as the bits
change. The program isn't particularly fast, particular
as  it  has  a  nested loop that  calculates  each bit  and
prints it to the screen.

388



A  Cody  BASIC  program  that  prints  out  the  current
state of the keyboard and joystick matrix.

Once you've played around with the program, try
comparing the results you get to the Cody Computer's
keyboard schematic (available online or in Chapter 2
of this book). You should be able to match up the key
you're pressing with a position in the keyboard matrix,
then see the corresponding bits  for  that  row on the
screen.

Your own programs don't need to perform the per-
bit  calculations  or  display anything at  all.  The  most
common use case for reading the keyboard or joystick
like  this  is  in  a  game where you want  to  determine
particular keypresses or joystick actions. For that, you
will want to just check the relevant memory locations
and bits.

This is particularly relevant for reading the joystick.
Even  in  a  BASIC  game  you  may  want  to  read  the
joystick to move a player around on the screen, and
the  following  example  will  help  get  you  started.  It

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR A=0 TO 7
40 D=PEEK(16+A)
50 M=128
60 FOR B=0 TO 7
70 N=0
80 IF AND(D,M)>0 THEN N=1
90 PRINT N;
100 M=M/2
110 NEXT
120 PRINT " (",D,")"
130 NEXT
140 GOTO 20
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reads from the last of the memory locations,  $16 and
$17, then examines each bit to determine what position
the joystick has and whether the fire button is being
pushed.

A Cody BASIC program that reads the joysticks and
prints out the current joystick position and fire button
status.

In an assembly language program, however, you'll
have to scan the keyboard and joystick yourself. Cody
BASIC  won't  be  able  to  help  you.  However,  the
techniques  you  learn  in  Cody  BASIC  can  make  it
easier. For example, learning how to map the keyboard
and  joystick  values  to  the  keyboard  matrix  and
computer  schematic  will  give  you  a  head  start  on
understanding how to program them. You can also rely
on the existing code within the Cody BASIC interpreter
as a place to start writing your own.

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR I=1 TO 2
40 PRINT "JOY ",I,": ";
50 D=PEEK(16+5+I)
60 PRINT TAB(10);
70 IF AND(D,16)=0 THEN PRINT "FIRE";
80 PRINT TAB(16);
90 IF AND(D,8)=0 THEN PRINT "RIGHT";
100 PRINT TAB(22);
110 IF AND(D,4)=0 THEN PRINT "LEFT";
120 PRINT TAB(28);
130 IF AND(D,2)=0 THEN PRINT "DOWN";
140 PRINT TAB(34);
150 IF AND(D,1)=0 THEN PRINT "UP";
160 PRINT
170 NEXT
180 GOTO 20
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SERIAL INPUT AND OUTPUT

The Cody Computer also has two UART (Universal
Asychronous  Receiver  Transmitter)  peripherals
implemented  using  the  Propeller.  These  allow  the
Cody Computer  to  communicate  with  other  systems
over  a  serial  port,  with  some  restrictions.  In  most
respects  the  Cody  Computer  UARTs  serve  a  similar
function  to  the  6551  Asynchronous  Communications
Interface Adapter (ACIA) used in many 6502-based
computers,  but  in  reality  they're  quite  different  to
program.

The Cody Computer UARTs are specific to the needs
of  the  Cody  Computer,  so  they  only  support  a
standard 8-N-1 serial configuration with 8 data bits, no
parity bit, and one stop bit. It's also entirely polling-
based,  which  means  you  have  to  check  them  on  a
regular basis from within your program. On the other
hand,  they  have  ring  buffers  for  transmitting  and
receiving bytes, which means you don't have to check
them as often. Each UART has a total of 23 registers,
almost all of them related to the ring buffer.

A ring buffer is a data structure commonly used for
communications, and it consists of a range of memory
devoted to storing data. Along with the data are two
values indicating the start and the end of the data in
the buffer, the head and the tail. When data enters the
buffer it's  stored at  the head position,  which is  then
moved forward. When data is removed from the buffer
it's taken from the tail position, which is then moved
forward  as  well.  However,  the  positions  actually  roll
around from the end of the buffer back to the start,
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hence the term "ring buffer." (This also means that to
determine when the buffer is  full,  we have to either
store a count or look at the distance between the head
and tail.)

To actually program a UART,  you'll  need to  POKE
and PEEK its registers just like you have for the other
peripherals.  UART 1,  connected to the Propeller Plug
port,  resides  at  $D480 (decimal  54400).  UART 2  is
part of the expansion port on the back and resides at
$D4A0 (decimal  54432).  From  either  of  those
positions,  the offsets  to  a  particular  register  are  the
same, just shifted by the base address for the UART
you're talking to.

The first  UART register,  register  $0,  is  the control
register. It sets the baud rate to use when sending or
receiving data. The baud rate goes into the lower half
of  the  register,  with  the  current  half  of  the  register
currently being unused. Similar to the Cody SID, you'll
need  to  look  up  the  matching  baud  rate  for  each
number in the following table. The values are actually
taken from the 6551's baud rate options and do not
follow any standard progression.

Value (dec) Value (hex) Bit Rate

0 $0 Invalid

1 $1 50

2 $2 75

3 $3 110

4 $4 135

6 $6 300

7 $7 600

8 $8 1200
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Value (dec) Value (hex) Bit Rate

9 $9 1800

10 $A 2400

11 $B 3600

12 $C 4800

13 $D 7200

14 $E 9600

15 $F 19200
The Cody Computer's UART baud rate table. Inspired
by the 6551's baud rate options, these values cover
the common baud rates for systems of a particular
vintage.

The  second  UART  register,  register  $1,  is  the
command register.  It  consists of a single bit  at bit  0
that turns the UART on and off. Setting it to 1 turns the
UART on, while setting it to 0 resets the UART. After
you turn the UART on or off,  you need to check the
UART's status register to ensure it has processed the
command. (We'll cover that in a minute.)

The third UART register, at $2, is the status register.
It provides a window into what the UART is currently
doing. Bit 0 is unused. Bit 1 is set to 1 if a framing error
has occurred, indicating that a stop bit wasn't received
as expected. Bit 2 is set to 1 if an overrun has occurred,
meaning  that  more  data  was  coming  into  a  receive
buffer than there was room to store it.  Bits  3 and 4
indicate  if  data  is  currently  received  or  transmitted,
respectively. Bit 6 indicates whether or not the UART is
running  and  should  be  polled  when  the  UART  is
turned on or off to wait until the UART is in the proper
mode.
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The fourth register at  $3 is reserved. The next two
registers,  $4 and  $5,  contain  the  head  and  tail
positions for the UART's receive buffer. The UART will
update the head position as data is received, while you
must update the tail position as you read from it.

A similar  situation exists  for  registers  $6 and  $7,
the  transmit  ring  buffer  head  and  tail  positions.
Because  you  are  putting  data  to  be  sent  into  the
buffer, you will be the one to update the head position.
The UART will update the tail position as it sends the
data.

The remaining registers consist  of  the receive and
transmit ring buffers.  The receive buffer starts at  $8
and  goes  on  for  8  bytes.  The  transmit  buffer  starts
immediately after at $10 and goes on for an additional
8  bytes.  Because  of  the  nature  of  the  ring  buffer
implementation  used  by  the  Cody  Computer,  only
seven  bytes  can  be  in  use  at  any  one  time.  This  is
because to store a full eight bytes, the head and tail
positions  would  be  equal,  a  case  indistinguishable
from an empty buffer without additional information
(such  as  a  count).  Rather  than  make  the
implementation  more  complicated,  to  keep  things
simple the maximum capacity is limited by one byte.

TRANSMITTING DATA

Now that  we've  had a  bit  of  theory on the  UART,
consider the following example Cody BASIC program.
It will collect some information from you, including a
string to  send over  the serial  port.  It  then turns the
UART  on,  waits  for  it  to  start  up,  configures  it  and
sends the string as ASCII values. It also has to poll the
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ring buffer as it empties to fill it up with the rest of the
data you're trying to send.

To run the program you should be able to use the
same  serial  program  you've  been  using  to
communicate with the Cody Computer until now. You'll
just need to set it up to receive with the baud rate you
select,  and  then  begin  sending  data  to  it  using  this
program.

10 REM UART TRANSMIT EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400
50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 PRINT "TEXT";
90 INPUT S$
100 REM STRING TO BYTES
110 L=LEN(S$)
120 I=0
130 IF I=L THEN GOTO 180
140 S(I)=ASC(S$)
150 S$=SUB$(S$,1,LEN(S$)-1)
160 I=I+1
170 GOTO 130
180 REM CONFIGURE UART
190 POKE A+1,0
200 IF AND(PEEK(A+2),64)>0 THEN GOTO 200
210 POKE A+0,B
220 POKE A+6,0
230 POKE A+1,1
240 IF AND(PEEK(A+2),64)=0 THEN GOTO 240
250 REM TRANSMIT LOOP
260 FOR I=0 TO L-1
270 H=PEEK(A+6)
280 T=PEEK(A+7)
290 IF ABS(H-T)>6 THEN GOTO 270
300 POKE A+16+H,S(I)
310 POKE A+6,MOD(H+1,8)
320 PRINT "SENDING CHR '",CHR$(S(I)),"' (",S(I),")"
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A short  example  in  Cody  BASIC  that  shows  how to
send  data  by  low-level  programming  of  a  UART.  In
practice these operations would be done either by the
BASIC  interpreter  itself  or  from within  an  assembly
language program.

There are a few key parts of this program. Note how
the UART base address is  selectable.  Also note how
the program breaks the string you enter into a series
of numbers to send via the UART. Regarding the actual
UART programming, the program turns the UART off
and waits for the status register to update. It then sets
up  the  baud  rate  and  configures  the  UART  before
turning it back on, again waiting for the status register.

For the main loop, it uses an approach common to
working with a ring buffer. It checks the head and tail
positions, then performs a quick subtraction to see if
the buffer is  full.  If  not,  it  adds another character to
send,  then increments  the  head position  so  that  the
UART  knows  to  pick  it  up.  Because  the  values  wrap
around, there are some additional things the program
does,  such  as  using  modular  arithmetic  when
incrementing  a  value  or  an  absolute  value  when
performing a subtraction.

In a real program, it would be a good idea to shut
the UART off when it's done. To keep this example as
minimal as possible, that's not done here. In a lower
level  program  written  in  assembly  language,
constantly polling and busy-waiting would also leave
much  to  be  desired.  In  that  situation,  it's  better  to
perform  the  polling  on  a  periodic  basis,  or  to

330 NEXT
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interleave  a  quick  check  of  the  UART  into  the  main
loop of your program.

RECEIVING DATA

The UART also receives data when turned on.  The
baud rate option set into the control register is used
for  receive  and  transmit  and  both  operations  occur
simultaneously (the UART is "full duplex" rather than
"half  duplex").  The  receive  ring  buffer  is  populated
with  the  incoming data  and the  UART automatically
updates the receive buffer head register as new data
arrives.  The  programmer  is  responsible  for  reading
data  from the  buffer  and  updating  the  tail  register,
exactly  the  opposite  as  what  happens  when
transmitting via the UART.

The  following  Cody  BASIC  program  sets  up  the
UART  to  receive  data.  You  can  run  it  in  the  same
manner as the transmit example above but using your
serial  program  to  send  characters  to  the  Cody
Computer  instead.  Note  that  because  the  entire
program is written in Cody BASIC, it runs very slowly
compared  to  assembly  language,  and  there's
significant  overhead.  While  it  can  support  even  the
highest  available  baud  rates  for  the  UART,  you  will
likely need to insert a per-character delay inside your
serial  program  to  communicate  without  overrunning
the buffer. Otherwise this little program just won't be
able to keep up.

10 REM UART RECEIVE EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400
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A Cody BASIC example of receiving data from a UART
at  a  low  level.  This  is  only  an  example  that
unfortunately  runs  quite  slowly.  In  actual  usage the
program would likely be written in assembly language
if  the  existing  Cody  BASIC  input  routine  was
insufficient.

The  overall  program  flow  is  very  similar  to  the
transmit  example.  It  obtains  the  configuration  data
from the user, turns the UART off to reset it, turns it
back on and waits for it to come up, sets the UART up,
and  begins  listening.  Each  time  a  new  character  is
found in the buffer, it's removed from the buffer and
an update message is printed to the screen.

50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 REM CONFIGURE UART
90 POKE A+1,0
100 IF AND(PEEK(A+2),64)>0 THEN GOTO 100
110 POKE A+0,B
120 POKE A+5,0
130 POKE A+1,1
140 IF AND(PEEK(A+2),64)=0 THEN GOTO 140
150 REM RECEIVE LOOP
160 E=PEEK(A+2)
170 IF AND(E,2)>0 THEN GOTO 260
180 IF AND(E,4)>0 THEN GOTO 280
190 H=PEEK(A+4)
200 T=PEEK(A+5)
210 IF H=T THEN GOTO 160
220 C=PEEK(A+8+T)
230 POKE A+5,MOD(T+1,8)
240 PRINT "RECEIVED CHR '",CHR$(C),"' (",C,")"
250 GOTO 160
260 PRINT "FRAMING ERROR"
270 END
280 PRINT "OVERRUN ERROR"
290 END
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Unlike  the  transmit  example,  this  example  checks
the  status  register  for  the  UART's  two  error  modes,
both of which only show up when receiving. A framing
error  (bit  1  in  the  status  register)  indicates  that  the
UART didn't read a stop bit when expected, meaning
that  something was  out  of  whack  (perhaps  different
baud rates  between sender  and receiver,  or  perhaps
the sender  wasn't  sending 8-N-1).  An overrun error
(bit 2 in the status register) means that the program
couldn't read data out of the buffer as fast as it was
coming in, and the UART ran out of room to store more
data.

The examples show transmit and receive separately,
but keep in mind that the Cody UARTs can do both at
the  same time.  Setting  up the  UARTs  is  exactly  the
same, but both the receive and transmit buffers would
need  to  be  checked  and  updated  to  support
simultaneous transmit and receive.

It's not a particularly difficult task, but it's one best
left to low-level programs in assembly language. For
high-speed communication using the UARTs in Cody
BASIC,  you're best off  using the  OPEN statement to
redirect  INPUT and  PRINT statements  to  the  serial
port.  This  topic  is  covered  in  Chapter  6  while
discussing how to read and write text files over a serial
link, but the same technique can be used for general
text-based serial input and output. (Even binary data
could be sent across if a hex or other encoding is used,
albeit with some additional overhead.)
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GENERAL-PURPOSE INPUT AND
OUTPUT

Aside  from  the  UART  and  some  of  the  special
65C22 pins (such as its built-in shift register), most of
the pins on the Cody Computer's expansion port are
not  dedicated  to  any  particular  use.  These  can  be
configured either as inputs or outputs by setting the
65C22's Data Direction Register B at address  $9F02
(decimal  40706).  By  default,  each  bit  is  zero  and
configured as an input, but setting the bit to 1 makes it
an output instead. Output values for each pin can be
specified by writing to IO Data Register B at address
$9F00 (decimal  40704),  while  reading  the  same
register will return the input values for the input pins.

As a simple example we'll  use one of the pins to
blink an LED. To build this circuit you will need a small
breadboard.  Expansion port pin 1  (counting from the
rightmost  side  when  looking  down  on  the  Cody
Computer) should be connected to the ground row, pin
2 should be connected to the positive voltage row, and
pin  12  should  be  connected  to  an  LED  through  a
current-limiting resistor. The LED's anode (long lead)
should be connected to the resistor's other terminal,
with its cathode (the short lead) connected to ground.
The Cody Computer's expansion port is not designed
to  be  hot-plugged,  so  turn  the  computer  off  when
wiring to it, then turn it back on when you're finished.
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The  simple  breadboard  circuit  at  left  blinks  an  LED
under the Cody Computer's control.

Once wired up, the following Cody BASIC program
can  be  used  to  blink  the  LED  on  and  off  for  a  few
cycles. It clears the data register then sets up output
pin  1  as  an  output  by  writing  to  the  data  direction
register. After that, bit 1 of the data register is toggled
off and on in a loop with a brief delay,  blinking the
LED.
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A program to blink an LED.

Each  pin  can  also  be  used  as  an  input  when  the
corresponding  bit  in  the  data  direction  register  is
turned off. In this case, the input bits can be read by
reading from the port  B  data  register  as  mentioned
above.

A simple circuit based on the LED circuit can be used
to  show  this.  The  LED  and  resistor  are  no  longer
needed,  and  the  wire  connected  to  pin  12  of  the
expansion port can instead be plugged into the 3.3 volt
or  ground  buses  for  an  input  value  of  1  or  0
respectively.  However,  you  should  be  careful  when
rewiring the circuit and running the program below, as
you don't want to plug the pin into one of the buses
when set up in output mode. Instead, as before, wire up
the  circuit  when  the  computer  is  off,  then  turn  the
computer on.

10 POKE 40704,0
20 POKE 40706,1
30 FOR I=0 TO 9
40 POKE 40704,1
50 T=TI
60 IF TI-T<60 THEN GOTO 60
70 POKE 40704,0
80 T=TI
90 IF TI-T<60 THEN GOTO 90
100 NEXT
110 POKE 40706,0
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An even more simple circuit can be used to drive an
input pin using either the 3.3V and ground lines.

The  following  Cody  BASIC  program  will  read  the
input  pin  and  display  its  current  value.  The  data
direction register is set to zero, then the data register
itself is read in a loop. The value for pin 1 is selected
using an  AND function (unconnected input  pins  can
flap between 0 and 1 so bit-masking the value we want
makes the output clearer to read). When the program
is running, you can move the input wire back and forth
between the 3.3 volt and ground lines to produce a 1 or
0 input.

A program to read and display a single input bit.

10 POKE 40706,0
20 I=PEEK(40704)
30 PRINT AND(I,1)
40 GOTO 20
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SPECIAL PINS AND SHIFT
REGISTERS

The  65C22  also  has  two  handshaking  ports
consisting of two pins each.  The pins for port A CA1
and  CA2,  are  already  in  use  as  a  cartridge-detect
mechanism for  the  Cody Computer.  The  others,  CB1
and CB2, are free for use in your own projects. While
these pins can be used to implement a handshaking
mechanism  for  8-bit  data  transfer  across  port  B  as
discussed  in  the  65C22's  data  sheet,  there  are  also
other possibilities.

One possibility  is  to  use  the  pins  as  an  interrupt
input. This would allow external devices to signal that
something has occurred and have an interrupt handler
run  in  an  assembly  language  program.  Another
interesting option is  to  configure the pins  as  a  shift
register, letting you clock data in or out on a periodic
basis.

None of these scenarios are trivial, so if you intend
to do something like this in your own projects, you'll
want to refer to the 65C22 data sheet. It's also difficult
to  come  up  with  good  examples  of  more  advanced
features without having some other parts around that
can use them, so by necessity this section is somewhat
limited. We can demonstrate the shift register function
using an LED, but to follow along, it would be helpful
to  have access to  an oscilloscope or  other  means of
seeing the actual signal.

First you'll need a circuit. For those without any kind
of  oscilloscope  or  logic  analyzer  tool,  you'll  want  a
circuit  very  similar  to  the  LED  circuit  earlier  in  this
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chapter.  However,  in  this  case,  instead of  connecting
the  LED's  resistor  to  expansion  port  pin  12,  you'll
connect it to expansion port pin 3. Expansion port pin 3
is wired to the 65C22's CB2 pin, which has the actual
data coming out of the shift register.

An LED circuit connected to the expansion port's CB2
pin.  The  LED  brightness  changes  depending  on  the
data sent out of the shift register. Here it glows a dull
red because few of the bits in the data sequence are
ones.

The 65C22 supports various shift register modes for
both  input  and  output  using  different  clock  signal
sources.  Most  of  the  configuration  happens  through
the  65C22's  Auxiliary  Control  Register  at  address
$9F08 (decimal 40715). For this example, we're going
to be setting it up as a simple output controlled by the
65C22's Timer 2 internal clock.  This means that bits
through 2 through 4 of that register need to be set to
binary 100 according to the data sheet.
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We also need to set up 65C22 timer 2 to generate
the  clock  signal.  Each  time  the  Cody  Computer's
system clock ticks, Timer 2 will decrement by one. We
give the timer a  value to  count  down from,  and the
time it takes to count to zero ends up being the time
for one phase of the clock. The timer 2 counter is a 16-
bit value with the low byte at address $9F08 (decimal
40712) and the high byte at address  $9F09 (decimal
40713).  We write the low byte followed by the high
byte, with the writing of the high byte triggering the
timer's clock to restart with the new timer value.

The  shift  register's  output  is  kept  in  a  register  at
address  $9F0A (decimal  40714).  The  value  written
there  continues  to  be  reused  until  a  new  value  is
programmed in.  Other registers or interrupts can be
used to determine when the shift register needs to be
fed new data, but for our simple example, we're fine
with the value wrapping around.

You can see all  this  put together in a small  Cody
BASIC program. It prompts you for a value to write to
the shift  register,  then sets up the shift  register and
timer 2 with the longest possible delay in this mode.
Counting  down  from  65535  with  a  1-megahertz
system clock means that the shift register sends out a
new bit about every .07 seconds, which is too fast to
see without some way to capture the actual signal.
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A program to send a pattern out of the shift register.

However,  different  patterns  will  change  the
brightness of the connected LED because it will be on
or  off  for  different  periods  of  time.  For  example,  a
value of 255 is all ones, which means the LED will be at
maximum brightness, while a value of 0 is all zeroes,
so  the  LED  will  be  off.  A  decimal  value  of  170
corresponds  to  a  binary  10101010,  while  a  decimal
value of 136 corresponds to 10001000. Try different
values and see their results.

If  you  do  have  an  oscilloscope  around,  you  can
actually  see  the  individual  zeroes  and  ones.  The
65C22's CB1 pin is connected to expansion port pin 4
and acts as the shift register's clock. The 65C22's CB2
pin is connected to expansion port pin 3 and actually
sends  (or  receives)  the  data.  Connect  your  first
oscilloscope  probe  to  expansion  port  pin  4,  your
second oscilloscope probe to expansion port pin 3, and
set up your oscilloscope to trigger on the first probe.

You should see a square wave for the clock signal
and a sequence of highs and lows for the data signal
corresponding to whatever number you typed in. This
isn't purely an academic exercise, as you might end up
having to do pretty much the same thing to track down
bugs  when bit-banging various  protocols  out  of  the
expansion port. A logic analyzer would also suffice.

10 INPUT I
20 POKE 40714,I
30 C=OR(AND(PEEK(40715),227),16)
40 POKE 40715,C
50 POKE 40712,255
60 POKE 40713,255
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Watching the shift register's clock and data pins using
an  oscilloscope.  The  yellow  trace  shows  the  shift
register's  clock and the purple trace shows the shift
register's  data  output.  The  clock  will  always  be  the
same but the data will change based on what's being
shifted out.

Remember that the shift register isn't just used for
output. It can also be used for input from an external
device. It's just a matter of wiring it up and then writing
the appropriate software in Cody BASIC or assembly
language to talk to it.
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Note  that  the  65C22  shift  register  is  not
compatible with SPI communications, though there
are  some  hacks  to  work  around  it  for  one
particular  SPI  mode  (the  Steckschwein
retrocomputer actually does this to implement an
SPI  master).  For this  reason the Cody Computer
implements SPI in software, as you'll learn in the
next section. However, the 65C22's CB pins can do
a  lot,  and  you  should  refer  to  the  65C22  data
sheet to learn more about them. And for your own
Cody Computer  peripherals,  you  can  do  it  your
way. 

SPI COMMUNICATION AND
CARTRIDGES

The Cody Computer's expansion port is a relatively
general-purpose  device.  With  the  few  exceptions
noted above, every pin is programmable as an input or
an output and can be directly controlled from either
BASIC or assembly language. By themselves or with
minimal additional hardware they can even implement
more modern data protocols such as Inter-Integrated
Circuit (I2C) or the Serial Peripheral Interface (SPI).

In fact, some of the general-purpose pins also have
a  designated  special  use  to  load  programs  from
cartridges. Like many computers of the 8-bit era, the
Cody Computer supports program cartridges that can
be plugged directly into the expansion port. If one is
detected  using  the  CA  lines,  the  Cody  Computer's
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ROM will load the program from the cartridge over SPI
and run that program instead of Cody BASIC. 

This topic is complex enough to warrant a separate
discussion.  More  details  are  provided  in  Chapter  11,
Cartridges and SPI.
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INTRODUCTION

In  this  chapter  we'll  provide  some  examples  of
programming the Cody Computer in 65C02 assembly
language.  The  chapter  isn't  an  introduction  to  the
65C02's  assembly language in  itself.  If  you haven't
worked with  it  before,  you're  better  off  learning the
basics  using an online emulator  before  digging into
these examples. The 6502 family, while decades old,
was one of the most popular microprocessor families
in  existence.  Documentation,  both  historical  and
modern, is plentiful online.

Regarding the chip itself,  the 65C02 is essentially
an  updated  6502  with  some  additional  instructions
added and invalid ones removed. It  has a very small
number of  registers—an accumulator  (A),  two index
registers (X and Y), and some additional registers for
stack and CPU flag management. It supports most of
the  addressing  modes  typical  for  a  chip  of  its  era,
including direct  addressing,  indexed addressing,  and
some forms of indirect addressing. It also uses a range
of  256  "zero-page"  addresses  that,  while  stored  in
main RAM rather than the processor, can be viewed as
being a huge bank of low-cost registers.

In its day it was the affordable alternative to more
expensive microprocessor or microcontroller families.
Many of the most popular 8-bit computers utilized the
6502  family  for  their  main  processor,  and  16-bit
variants  of  the  family  went  on  to  be  used  in  later
computers,  add-ons,  and  game  consoles.  The  same
efficiency and elegance that made the chip so popular
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in prior decades is also put to good use by the Cody
Computer.

This  chapter  introduces  two  small  assembly
language programs. The first is a SID player that can
play many, but not all, Commodore 64 SID music files.
The second is a simple game demo inspired by 1980s
platformers  to  show  some  of  the  Cody  Computer's
sound and graphics capabilities. The programs are not
too complicated, but without a basic grasp of 65C02
assembly  programming,  they  can  be  a  bit  much  to
digest.  If  you've  programmed  in  another  assembly
language but haven't  worked with the 65C02,  you'll
probably  be  able  to  at  least  follow along.  Having  a
65C02 reference will be handy.

Just  as  with  Cody  BASIC,  the  assembly  language
programs  are  written  using  64tass,  a  6502-family
assembler  for  the  Commodore  computers  that  can
also generate generic 65C02 code. This assembler is
both  open-source  and  freely  downloadable,  so
installing or building a copy should not be difficult on
any of today's major computing platforms.

THE CODYSID MUSIC PLAYER

A simple SID player is a good project for assembly
language.  It  requires  low-level  programming,
including reading a SID file over the UART, loading it
into  memory,  and  calling  its  functions  on  a  regular
basis  to  play  the  song.  SID  files  have  some  unique
characteristics that make it easier to write a player, yet
these same characteristics also make it less likely that
any particular SID file will play on the Cody Computer.
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At its core a SID file is just a program with a load
address  and  some  functions  to  call.  One  of  the
functions is the  INIT routine that sets up the SID file.
Another  is  a  PLAY routine  that  plays  the  current
portion of the song when called on a regular basis by
the  player.  Everything  else,  including  the  way  the
music data is stored, is under the control of the person
who wrote the SID.

This  is  very  different  from more traditional  music
formats  such  as  MIDI  that  contain  structured  data
about the song. Because a SID file is a program, each
SID has its own unique expectations about where it will
be loaded, how it will be called, the memory layout of
the system, and what peripherals (including interrupts
and timers) are present.

While  the Cody Computer  has a  rudimentary SID
built  in,  it's not a Commodore 64.  As a result many
perfectly valid SID files will fail to play on it. However,
many  of  them  will,  particularly  if  we  constrain
ourselves  to  a  certain  subset  of  SID  file  types  and
carefully  look  at  their  sizes  and load addresses.  For
now,  we'll  limit  ourselves  to  PSID files  of  version 2,
then  prepare  ourselves  for  a  certain  amount  of
disappointment.

Even some incompatible SIDs might work after
running  them  through  a  relocator  tool  such  as
Linus Akesson's sidreloc. Another option would be
to write a player for Compute! Magazine's MUS
file format, which is more MIDI-like and has fewer
hardware dependencies. We won't be covering any
of that in this book. 
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THE PSID FILE FORMAT

There  are  several  versions  of  the  SID  file  format.
PSID  files  are  less  platform-specific  and  more
amenable  to  playing  them  without  full  C64
compatibility. RSID files, on the other hand, generally
require  a  full  emulator  or  real  C64.  We'll  limit
ourselves to PSID files, and within that category, we'll
only support version 2 of the format. This still leaves
us with many songs to try out.

The  file  begins  with  a  header  containing  some
information about the song. Much of this we don't care
about at all. A few parts of it, such as the song name,
author, and other related information, are nice to know
but  not  necessary  for  playing  it.  A  few  pieces  of
information  related  to  function  addresses  within  the
SID file are required, so we'll have to get those from
the header. We'll also need to take into account that
the header is in a big-endian format but the 65C02
works as a little-endian system.

After the header comes the actual SID data. Because
of the assumptions we've made, we can expect the SID
data will begin with the load address for the SID itself.
This  tells  us  where  to  copy it  into  memory,  and we
hope  that  it  won't  conflict  with  our  own  unique
memory layout. (There's actually a field for this in the
header, but it's usually not populated and we ignore it
for our purposes.)

Once the SID is loaded starting at its load address,
we have to set up a periodic timer interrupt to call the
song's code and play it. The SID itself needs us to call
its INIT function before each time we play, then call its
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PLAY routine on each timer interrupt to keep the song
playing.  (It's  actually  possible  for  a  SID  to  contain
multiple songs, something we handle when calling the
INIT function.)

As far as the actual music data, it's just contained
somewhere within the SID code and data we loaded.
We don't know how it's stored, what it does, or much of
anything about it without reverse-engineering the file
itself.  In many respects writing a SID player is more
like  writing  a  program  loader,  and  it's  one  of  the
reasons this project is relatively straightforward.

You can find many references online to the SID file
format  if  you're  interested  in  the  details.  For  what
we're going to write,  this is sufficient to begin going
through the code. Any little details we haven't covered
here will be mentioned as we go through the CodySID
program.

THE CODYSID PROGRAM

The  CodySID  source  code  starts  with  constant
definitions referring to various memory addresses that
will  be used by the program.  Many of  these you've
already heard of in earlier chapters, such as the UART
1 and 65C22 VIA register addresses.  We'll  need the
UART to load the SID files, while we need the VIA to
scan the keyboard and run a timer.  Other addresses
include  the  base  addresses  of  the  current  screen
memory and the SID.

ADDR      = $0300               ; The actual loading address of the program

SCRRAM    = $C400               ; Screen memory base address
SIDBASE   = $D400               ; SID register base address

UART1_BASE  = $D480             ; Register addresses for UART 1
UART1_CNTL  = UART1_BASE+0
UART1_CMND  = UART1_BASE+1
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Constants  for  many  of  the  peripherals'  register
locations.

The program will also need some places to put its
data.  These  include  STRPTR to  loop  through  text
strings,  SCRPTR for  the  current  location  in  screen
memory, and SIDPTR to point to the beginning of the
loaded SID data. Other data includes  SONGNUM for
the  current  SID song,  a  PLAYBIT flag indicating  if  a
song  is  playing,  and  several  KEYROW variables
containing the current keyboard matrix as of the last
scan. (Because we need to register our own interrupt
service  routine  on  top  of  the  one  built  into  Cody
BASIC, we also define  ISRPTR to know where the ISR
address needs to go.)

UART1_STAT  = UART1_BASE+2
UART1_RXHD  = UART1_BASE+4
UART1_RXTL  = UART1_BASE+5
UART1_TXHD  = UART1_BASE+6
UART1_TXTL  = UART1_BASE+7
UART1_RXBF  = UART1_BASE+8
UART1_TXBF  = UART1_BASE+16

VIA_BASE  = $9F00               ; VIA base address and register locations
VIA_IORB  = VIA_BASE+$0
VIA_IORA  = VIA_BASE+$1
VIA_DDRB  = VIA_BASE+$2
VIA_DDRA  = VIA_BASE+$3
VIA_T1CL  = VIA_BASE+$4
VIA_T1CH  = VIA_BASE+$5
VIA_SR    = VIA_BASE+$A
VIA_ACR   = VIA_BASE+$B
VIA_PCR   = VIA_BASE+$C
VIA_IFR   = VIA_BASE+$D
VIA_IER   = VIA_BASE+$E
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Assorted  zero-page  variables  for  memory  locations,
song status, and keyboard matrix status.

Many  of  the  constants  are  dedicated  to  the  SID
header. Our program will load the header into a fixed
address  at  $0200 as  denoted  by  the  SIDHEAD
constant. From there we have offsets into the header
portions our program might actually need, such as the
init  routine  address  (SIDINIT),  play  routine  address
(SIDPLAY),  and song information (SIDNAME for  the
name,  SIDAUTH for  the  author,  SIDRELE for  the
release/copyright info, and SIDSNUM for the number
of songs).

Offsets within the SID header.

Two 16-bit values define the program header for the
Cody  Computer.  When  Cody  BASIC  tries  to  load  a
machine language program, it needs to know where to
put it and how long it is. This means that each program
begins with a load address and an ending address. We
can calculate these using the ADDR constant and LAST

ISRPTR    = $08                 ; Pointer to the ISR address zero page variable

STRPTR    = $D0                 ; Pointer to string (2 bytes)
SCRPTR    = $D2                 ; Pointer to screen (2 bytes)
SIDPTR    = $D4                 ; Pointer to SID load address (2 bytes)
SONGNUM   = $D8                 ; Song number
PLAYBIT   = $D9                 ; Play bit (are we playing a song?)
KEYROW0   = $DA                 ; Keyboard row 0
KEYROW1   = $DB                 ; Keyboard row 1
KEYROW2   = $DC                 ; Keyboard row 2
KEYROW3   = $DD                 ; Keyboard row 3
KEYROW4   = $DE                 ; Keyboard row 4
KEYROW5   = $DF                 ; Keyboard row 5

SIDHEAD   = $0200               ; Page to store the SID file header
SIDLOAD   = SIDHEAD+$08
SIDINIT   = SIDHEAD+$0A
SIDPLAY   = SIDHEAD+$0C
SIDNAME   = SIDHEAD+$16
SIDAUTH   = SIDHEAD+$36
SIDRELE   = SIDHEAD+$56
SIDSNUM   = SIDHEAD+$0E
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label we define. We also tell the 64tass assembler to
start  generating  code  starting  at  our  load  address
using the .LOGICAL directive.

Creating  the  program  header  and  telling  the
assembler where our program will start.

On startup, control begins in the MAIN routine right
at  the  load  address.  In  our  case  it  performs  all  the
initial  setup,  such  as  enabling  our  interrupt  service
routine, turning on the timer, and preparing to scan the
keyboard.  After  that  it  tries  to  load  a  SID  file,  then
enters the program's main loop. User input from the
keyboard is mapped to the menu options, and as the
user  makes  selections,  the  program branches  to  the
corresponding code.

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR

;
; MAIN
;
; Main loop of the SID player. Responsible for initialization, information display,
; and menu selection.
;
MAIN        SEI
            STZ PLAYBIT         ; Not playing by default

            LDA #$07            ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
            STA VIA_DDRA

            LDA #<TIMERISR      ; Set up timer ISR location
            STA ISRPTR+0
            LDA #>TIMERISR
            STA ISRPTR+1

            LDA #<20000         ; Set up VIA timer 1 to emit ticks for timing purposes
            STA VIA_T1CL
            LDA #>20000
            STA VIA_T1CH

            LDA #$40            ; Set up VIA timer 1 continuous interrupts, no outputs
            STA VIA_ACR

            LDA #$C0            ; Enable VIA timer 1 interrupt
            STA VIA_IER
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CodySID's  main  routine.  It  begins  by  setting  up  the
Cody  Computer,  loading  the  first  SID,  and  then
entering the main loop to handle menu selections.

Two routines act as a bridge between the CodySID
program and the SID's own routines.  STARTSID starts

            CLI                 ; Turn on interrupts

            JSR CMDLOAD         ; Always start by loading and playing a song

_MENU       JSR SHOWMENU        ; Always print the menu just in case

_SCAN       JSR SHOWREGS

            LDA KEYROW0         ; Pressed Q for quit?
            AND #%00001
            BNE _QUIT

            LDA KEYROW1         ; Pressed L for load?
            AND #%10000
            BNE _LOAD

            LDA KEYROW2         ; Pressed N for next?
            AND #%01000
            BNE _NEXT

            LDA KEYROW5         ; Pressed P for previous?
            AND #%10000
            BNE _PREV

            BRA _SCAN           ; Repeat main loop

_QUIT       JSR STOPSID         ; Shut off SID

            SEI                 ; Disable interrupts

            RTS                 ; Return to BASIC and hope it works

_LOAD       JSR CMDLOAD         ; Run the load command
            BRA _MENU

_NEXT       LDA KEYROW2         ; Wait for N key to be released
            BNE _NEXT

            JSR STOPSID         ; Stop playing music

            LDA SONGNUM         ; Increment song number if within range, else play
            INC A
            CMP SIDSNUM
            BEQ _PLAY

            STA SONGNUM         ; Update song number and play
            BRA _PLAY

_PREV       LDA KEYROW5         ; Wait for P key to be released
            BNE _PREV

            JSR STOPSID         ; Stop playing music

            LDA SONGNUM         ; If song number at zero, just play the song
            BEQ _PLAY

            DEC SONGNUM         ; Otherwise decrement song number and then play
            BRA _PLAY

_PLAY       JSR SHOWINFO
            JSR STARTSID
            BRA _MENU
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the SID using the current song number and calling its
init  address.  STOPSID stops  playing  of  the  SID  by
clearing the play flag and resets the SID's registers.
Note how interrupts are disabled during certain parts
as  we  don't  want  the  SID  to  play  in  the  middle  of
making these kinds of changes.

Routines for starting and stopping SID file playback.
The  PLAYBIT variable is a flag indicating the current
play status.

We  need  a  routine  to  load  a  SID  when  the  user
requests  it.  The  CMDLOAD routine  handles  this  by
displaying an appropriate message on the screen, then
loading a SID using the  LOADHEAD and  LOADDATA
routines.  After  the  file  is  loaded  some  quick  byte-
swaps are done to convert certain addresses from big-
endian  to  little-endian.  Before  returning,  the  load
routine starts playing the SID.

;
; STARTSID
;
; Begins playing the SID by calling its INIT function.
;
STARTSID    SEI                 ; Initialize and start playing the SID file
            LDA SONGNUM
            JSR _CALLINIT
            LDA #1
            STA PLAYBIT
            CLI
            RTS
_CALLINIT   JMP (SIDINIT)

;
; STOPSID
;
; Stops the currently playing SID.
;
STOPSID     SEI
            STZ PLAYBIT
            CLI

            LDA #0
            LDX #0
_LOOP       STA SIDBASE,X
            INX
            CPX #25
            BNE _LOOP
            RTS
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The  CMDLOAD routine handles SID file loading at  a
high level.

Support routines include the  KEYSCAN routine for
scanning  the  keyboard  matrix  and  the  TIMERISR
routine for handling timer interrupts. Both of these are
very similar to routines in the Cody BASIC interpreter
except  for  the  SID  specific  behavior.  TIMERISR calls
KEYSCAN to update the keyboard variables scanned

;
; CMDLOAD
;
; Implements the menu option to load a SID file over the UART connection.
;
CMDLOAD     JSR STOPSID         ; Stop the current song and clear the SID registers

            JSR SHOWSCRN        ; Clear screen

            LDX #0              ; Display message about waiting to receive SID file
            LDY #3
            JSR MOVESCRN

            LDX #MSG_RECEIVE
            JSR PUTMSG

            JSR UARTON          ; Receive the SID file
            JSR LOADHEAD
            JSR LOADDATA
            JSR UARTOFF

            LDA SIDINIT+0       ; Swap INIT address bytes (big-endian in PSID header)
            PHA
            LDA SIDINIT+1
            STA SIDINIT+0
            PLA
            STA SIDINIT+1

            LDA SIDPLAY+0       ; Swap PLAY address bytes (big endian in PSID header)
            PHA
            LDA SIDPLAY+1
            STA SIDPLAY+0
            PLA
            STA SIDPLAY+1

            LDA SIDSNUM+0       ; Swap song count address bytes (big endian in PSID header)
            PHA
            LDA SIDSNUM+1
            STA SIDSNUM+0
            PLA
            STA SIDSNUM+1

            STZ SONGNUM         ; Always start at first song

            JSR SHOWSCRN        ; Clear screen

            JSR SHOWINFO        ; Display the info of the SID file we read

            JSR STARTSID        ; Start playing the current SID and song

            RTS                 ; All done
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by the main routine,  and it  also calls the SID's play
routine when a song is playing.

A simple routine for scanning the keyboard matrix and
storing  the  results  into  the  KEYROW zero-page
variables.

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN     PHA                   ; Preserve registers
            PHX

            STZ VIA_IORA          ; Start at the first row and first key of the keyboard
            LDX #0

_LOOP       LDA VIA_IORA          ; Read the keys for the current row from the VIA port
            EOR #$FF
            LSR A
            LSR A
            LSR A
            STA KEYROW0,X

            INC VIA_IORA          ; Move on to the next keyboard row
            INX

            CPX #6                ; Do we have any rows remaining to scan?
            BNE _LOOP

            PLX                   ; Restore registers
            PLA

            RTS

;
; TIMERISR
;
; A timer interrupt handler that scans the keyboard and calls the SID's play routine.
;
TIMERISR    BIT VIA_T1CL          ; Clear 65C22 interrupt by reading

            PHA                   ; Preserve registers
            PHX
            PHY

            JSR KEYSCAN           ; Scan the keyboard

            LDA PLAYBIT           ; Are we playing?
            BEQ _DONE

            JSR _CALLPLAY         ; Call the play routine

_DONE       PLY                   ; Restore registers
            PLX
            PLA

            RTI                   ; All done
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The  SID  player's  TIMERISR updates  the  keyboard
variables  and  plays  the  next  part  of  the  song  if
playing.

Loading  of  the  SID  data  is  handled  by  the
LOADHEAD and LOADDATA routines. These are called
once the UART is turned on and rely on various UART
helper  routines  to  read incoming bytes.  Because  we
have no specific end-of-file for the incoming SID data,
we rely on a timeout instead. This could be a problem
over an unreliable serial link, but relatively low baud
rates  over  modern  communications  are  generally
reliable.  If  you  find  yourself  having  intermittent
problems, check your connections and cables.

_CALLPLAY   JMP (SIDPLAY)

;
; LOADHEAD
;
; Loads a SID file header into the SIDHEAD page. Assumes PSID version 2.
;
LOADHEAD  LDX #0

_READ     JSR UARTGET
          BCC _READ

          STA SIDHEAD,X
          INX

          CPX #$7C
          BNE _READ

          RTS

;
; LOADDATA
;
; Loads the SID file data into memory. The routine assumes the load address
; must be read from the file (not included in the SID header).
;
LOADDATA

_READ1    JSR UARTGET
          BCC _READ1
          STA SIDPTR+0

_READ2    JSR UARTGET
          BCC _READ2
          STA SIDPTR+1

          LDX #$FF

_READ3    DEX
          BEQ _DONE

          JSR UARTGET
          BCC _READ3
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LOADHEAD and  LOADDATA copy the SID's  contents
from the UART into the Cody Computer's memory.

Important information in the SID header is shown to
the user when the file is  playing.  In  CodySID this  is
handled in  the  SHOWINFO routine,  which moves to
certain  positions  on  the  screen  and  prints  the  SID's
name,  author,  copyright  information,  song  numbers,
and code addresses.

          LDX #$FF              ; Reset counter

          STA (SIDPTR)          ; Store data

          INC SIDPTR+0          ; Increment load address
          BNE _READ3
          INC SIDPTR+1
          BRA _READ3

_DONE     RTS

;
; SHOWINFO
;
; Displays SID information on the screen. This includes the song name,
; author, release/copyright, load/init/play addresses, and song number.
;
SHOWINFO  LDX #0                ; Move to song name position
          LDY #3
          JSR MOVESCRN

          LDX #0                ; Print song name from header
_NAME     LDA SIDNAME,X
          JSR PUTCHR
          INX
          CPX #32
          BNE _NAME

          LDX #0                ; Move to song author position
          LDY #4
          JSR MOVESCRN

          LDX #0                ; Print song author from header
_AUTH     LDA SIDAUTH,X
          JSR PUTCHR
          INX
          CPX #32
          BNE _AUTH

          LDX #0                ; Move to song release/copyright position
          LDY #5
          JSR MOVESCRN

          LDX #0                ; Print song release/copyright information
_RELE     LDA SIDRELE,X
          JSR PUTCHR
          INX
          CPX #32
          BNE _RELE

          LDX #0                ; Print song load address from header
          LDY #7
          JSR MOVESCRN
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The  SHOWINFO routine  displays  the  song's  header
information.

While the song is  playing,  the SID's  registers  are
being updated constantly by the code in the SID file
itself.  To  show  the  user  what's  going  on,  we
periodically  display  the  current  contents  of  the  SID
registers. This is handled by the SHOWREGS routine,
which  displays  the  registers  broken  down  by  voice
register bank and filter/volume register. This routine

          LDX #MSG_LOAD
          JSR PUTMSG

          LDA SIDLOAD+1
          JSR PUTHEX
          LDA SIDLOAD+0
          JSR PUTHEX

          LDX #0                ; Print song init address from header
          LDY #8
          JSR MOVESCRN

          LDX #MSG_INIT
          JSR PUTMSG

          LDA SIDINIT+1
          JSR PUTHEX
          LDA SIDINIT+0
          JSR PUTHEX

          LDX #0                ; Print song play address from header
          LDY #9
          JSR MOVESCRN

          LDX #MSG_PLAY
          JSR PUTMSG

          LDA SIDPLAY+1
          JSR PUTHEX
          LDA SIDPLAY+0
          JSR PUTHEX

          LDX #0                ; Print song number in SID
          LDY #10
          JSR MOVESCRN

          LDX #MSG_SONGNUM
          JSR PUTMSG

          LDA SONGNUM
          INC A
          JSR PUTHEX

          LDX #MSG_SONGOF
          JSR PUTMSG

          LDA SIDSNUM+0
          JSR PUTHEX

          RTS                   ; All done
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is itself called from within the main loop to keep the
screen up to date.

;
; SHOWREGS
;
; Displays the SID register values as hex numbers on the screen.
;
SHOWREGS  LDX #3                ; Print register column headings
          LDY #12
          JSR MOVESCRN

          LDX #MSG_REGS
          JSR PUTMSG

          LDX #0                ; Print voice 1 registers
          LDY #13
          JSR MOVESCRN

          LDX #MSG_V1
          JSR PUTMSG

          LDX #0
_V1       LDA SIDBASE+0,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
          INX
          CPX #7
          BNE _V1

          LDX #0                ; Print voice 2 registers
          LDY #14
          JSR MOVESCRN

          LDX #MSG_V2
          JSR PUTMSG

          LDX #0
_V2       LDA SIDBASE+7,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
          INX
          CPX #7
          BNE _V2

          LDX #0                ; Print voice 3 registers
          LDY #15
          JSR MOVESCRN

          LDX #MSG_V3
          JSR PUTMSG

          LDX #0
_V3       LDA SIDBASE+14,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
          INX
          CPX #7
          BNE _V3

          LDX #27               ; Print filter and volume registers
          LDY #13
          JSR MOVESCRN

          LDX #0
_FV       LDA SIDBASE+21,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
          INX
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SHOWREGS is responsible for displaying the current
SID register  values on the screen.  This  is  a  common
feature in many SID players.

Small  helper  routines  are  used  to  display  other
parts of the user interface.  SHOWMENU displays the
menu  at  the  bottom  of  the  main  screen  while
SHOWSCRN clears the screen and prints the CodySID
banner at the top.

Helper routines for displaying a new CodySID player
screen and the menu.

A  total  of  three  routines  exist  to  handle
communications over the UART. UARTON turns UART 1
on with a baud rate of 19200. UARTGET checks to see

          CPX #4
          BNE _FV

          RTS

;
; SHOWMENU
;
; Shows the menu text at the bottom of the screen.
;
SHOWMENU  LDX #0
          LDY #20
          JSR MOVESCRN

          LDX #MSG_MENU
          JSR PUTMSG
          RTS

;
; SHOWSCRN
;
; Shows the CodySID banner at the top of the screen.
;
SHOWSCRN  JSR CLRSCRN

          LDX #16
          LDY #0
          JSR MOVESCRN

          LDX #MSG_CODYSID
          JSR PUTMSG

          LDX #6
          LDY #1
          JSR MOVESCRN

          LDX #MSG_SUBTITLE
          JSR PUTMSG

          RTS
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if any data is in the receive buffer, and if so, removes it.
If  not,  the  routine  returns  immediately  so  that  the
program  doesn't  block.  (Code  using  the  routine  can
check if anything was read by looking at the 65C02's
carry flag.) When the program is done reading a SID
file, it calls  UARTOFF to turn off UART 1. This code is
conceptually  similar  to  the  UART  code  in  the  Cody
BASIC  interpreter  as  well  as  the  UART  examples
written in BASIC in the previous chapter.

;
; UARTON
;
; Turns on UART 1.
;
UARTON    PHA
          PHY

_INIT     STZ UART1_RXTL          ; Clear out buffer registers
          STZ UART1_TXHD

          LDA #$0F                ; Set baud rate to 19200
          STA UART1_CNTL

          LDA #01                 ; Enable UART
          STA UART1_CMND

_WAIT     LDA UART1_STAT          ; Wait for UART to start up
          AND #$40
          BEQ _WAIT

          PLY
          PLA

          RTS                     ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF   PHA

          STZ UART1_CMND          ; Clear bit to stop UART

_WAIT     LDA UART1_STAT          ; Wait for UART to stop
          AND #$40
          BNE _WAIT

          PLA

          RTS

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET   PHY

          LDA UART1_STAT          ; Test no error bits set in the status register
          BIT #$06
          BNE _ERR
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UART routines used when a SID file is  being loaded
over the serial port.

Some additional utility routines are present to help
with  displaying  content  on  the  screen.  MOVESCRN
moves the current output location to a particular x and
y coordinate on the screen, while CLRSCRN clears the
screen entirely by filling the memory with whitespace
characters.

          LDA UART1_RXTL          ; Compare current tail to current head position
          CMP UART1_RXHD
          BEQ _EMPTY

          TAY                     ; Read the next character from the buffer
          LDA UART1_RXBF,Y

          PHA                     ; Increment the receiver tail position
          INY
          TYA
          AND #$07
          STA UART1_RXTL
          PLA

          PLY
          SEC                     ; Set carry to indicate a character was read
          RTS

_EMPTY    PLY
          CLC                     ; Clear carry to indicate no character read
          RTS

_ERR      LDX #MSG_ERROR
          JSR PUTMSG

_DONE     JMP _DONE

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN  LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          INY                     ; Increment pointer for each row
_LOOPY    CLC
          LDA SCRPTR+0
          ADC #40
          STA SCRPTR+0
          LDA SCRPTR+1
          ADC #0
          STA SCRPTR+1
          DEY
          BNE _LOOPY

          CLC                     ; Add position on column
          TXA
          ADC SCRPTR+0
          STA SCRPTR+0
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The  MOVESCRN and  CLRSCRN routines  set  the
current screen location or clear the screen entirely.

Other utility  routines include those for  displaying
content  on  the  screen.  PUTMSG prints  a  message
string (defined by one of the MSG_ constants) at the
current location. PUTCHR puts a single character at the
current  location.  PUTHEX is  similar  to  PUTCHR but
displays the current value as a two-digit hex number.
All advance the screen location while printing.

          LDA SCRPTR+1
          ADC #0
          STA SCRPTR+1

          RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN   LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          LDA #20                 ; Clear screen by filling with whitespaces

          LDY #25                 ; Loop 25 times on Y

_LOOPY    LDX #40                 ; Loop 40 times on X for each Y

_LOOPX    STA (SCRPTR)            ; Store zero

          INC SCRPTR+0            ; Increment screen position
          BNE _NEXT
          INC SCRPTR+1

_NEXT     DEX                     ; Next X
          BNE _LOOPX

          DEY                     ; Next Y
          BNE _LOOPY

          RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG      PHA
            PHY

            LDA MSGS_L,X        ; Load the pointer for the string to print
            STA STRPTR+0
            LDA MSGS_H,X
            STA STRPTR+1

            LDY #0

_LOOP       LDA (STRPTR),Y      ; Read the next character (check for null)
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Utility routines for putting strings and hex numbers on
the screen.

The messages that can be displayed on the screen
are defined by set of constants. Each is prefixed with
MSG_ and  relates  to  a  particular  location  in  the
program's message table.

            BEQ _DONE

            JSR PUTCHR          ; Copy the character and move to next
            INY

            BRA _LOOP           ; Next loop

_DONE       PLY
            PLA

            RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR      STA (SCRPTR)        ; Copy the character

            INC SCRPTR+0        ; Increment screen position
            BNE _DONE
            INC SCRPTR+1

_DONE       RTS

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;
PUTHEX      PHA
            PHX
            TAX
            JSR HEXTOASCII
            PHA
            TXA
            LSR A
            LSR A
            LSR A
            LSR A
            JSR HEXTOASCII
            PHA
            PLA
            JSR PUTCHR
            PLA
            JSR PUTCHR
            PLX
            PLA
            RTS
HEXTOASCII  AND #$F
            CLC
            ADC #48
            CMP #58
            BCC _DONE
            ADC #6
_DONE       RTS
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The messages that may be displayed by the CodySID
program.

The  string  themselves  are  defined  just  below  as
null-terminated C strings.

The actual strings corresponding to each message ID.

To  map  the  constants  to  the  strings,  the  strings'
addresses are kept in a table of low bytes and high
bytes. Each constant represents an index into the table.
When a particular  string is  needed it's  easy for  the
PUTMSG routine to find the string pointer based on
the index within the table.

Splitting  the  table  into  low  and  high  bytes  is  a
common trick in 8-bit code. The program can use the

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYSID   = 0
MSG_SUBTITLE  = 1
MSG_LOAD      = 2
MSG_INIT      = 3
MSG_PLAY      = 4
MSG_REGS      = 5
MSG_V1        = 6
MSG_V2        = 7
MSG_V3        = 8
MSG_MENU      = 9
MSG_RECEIVE   = 10
MSG_SONGNUM   = 11
MSG_SONGOF    = 12
MSG_ERROR     = 13

;
; The strings displayed by the program.
;
STR_CODYSID   .NULL "CodySID!"
STR_SUBTITLE  .NULL "The Cody Computer SID Player"
STR_LOAD      .NULL "Load $"
STR_INIT      .NULL "Init $"
STR_PLAY      .NULL "Play $"
STR_REGS      .NULL "FL FH PL PH CL AD SR    CL CH FR MV"
STR_V1        .NULL "V1 "
STR_V2        .NULL "V2 "
STR_V3        .NULL "V3 "
STR_MENU      .NULL "(L)oad (Q)uit (P)rev (N)ext"
STR_RECEIVE   .NULL "Send PSID V2 file and wait for end..."
STR_SONGNUM   .NULL "Song $"
STR_SONGOF    .NULL " of $"
STR_ERROR     .NULL "ERROR!"
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same  index  register  value  to  look  up  both  bytes
without any other incrementing.

The low-byte and high-byte portions of the message
table.

The  program's  source  code  is  ended  with  some
boilerplate. The LAST label is used to indicate the end
of  the  program.  This  is  used  when  calculating  the
program  length  and  end  address  for  the  program
header, as you may remember from the beginning of
the walkthrough. The .ENDLOGICAL assembly directive
ends the  .LOGICAL directive used at the beginning of
the program to emit code for a particular load address.

;
; Low bytes of the string table addresses.
;
MSGS_L
  .BYTE <STR_CODYSID
  .BYTE <STR_SUBTITLE
  .BYTE <STR_LOAD
  .BYTE <STR_INIT
  .BYTE <STR_PLAY
  .BYTE <STR_REGS
  .BYTE <STR_V1
  .BYTE <STR_V2
  .BYTE <STR_V3
  .BYTE <STR_MENU
  .BYTE <STR_RECEIVE
  .BYTE <STR_SONGNUM
  .BYTE <STR_SONGOF
  .BYTE <STR_ERROR

;
; High bytes of the string table addresses.
;
MSGS_H
  .BYTE >STR_CODYSID
  .BYTE >STR_SUBTITLE
  .BYTE >STR_LOAD
  .BYTE >STR_INIT
  .BYTE >STR_PLAY
  .BYTE >STR_REGS
  .BYTE >STR_V1
  .BYTE >STR_V2
  .BYTE >STR_V3
  .BYTE >STR_MENU
  .BYTE >STR_RECEIVE
  .BYTE >STR_SONGNUM
  .BYTE >STR_SONGOF
  .BYTE >STR_ERROR
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Boilerplate at the end of the program.

BUILDING AND RUNNING CODYSID

Building  CodySID  with  tass64 is  straightforward.
You only need the codysid.asm file and your installed
tass64 assembler.  Just run the same command as in
the  previous  example,  but  for  CodySID:  64tass  --
mw65c02 --nostart -o codysid.bin codysid.asm.

Assembling CodySID into a binary file.

Once you have the binary, you can load it from the
Cody Computer like any other. Run LOAD 1,1 to begin a
load  operation  from  the  Prop  Plug,  then  send  the
newly-generated  binary  over  as  you  did  in  the
previous example.

Once the program has started, it will prompt you to
send  a  SID  file  over.  You  can  send  this  from  your
terminal program just like you did the program itself.
When the SID file has been received, the player will

LAST                              ; End of the entire program

.ENDLOGICAL

% 64tass --mw65c02 --nostart -o codysid.bin codysid.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file:   codysid.asm
Output file:       codysid.bin
Data:       1126   $0000-$0465   $0466
Passes:            2
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automatically begin playing the first song in the SID.
The screen contents will update with the current song
and SID register information as the song is played. (If
the  SID  is  incompatible,  however,  anything  could
happen  and  you  may  have  to  restart  the  Cody
Computer.)

You  can  use  the  on-screen  options  to  load  a
different file, quit the program, or go back and forth to
the previous or next song in the file (if any). Just press
the key on your keyboard corresponding to the menu
option.

The CodySID program playing a SID file of AC/DC's
Highway  to  Hell.  Note  how  the  current  SID  register
values are updated as the song plays.

SUGGESTED SID FILES

The High-Voltage Sid Collection contains the largest
single  repository  of  SID  files.  Many,  but  not  all,  of
these  can  be  used  on  the  Cody  Computer.  During
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development  a  subset  of  these  were  found  to  work
reasonably well  and were used for  testing.  A list  of
many  of  these  high-quality  known  working  files  is
given below.

Agent USA by Tom Snyder (1984).
Axel F by Barry Leitch (1986).
The Blackadder Theme by Joachim Wijnhoven
(2002).
The Blues Brothers soundtrack by Paul Tankard
(1991) contains multiple songs. It clobbers the
screen memory but is otherwise playable.
Ducktales by Vincent Voois (1990).
Electricity by Pawel Wieczorek (1994).
Ghostbusters by Etienne Muson (1985).
Highway to Hell by Benjamin Dibbert (2022).
Jingle Bells by Richard Bayliss (2002).
The Mayhem in Monsterland soundtrack by
Steve Rowlands (1993) contains multiple songs
and sound effects.
The Mohican in the Gael by Zack Maxis (2024).
The Murder on the Mississippi soundtrack by Ed
Bogas (1986) contains over a dozen brief songs.
Popcorn by Sami Sepp (1980).
Radioactivity by Sami Louko (2022).
The Railroad Works by John Wentworth (1984)
plays correctly but clobbers the default character
set. Restart the computer after playing.
Seahorses by Ed Bogas (1984) contains multiple
songs and sound effects from Sea Horse Hide'n
Seek.
Starman by Sami Sepp (2015).

• 
• 
• 

• 

• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
• 

• 

• 
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Star Trek - The Rebel Universe by David Dunn
(1989) is a rendition of the TV theme for the
game of the same name.
Summer Games (1984) from Epyx contains the
national anthems and event songs from the
game.
Take My Breath Away by Steven Diemer (1991).

THE "CODY BROS." DEMO

Games  are  often  written  in  assembly  language
because of its better performance. This is particularly
the case for any kind of game with fast action such as
arcade games. We won't be writing an entire game in
this section, but we are going to write a simple demo
reminiscent  of  Super  Mario  Brothers,  Great  Giana
Sisters,  and  other  platform  games.  It's  a  good
oppportunity  to  show  how  some  of  the  Cody
Computer's features can be used together to make a
game in assembly language.

We'll keep the game and its graphics simple so we
don't need other tools to make it, instead just writing
the relevant data as constants and tables in a simple
assembly  language  program.  To  keep  things  very
simple,  our game will  have a game world that is 64
tiles  wide  by  25  tiles  high.  We'll  also  only  have  a
handful of tile types and only a single sprite.

All  control  will  occur  by  reading  the  joystick
periodically.  When moving  around in  the  game,  the
world  willscroll  horizontally  from  side  to  side.  The
player will have a single sprite under their control, and
we'll be able to move the sprite left and right. Moving
up on the joystick will produce a simple animation and

• 

• 

• 
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sound effect,  while pulling down on the joystick will
change the sprite's color. The fire button will exit the
game and return to Cody BASIC.

Because  it's  a  computer  named  after  a  dog,  our
sprite will be a stylized Pomeranian. And because the
demo is inspired by a particular Nintendo classic, we'll
have  his  outfits  be  red  or  green.  Lastly,  for  an
animation  and  sound  effect,  we'll  make  him  bark
rather  than  jump  or  shoot  fireballs.  Once  you've
mastered the basics, there's no reason you can't use
what you learn here to make a real game.

THE CODYBROS PROGRAM

As with the CodySID player, the program starts with
a variety of constant definitions and memory locations
that we'll be using throughout the program. Some of
these relate to the memory locations used for double-
buffering  of  graphics.  Because  it's  not  possible  to
redraw an entire  screen during the interval  between
frames, we have to render the next screen to another
buffer. When the drawing is done, we switch them out
between  frames.  This  means  that  unlike  many
programs, we have two different screen memory and
color memory locations.
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Some of the most important memory locations we'll
be  using.  This  includes  the  double-buffers  for  the
screen and color memory.

We'll be reading from the joystick, so the constants
for the 65C22 VIA addresses are also included.

The memory locations for the 65C22 VIA's registers.

The program will need to read and update several
video  register  locations,  so  those  also  need  to  be
included somewhere in the program. Just like for the
others,  we'll  define constants instead of using magic
numbers.

Memory  locations  for  the  registers  in  the  Cody
Computer's video interface device.

ADDR      = $0300               ; The actual loading address of the program

SCRRAM1   = $A000               ; Screen memory locations for double-buffering
SCRRAM2   = $A400

COLRAM1   = $A800               ; Color memory locations for double-buffering
COLRAM2   = $AC00

SPRITES   = $B000               ; Sprite memory locations

VIA_BASE  = $9F00               ; VIA base address and register locations
VIA_IORB  = VIA_BASE+$0
VIA_IORA  = VIA_BASE+$1
VIA_DDRB  = VIA_BASE+$2
VIA_DDRA  = VIA_BASE+$3
VIA_T1CL  = VIA_BASE+$4
VIA_T1CH  = VIA_BASE+$5
VIA_SR    = VIA_BASE+$A
VIA_ACR   = VIA_BASE+$B
VIA_PCR   = VIA_BASE+$C
VIA_IFR   = VIA_BASE+$D
VIA_IER   = VIA_BASE+$E

VID_BLNK  = $D000               ; Video blanking status register
VID_CNTL  = $D001               ; Video control register
VID_COLR  = $D002               ; Video color register
VID_BPTR  = $D003               ; Video base pointer register
VID_SCRL  = $D004               ; Video scroll register
VID_SCRC  = $D005               ; Video screen common colors register
VID_SPRC  = $D006               ; Video sprite control register
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We'll only have a single sprite in our program, and
we'll place it at the beginning of the first sprite bank.
This keeps the number of constants we need to define
to a minimum.

The sprite registers used in the demo. There are many
more for other sprites, but we're only using the first
sprite in the first sprite bank.

The game won't have music, but it will have a sound
effect.  That means we'll need to know where the SID
registers are in memory. In particular, we'll be using
voice  1  for  our  sound  effect,  so  we'll  need  those
registers, along with a control register for setting the
global volume. The SID, of course, has two other voices
that we won't be using.

The SID registers we'll  be using in the program. The
focus  is  on  voice  1,  which  we'll  use  for  a  bark-like
sound effect.

We'll  also  need  to  track  the  player's  x  and  y
coordinates along with the corner x and y position on
the  map.  The  player's  y  coordinate  won't  be  used
much for our demo, but the x coordinate is needed to
determine where the player is on the screen. Because
the player can move in per-pixel increments but the

SPR0_X    = $D080               ; Sprite X coordinate
SPR0_Y    = $D081               ; Sprite Y coordinate
SPR0_COL  = $D082               ; Sprite color
SPR0_PTR  = $D083               ; Sprite base pointer

SID_BASE  = $D400               ; SID registers (mostly for voice 1)
SID_V1FL  = SID_BASE+0
SID_V1FH  = SID_BASE+1
SID_V1PL  = SID_BASE+2
SID_V1PH  = SID_BASE+3
SID_V1CT  = SID_BASE+4
SID_V1AD  = SID_BASE+5
SID_V1SR  = SID_BASE+6
SID_FVOL  = SID_BASE+24
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tile map is along character boundaries,  we'll  have to
convert back and forth at times in the program.

In our simple demo, the player can move up to 256
pixels because the x-coordinate is stored in a single
byte. This is also the reason our game world is limited
to 64 horizontal tiles (recall that each character on the
screen is four pixels wide). In a real game you would
probably want  to  have a  larger  game world,  so you
would either need to use a 16-bit number or keep track
of per-character offsets in a separate variable.

Variables in zero-page used for the player's location
and corners.

When we draw the game screen we'll need pointers
to the game map and to the video device's screen and
color  memory.  These will  be typical  16-bit  variables
like you've already seen in other assembly programs.

Pointer variables used when drawing the game screen.

We also have a few remaining flag variables.  One
tells  us  which  of  the  two  screen  and  color  memory
buffers to use, as we'll need to toggle between them
on  each  frame.  Another  tells  us  whether  the  game
sprite  is  moving  forward  or  backward  in  the  game
world. We'll also need a temporary variable for some
of our calculations, so it's declared here as well.

PLAYERX   = $D0                 ; Player coordinates
PLAYERY   = $D1

CORNERX   = $D2                 ; Screen top-left corner coordinates
CORNERY   = $D3

MAPPTR    = $D4                 ; Memory pointers for drawing the screen
SCRPTR    = $D6
COLPTR    = $D8
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Miscellaneous  zero-page  variables  used  by  the
program.

After our definitions are in place, we start with the
beginning of the program. This program header is the
same as in the other assembly language example. We
also  use  the  same  assembly  directive  as  before  to
generate  our  code  relative  to  the  program's  load
address.

The  program  header  containing  the  start  and  end
addresses  of  the  program.  Cody  BASIC's  program
loader needs this information to be able to load and
run the program.

Immediately after the program header is the start of
the program, in our case a MAIN routine. It begins by
setting up some of the variables in the game world,
along  with  configuring  the  SID,  VID,  and  VIA
peripherals.

BUFFLAG   = $DA                 ; Flag indicating what buffer is being used
FWDREV    = $DB                 ; Flag indicating player direction (forward or reverse)

TEMP      = $DC                 ; Temporary variable

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR
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Initial setup in the MAIN routine.

After the initial setup is done the program needs to
populate the game world. Part of that involves copying
the sprite data for  our sprite into locations in sprite
memory.  It  also has to copy a set  of  characters into
character memory, as these characters are the custom
tiles  that  make  up  the  game  world  itself.  (For  our
example we'll just copy them into the beginning of the
normal  character  memory location,  but  in  your  own
games,  you could even move the character  memory
itself to a different location.)

;
; MAIN
;
; The starting point of the demo. Performs the necessary setup before the demo runs.
;
MAIN        STZ PLAYERX         ; Reset player position
            LDA #183
            STA PLAYERY

            STZ FWDREV          ; Player moving forward by default

            STZ BUFFLAG         ; Clear double buffer flag

            LDA #$07            ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
            STA VIA_DDRA

            LDA #$06            ; Set VIA to read joystick 1
            STA VIA_IORA

            LDA #$01            ; Sprite bank 0, white as common color
            STA VID_SPRC

            LDA VID_COLR        ; Set border color to black
            AND #$F0
            STA VID_COLR

            LDA #$E0            ; Store shared colors (light blue and black)
            STA VID_SCRC

            LDA #$04            ; Enable horizontal scrolling
            STA VID_CNTL
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Setting up the characters (game tiles) and sprites for
the demo.

At this point the program enters the game loop. On
each loop we have to convert the player's location to
the  screen  coordinates,  draw  the  screen,  and  then
handle  any user  input  via  the  joystick.  Some of  the
details are handled by subroutines, but the main loop
organizes most of it.

The first part of the main loop calculates the screen
location, taking into account the bounds of the game
world. Ordinarly we want the game world centered on
the player's current location, but at the beginning and
end, we need to do a special check instead. We don't
want  the  player  to  be  able  to  move  outside  of  the
game world.

Once  that's  taken  care  of,  the  program  calls
DRAWSCRN to draw the screen for this frame. As part
of drawing the screen, the program waits for a vertical
blank to update the video registers before returning.
As soon as it returns, the program calls DRAWSPRT to
update  the  sprite  in  its  correct  location  while  the
vertical blank is still occurring.

            LDX #0              ; Copy game map tiles into character memory
_COPYCHAR   LDA CHARDATA,X
            STA $C800,X
            INX
            CPX #80
            BNE _COPYCHAR

            LDX #0              ; Copy sprite data into video memory
_COPYSPRT   LDA SPRITEDATA,X
            STA SPRITES,X
            INX
            CPX #255
            BNE _COPYSPRT

            LDA #$D8            ; Initial sprite color
            STA SPR0_COL
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Code for  calculating  the  current  frame's  coordinates
before drawing it.

The  rest  of  the  main  loop  processes  the  joystick
input. It reads VIA port A and then checks the bits to
see  if  any  buttons  or  switches  are  pressed.  The  fire
button  will  exit  the  program,  while  right  and  left
joystick movements move the player one pixel for that
frame.  Pushing  the  joystick  up  calls  BARK,  which
displays a simple animation and sound effect. Pushing
the  joystick  down  calls  SWAPCOLOR,  which  toggles
the sprite's clothing color between green and red.

LOOP        LDA PLAYERX         ; Calculate coarse scroll position
            LSR A
            LSR A

            CMP #21
            BCC _TOOLO

            CMP #46
            BCS _TOOHI

            SEC
            SBC #21
            STA CORNERX

            BRA _DRAW

_TOOLO      STZ CORNERX
            BRA _DRAW

_TOOHI      LDA #25
            STA CORNERX
            BRA _DRAW

_DRAW       JSR DRAWSCRN        ; Draw the screen and sprite
            JSR DRAWSPRT

            LDA VIA_IORA        ; Read joystick
            LSR A
            LSR A
            LSR A

            BIT #16             ; Fire button?
            BEQ _FIRE

            BIT #8              ; Joystick right?
            BEQ _RIGHT

            BIT #4              ; Joystick left?
            BEQ _LEFT

            BIT #2              ; Joystick down to swap colors?
            BEQ SWAPCOLOR

            BIT #1              ; Joystick up to bark?
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The  final  portion  of  the  MAIN routine.  This  code
handles  the  user  input  from  the  joystick  and  fire
button.

The BARK routine handles the sound and animation
when  the  player  moves  the  joystick  up.  It  starts  by
configuring  the  SID  to  play  a  sawtooth  wave,  then
enters an inner loop, _WOOF. In the _WOOF loop, the
program increases the frequency of the sound slightly
while moving the sprite upward on the screen. At the
end the sound is shut off and the sprite moved back to
its normal y-coordinate.

            BEQ BARK

            BRA LOOP

_FIRE       RTS                 ; Exit on fire button

_LEFT       LDA #1              ; Move left
            STA FWDREV

            LDA PLAYERX
            BEQ _NEXT

            DEC PLAYERX
            BRA _NEXT

_RIGHT      STZ FWDREV          ; Move right

            LDA PLAYERX
            CMP #232
            BEQ _NEXT

            INC PLAYERX

_NEXT       JMP LOOP

;
; BARK
;
; Handles a barking sound/animation for the sprite, then jumps back to the
; main loop.
;
BARK        LDA #$0F            ; Set main volume
            STA SID_FVOL

            LDA #<2400          ; Set starting frequency
            STA SID_V1FL
            LDA #>2400
            STA SID_V1FH

            LDA #$50            ; Attack/decay
            STA SID_V1AD

            LDA #$F0            ; Sustain/release
            STA SID_V1SR

            LDA #$21            ; Begin playing
            STA SID_V1CT

447



The  BARK routine  makes  a  bark-like  sound  while
moving the game sprite up and down quickly. As a first
approximation, it simulates a barky agitated or excited
Pomeranian.

The other  player  action (other  than movement)  is
handled  by  SWAPCOLOR.  Those  of  you  who  have
played the  original  Super  Mario  Brothers may have
noted that  Mario  and Luigi  were  basically  the  same
sprite, just with red or green colors. Our demo does a
similar thing, with the player sprite starting out green.
When toggled, we switch out the sprite's color register
so that the green color is red. And when toggled again,
it switches back to green, and so on.

            LDX #0              ; Loop counter

_WOOF       JSR WAITBLANK       ; Wait for the next frame

            DEC SPR0_Y          ; Decrement sprite Y for dog hop

            CLC                 ; Increment frequency for next loop
            LDA SID_V1FL
            ADC #100
            STA SID_V1FL

            LDA SID_V1FH
            ADC #0
            STA SID_V1FH

            INX                 ; Increment for next loop
            CPX #10
            BNE _WOOF

            LDA #0              ; Stop playing
            STA SID_V1CT

            LDA PLAYERY         ; Move sprite back to original y
            STA SPR0_Y

            JMP LOOP
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SWAPCOLOR toggles the player sprite between green
and red.

Drawing the screen is handled by the  DRAWSCRN
routine.  It  sets  up a pointer  into the map data,  then
iterates over the data to populate the screen and color
memory for the next frame. Because it takes so long to
draw a screen, all the drawing is done offscreen in a
technique known as double-buffering. At the end, the
routine  waits  for  a  vertical  blank,  then  switches  the
video registers to point  to the new screen and color
memory areas. We flip back and forth between them
on each  call  to  DRAWSCRN so  one  is  being  shown
while the other is being drawn.

This isn't quite how the drawing would be done in a
real game. In a real game, the screen would only be
fully updated every fourth frame. The scroll registers
would  be  used  to  slowly  slide  the  current  screen
across while the new screen is being drawn (roughly
one-quarter  of  it  on  each  frame).  When  the  scroll

;
; SWAPCOLOR
;
; Swaps the sprite color (red/green or green/red) and jumps back to the main
; loop.
;
SWAPCOLOR   LDA SPR0_COL        ; Check current sprite colors
            CMP #$D8
            BEQ _RED

_GRN        LDA #$D8            ; Make sprite wear green
            STA SPR0_COL
            BRA _WAITJOY

_RED        LDA #$28            ; Make sprite wear red
            STA SPR0_COL
            BRA _WAITJOY

_WAITJOY    LDA VIA_IORA        ; Read joystick
            LSR A
            LSR A
            LSR A

            BIT #2              ; Wait for joystick release
            BEQ _WAITJOY

            JMP LOOP            ; All done
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wraps  around,  the  new  screen  would  be  ready  and
swapped in.

That approach is more complex but it allows a better
frame  rate  than  our  demo.  What  we  have  here  is
intended  to  be  an  example  of  double-buffering
without  additional  complications.  It  does  mean  that
we're doing extra work redrawing the entire screen on
each call, but the result is suitable to show the basics.
Just be aware that there are better ways of doing this
in real life.

Much of the drawing (or more accurately, copying)
is done in the  COPYROWS routine.  It  takes a single
parameter  in  the  X  register,  the  number  of  rows  to
copy. This is because, again, in a real application only a
subset of screen rows may be copied between frames
(rather  than  slowing  down  the  whole  application  to
draw the whole thing each time). We just use a value
of 25 to draw all the rows.

;
; DRAWSCRN
;
; Draws the current visible of the screen. This routine uses double-buffering
; so that the new screen and colors are drawn to a different location, and the
; screens/colors are switched out during the vertical blanking interval.
;
; In a real application the screen may need to be drawn (offscreen) in sections
; to keep up with a high game frame rate. For an example this works well enough
; to avoid glitches or tearing during scrolling.
;
DRAWSCRN    LDA #<MAPDATA       ; Start map pointer at beginning of map
            STA MAPPTR+0
            LDA #>MAPDATA
            STA MAPPTR+1

            CLC                 ; Adjust map position based on player position
            LDA MAPPTR+0
            ADC CORNERX
            STA MAPPTR+0
            LDA MAPPTR+1
            ADC #0
            STA MAPPTR+1

            LDA BUFFLAG         ; Determine what buffer to draw to
            TAX

            LDA SCRRAMS_L,X     ; Start screen pointer at beginning of buffer
            STA SCRPTR+0
            LDA SCRRAMS_H,X
            STA SCRPTR+1
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DRAWSCRN handles  most  of  the  high-level
operations  involved  in  rendering  a  new  screen  and
color memory area based on the current map location.

The  screen  and  color  memory  is  updated  by  the
COPYROWS routine.  As  mentioned,  it  will  update  a
variable number of rows on each call, specified by the
value  in  the  X  register.  It  also  assumes  that  the
MAPPTR is  pointed to the current source row in the
map  data,  while  SCRPTR and  COLPTR point  to  the
current destination rows in scren and color memory.

Screen data is  copied directly from the map data.
Color data is  obtained by using the tile value as an
index into a lookup table,  COLORDATA,  that has the
character-specific  colors  for  each  tile.  (For  many
games this technique is actually not that optimal,  as

            LDA COLRAMS_L,X     ; Start color pointer at beginning of buffer
            STA COLPTR+0
            LDA COLRAMS_H,X
            STA COLPTR+1

            LDX #25             ; For now, try drawing everything
            JSR COPYROWS

            JSR WAITBLANK       ; Wait for the blanking interval to make changes

            LDA BUFFLAG         ; Determine what buffer to flip to
            TAX

            LDA BASEREGS,X      ; Update base register for screen memory
            STA VID_BPTR

            LDA COLREGS,X       ; Update color register for color memory
            STA VID_COLR

            LDA BUFFLAG         ; Toggle buffer flag
            EOR #$01
            STA BUFFLAG

            LDA PLAYERX         ; Update fine scroll position if needed

            CMP #(4*21)
            BCC _DONE

            CMP #(4*46)
            BCS _DONE

            AND #$03
            ASL A
            ASL A
            ASL A
            ASL A
            STA VID_SCRL

_DONE       RTS                 ; All done
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tiles may be drawn in a variety of colors, but for this
example it works nicely.)

Each  row  consists  of  40  characters  written  to  the
screen and color memory locations. Index registers are
used to reference particular memory locations relative
to the pointers,  but  after  each row,  they need to be
updated  to  move  to  the  next  row.  For  COLPTR and
SCRPTR they need to be incremented by 40 because
screen and color memory are 40 characters wide. For
MAPDATA the pointer needs to be incremented by 64
because the game world is 64 tiles wide.

;
; COPYROWS
;
; Copies a number of rows from the game map into the screen and color memory. The
; number of rows to copy is stored in the X register.
;
COPYROWS

_XLOOP      PHX
            LDY #0

_YLOOP      LDA (MAPPTR),Y      ; Copy the character (game tile) into screen memory
            STA (SCRPTR),Y

            TAX                 ; Copy the color into color memory
            LDA COLORDATA,X
            STA (COLPTR),Y

            INY                 ; Next loop for Y
            CPY #40
            BNE _YLOOP

            CLC                 ; Increment map pointer to next row
            LDA MAPPTR+0
            ADC #64
            STA MAPPTR+0
            LDA MAPPTR+1
            ADC #0
            STA MAPPTR+1

            CLC                 ; Increment screen pointer to next row
            LDA SCRPTR+0
            ADC #40
            STA SCRPTR+0
            LDA SCRPTR+1
            ADC #0
            STA SCRPTR+1

            CLC                 ; Increment color pointer to next row
            LDA COLPTR+0
            ADC #40
            STA COLPTR+0
            LDA COLPTR+1
            ADC #0
            STA COLPTR+1

            PLX                 ; Next loop for X
            DEX
            BNE _XLOOP
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The COPYROWS routine updates a certain number of
rows in a screen and color memory location with the
data from the game map.

The sprite also needs to be updated on each frame.
This is handled by the DRAWSPRT routine. It looks at
the  current  player  position  in  the  game  world  and
determines where the sprite should be drawn on the
screen. In most situations the sprite should be drawn in
the middle of the screen, but at the beginning and end
of the game world the behavior is different.  In those
cases,  scrolling  stops,  so  the  sprite  has  to  move
instead.

Our  sprite  also  has  a  total  of  four  frames,  two
walking forward and two walking backward. To specify
the  correct  sprite  image,  the  program  examines  the
value in  FWDREV set by the main loop to determine
whether  the  player's  moving  forward  (right)  or
backward  (left).  Once  that's  decided,  the  current
player X coordinate is used to pick one of the two walk
frames for each direction. Even values use one sprite
and odd ones the other.

This  routine  gets  called  immediately  after
DRAWSCRN because  we  want  to  make  the  sprite
register  updates  during  the  vertical  blank  as  well.
When drawing the screen the program waits  until  a
vertical  blank  to  update  the  video  registers,  and  so
calling this immediately after means the code can run
in the same vertical blank.

            RTS                 ; All done

;
; DRAWSPRT
;
; Draws the sprite in the correct location for this frame. Note that the sprite
; isn't "drawn" so much as its registers updated so that it appears correctly.
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DRAWSPRT updates the sprite on the screen based on
the current game state.

WAITBLANK handles  the  actual  waiting  for  a
vertical blank. First it waits for the blanking register to
have a zero value, indicating that the screen is actively
being  displayed  by  the  video  hardware.  After
detecting a zero, it waits for a transition to a 1, meaning
that  we  went  from drawing to  the  blanking interval.
Just checking for a 1 won't do as we might be in the
middle  or  at  the  end  of  the  interval,  which  isn't
necessarily what we want.

; This should be called after drawing the screen because we want to sneak in
; during the vertical blank.
;
DRAWSPRT    LDA PLAYERX         ; Calculate new sprite location
            CMP #(21*4)
            BCC _LO

            CMP #(46*4)
            BCS _HI

            LDA #(21*4)
            BRA _SPRX

_LO         BRA _SPRX

_HI         SEC
            SBC #((46*4)-84)
            BRA _SPRX

_SPRX       ADC #12             ; Update sprite X
            STA SPR0_X

            LDA PLAYERY         ; Update sprite Y
            STA SPR0_Y

            LDA FWDREV          ; Update sprite base pointer (different frames)
            ASL A
            STA TEMP
            CLC
            LDA PLAYERX
            AND #$02
            LSR A
            ADC TEMP
            ADC #(4096/64)
            STA SPR0_PTR

            RTS
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The Commodore 64, like many computers of its
day, had an interrupt that would fire on particular
screen lines. That could be used to handle this in
an  interrupt  rather  than  having  to  poll  for  a
changed value.  Many other computers,  including
the  Commodore  VIC-20,  didn't  have  such  an
interrupt, so polling was the only option. The Cody
Computer falls into this latter category.

The  WAITBLANK routine  waits  for  a  transition
between drawing the visible screen (0) and blanking
(1). Code that updates video registers should run in the
blanking interval if possible.

The game map is defined in MAPDATA, a sequence
of 25 rows of 64 bytes. This is the source for drawing
the screen, and each byte represents a particular tile
type. In real games, some kind of map editor is usually
used to make the game map. The data is exported to
an assembly file to include in your program. In earlier
times,  the  game  map  may  have  actually  been
designed  on  graph  paper  before  such  tools  were

;
; WAITBLANK
;
; Waits for the vertical blank signal to transition from drawing to not drawing, then
; returns. Used to sync up screen/register updates so they don't occur in the middle
; of the screen.
;
WAITBLANK

_WAITVIS    LDA VID_BLNK        ; Wait until the blanking is zero (drawing the screen)
            BNE _WAITVIS

_WAITBLANK  LDA VID_BLNK        ; Wait until the blanking is one (not drawing the screen)
            BEQ _WAITBLANK

            RTS

455



common. For a simple example like this,  we can just
pop numbers into the program as follows.

MAPDATA is a sequence of bytes that represent the
game world.

The tiles themselves are represented as characters.
When  the  video  hardware  draws  the  screen,  the
"characters" it draws will actually be the game world's
tiles.  The  MAIN routine copies these characters over
the first 10 characters in the default character memory
at  startup.  We  can  use  them  in  the  game  just  by
putting the matching number into screen memory.

;
; The game map.
;
; 0 = Sky
; 1 = Brick
; 2 = Cloud left
; 3 = Cloud middle
; 4 = Cloud right
; 5 = Hills left
; 6 = Hills middle
; 7 = Hills right
; 8 = ?
; 9 = ?
;
MAPDATA

  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0
  .BYTE 0,0,2,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,5
  .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,5,6,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,6,6,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,7,0,0,5,6,6
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,0,5,6,6,7,5,6,6,6
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,7,0,0,5,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6
  .BYTE 0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,5,6,6,6,7,5,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6
  .BYTE 0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,7,0,0,0,0,0,5,6,6,6,6,6,6,6,6,1,1
  .BYTE 0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,5,6,6,6,6,6,6,6,6,7,0,0,0,5,6,6,6,6,6,6,6,6,6,1,1
  .BYTE 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
  .BYTE 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

;
; The game's character tiles (used to draw the map).
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;
CHARDATA

  .BYTE %11111111   ; Sky
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111

  .BYTE %01010101   ; Brick
  .BYTE %01000000
  .BYTE %01000000
  .BYTE %01000000
  .BYTE %01010101
  .BYTE %00000001
  .BYTE %00000001
  .BYTE %00000001

  .BYTE %11111100   ; Cloud left
  .BYTE %11000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %11000000
  .BYTE %11111100

  .BYTE %00000000   ; Cloud middle
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000

  .BYTE %00111111   ; Cloud right
  .BYTE %00000011
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000011
  .BYTE %00111111

  .BYTE %11111100   ; Hills left
  .BYTE %11111100
  .BYTE %11110001
  .BYTE %11110000
  .BYTE %11000100
  .BYTE %11000000
  .BYTE %00010000
  .BYTE %00000001

  .BYTE %00000000   ; Hills middle
  .BYTE %00010000
  .BYTE %00000000
  .BYTE %01000000
  .BYTE %00000100
  .BYTE %00000000
  .BYTE %01000000
  .BYTE %00000001

  .BYTE %00111111   ; Hills right
  .BYTE %00111111
  .BYTE %00001111
  .BYTE %01001111
  .BYTE %00000011
  .BYTE %00010011
  .BYTE %00000000
  .BYTE %01000100

  .BYTE %00000000   ; Unused
  .BYTE %00000000

457



The CHARDATA for the game tiles. This is copied into
the first 10 entries in character memory on startup.

There  is  no  connection  between  tiles  and  their
colors.  Color  memory  is  separate  from  screen
memory, and each tile could in theory be drawn in a
variety of colors. For our demo, however, each tile only
needs one particular set of colors. Rather than have an
entire map just for colors, we can make a small lookup
table to find the color memory value for each game
tile. COLORDATA is exactly such a lookup table.

COLORDATA contains the color memory value for each
game tile.

The last portion of data needed for the program is
the  data  for  the  Pomeranian  sprite  the  player  can
control  on  the  screen.  As  mentioned  earlier  in  the
book, sprites are 12 pixels by 21 pixels in size and have
a layout very similar to C64 multicolor sprites.  Each

  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000

  .BYTE %00000000   ; Unused
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000

;
; The color date to copy for each tile type.
;
COLORDATA

  .BYTE   $00       ; Sky (no colors)
  .BYTE   $09       ; Brick (black and brown)
  .BYTE   $F1       ; Clouds (gray and white)
  .BYTE   $F1       ; Clouds (gray and white)
  .BYTE   $F1       ; Clouds (gray and white)
  .BYTE   $D5       ; Hills (light green and green)
  .BYTE   $D5       ; Hills (light green and green)
  .BYTE   $D5       ; Hills (light green and green)
  .BYTE   $00       ; Unused
  .BYTE   $00       ; Unused
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sprite fits in 63 bytes with one blank byte rounding up
to an even 64 bytes.

For the demo we have a total of four sprites, two of
the Pomeranian walking forward to the right and two
of the Pomeranian walking backward to the left. This is
a total of 256 bytes, all of which are copied to video
memory and used as sprite graphics during the game.
The actual copying is done by the  MAIN routine with
the  sprite  registers  being  updated  on  each  call  to
DRAWSPRT.

;
; The sprite data for the Pomeranian sprite on the screen.
;
SPRITEDATA

  .BYTE %00000000,%00000001,%01000000   ; Pomeranian forward 0
  .BYTE %00010000,%00001101,%11110000
  .BYTE %00010000,%00001101,%01111111
  .BYTE %01010100,%00000101,%01010000
  .BYTE %01010100,%00110101,%01110000
  .BYTE %01010100,%10110101,%01010101
  .BYTE %01010100,%10111001,%01010111
  .BYTE %01010111,%10101110,%01010100
  .BYTE %01010111,%10101110,%01010000
  .BYTE %01010111,%10101110,%10100000
  .BYTE %00010110,%11101110,%10100000
  .BYTE %00011010,%11101110,%10100000
  .BYTE %00001010,%11101110,%10000000
  .BYTE %00001010,%10111010,%10000000
  .BYTE %00010110,%10111001,%01010000
  .BYTE %00010101,%01000001,%01010000
  .BYTE %01010101,%00000000,%01010000
  .BYTE %01010000,%00000000,%01010000
  .BYTE %01010000,%00000000,%01010000
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00000000

  .BYTE %00000000,%00000001,%01000000 ; Pomeranian forward 1
  .BYTE %00010000,%00001101,%11110000
  .BYTE %00010000,%00001101,%01111111
  .BYTE %01010100,%00000101,%01010000
  .BYTE %01010100,%00110101,%01110000
  .BYTE %01010100,%10110101,%01010101
  .BYTE %01010100,%10111001,%01010111
  .BYTE %01010111,%10101110,%01010100
  .BYTE %01010111,%10101110,%01010000
  .BYTE %01010111,%10101110,%10100000
  .BYTE %00010110,%11101110,%10100000
  .BYTE %00011010,%11101110,%10100000
  .BYTE %00001010,%11101110,%10000000
  .BYTE %00001010,%10111010,%10000000
  .BYTE %00000110,%10111001,%01000000
  .BYTE %00010101,%01000001,%01000000
  .BYTE %00010101,%00000101,%00000000
  .BYTE %00000101,%00000101,%00000000
  .BYTE %00010101,%00000101,%00000000
  .BYTE %01010100,%00000001,%01000000
  .BYTE %01010000,%00000001,%01000000
  .BYTE %00000000

459



SPRITEDATA consists of four sprite graphics, two of a
Pomeranian  walking  to  the  right  and  two  of  a
Pomeranian walking to the left.

The program ends with some lookup table used as
part  of  double-buffering.  We  have  two  different
screen/color memory buffers that need to be swapped
in and out. To make it easy to do that, lookup tables
contain  the  base  addresses  of  each  along  with  the
corresponding register values needed to update them.
When swapping, we can just read a value in the table
corresponding to the BUFFLAG variable.

  .BYTE %00000001,%01000000,%00000000   ; Pomeranian reverse 0
  .BYTE %00001111,%01110000,%00000100
  .BYTE %11111101,%01110000,%00000100
  .BYTE %00000101,%01010000,%00010101
  .BYTE %00001101,%01011100,%00010101
  .BYTE %01010101,%01011110,%00010101
  .BYTE %11010101,%01101110,%00010101
  .BYTE %00010101,%10111010,%11010101
  .BYTE %00000101,%10111010,%11010101
  .BYTE %00001010,%10111010,%11010101
  .BYTE %00001010,%10111011,%10010100
  .BYTE %00001010,%10111011,%10100100
  .BYTE %00000010,%10111011,%10100000
  .BYTE %00000010,%10101110,%10100000
  .BYTE %00000101,%01101110,%10010100
  .BYTE %00000101,%01000001,%01010100
  .BYTE %00000101,%00000000,%01010101
  .BYTE %00000101,%00000000,%00000101
  .BYTE %00000101,%00000000,%00000101
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00000000

  .BYTE %00000001,%01000000,%00000000   ; Pomeranian reverse 1
  .BYTE %00001111,%01110000,%00000100
  .BYTE %11111101,%01110000,%00000100
  .BYTE %00000101,%01010000,%00010101
  .BYTE %00001101,%01011100,%00010101
  .BYTE %01010101,%01011110,%00010101
  .BYTE %11010101,%01101110,%00010101
  .BYTE %00010101,%10111010,%11010101
  .BYTE %00000101,%10111010,%11010101
  .BYTE %00001010,%10111010,%11010101
  .BYTE %00001010,%10111011,%10010100
  .BYTE %00001010,%10111011,%10100100
  .BYTE %00000010,%10111011,%10100000
  .BYTE %00000010,%10101110,%10100000
  .BYTE %00000001,%01101110,%10010000
  .BYTE %00000001,%01000001,%01010100
  .BYTE %00000000,%01010000,%01010100
  .BYTE %00000000,%01010000,%01010000
  .BYTE %00000000,%01010000,%01010100
  .BYTE %00000001,%01000000,%00010101
  .BYTE %00000001,%01000000,%00000101
  .BYTE %00000000

;
; Lookup tables for screen and color memory locations. Used to quickly
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Lookup  tables  used  to  simplify  double-buffering
operations.

The  program  itself  ends  as  our  CodySID  music
player  example.  We  have  a  LAST label  used  to
calculate  the  end  address  of  the  program.  This  is
followed by an assembler directive closing the one our
program started with.

The same boilerplate at the end of the program.

BUILDING AND RUNNING CODY BROS.

You build and run the demo the same way as you
did the CodySID music player. First you'll need to run
the code through the  64tass assembler  on your  PC.

; switch between the double buffer during an update.
;
SCRRAMS_L

  .BYTE <SCRRAM1
  .BYTE <SCRRAM2

SCRRAMS_H

  .BYTE >SCRRAM1
  .BYTE >SCRRAM2

COLRAMS_L

  .BYTE <COLRAM1
  .BYTE <COLRAM2

COLRAMS_H

  .BYTE >COLRAM1
  .BYTE >COLRAM2

BASEREGS

  .BYTE $05
  .BYTE $15

COLREGS

  .BYTE $20
  .BYTE $30

LAST                              ; End of the entire program

.ENDLOGICAL
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Just  run  64tass  --mw65c02  --nostart  -o
codybros.bin codybros.asm and check the output:

Building  the  codybros  demo  using  the  64tass
assembler.

Once you have the binary, you run LOAD 1,1 on the
Cody Computer and send the file over a serial link. The
program  will  start  up  automatically.  To  use  the
program  you'll  need  to  have  an  Atari-compatible
joystick to plug into joystick port 1. Moving the joystick
left  and  right  will  move  the  player  on  the  screen,
moving the joystick up runs the "bark" animation, and
moving the joystick down changes the sprite color. To
return to Cody BASIC just press the fire button.

If  you  don't  have  an  Atari-compatible  joystick
available, cheap ones are available online or at many
retro electronics or video game stores in larger cities.
The design is quite simple, so you can even find plans
online to make your own: Unlike Nintendo controllers
that  required  at  least  some  logic  chips,  an  Atari
joystick is literally just switches wired to a connector.

If all else fails, you can also change the program to
accept keyboard input rather than joystick input. In the
main loop where the joystick row is read, change the

% 64tass --mw65c02 --nostart -o codybros.bin codybros.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file:   codybros.asm
Output file:       codybros.bin
Data:       2448   $0000-$098f   $0990
Passes:            2
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row to one of the rows on the keyboard matrix, then
check for pressed keys instead of pressed switches on
the joystick. Look up the keys you would need to press
for  that  row and use  those  for  the  controls  instead.
(You'll need the keyboard schematic and perhaps the
CodySID  or  input-output  examples  to  help  you  in
doing that.)

A Pomeranian sprite moving around in a very Mario-
like or Giana-like game world. You can use something
like this as a starting point for a full game.

MEMORY-RESIDENT PROGRAMS

The  Cody  Computer  also  allows  you  to  write
programs  in  assembly  language  that  can  be  left  in
memory and called by Cody BASIC programs. This can
be  a  powerful  way  to  allow  external  devices  and
peripherals to copy some code into memory that can
later be called from a SYS statement.

463



In  this  situation,  you'll  be  writing  an  assembly
language  program that  can  be  loaded  into  memory
but later returns back to BASIC. The program can use
the  Cody  BASIC  binary  loader  to  load  it  into  the
expected location in memory to start with, or you can
have  it  load  the  binary  and  then  copy  the  code
yourself.

As part of the initialization of such a program, you
might  adjust  the  value  of  PROGEND,  a  zero-page
variable  at  address  $004B that  specifies  the  page
boundary of BASIC program memory. You can move
the  page  down  to  steal  memory  for  your  program
from BASIC, then load your BASIC program after the
binary is finished loading. This is a particularly useful
approach  for  writing  assembly  language  programs
that work like drivers or extensions of BASIC itself.

To  show  how  this  works,  we'll  go  through  a  very
short program that will let you change the color of the
screen  border.  Once  assembled,  you  will  load  the
program using the LOAD command. The program will
return to Cody BASIC after initialization, and you'll be
able to call it using SYS 25600 to run the routine.

To make our job easier, we'll assume the program is
loaded  at  $6300 (decimal  25344)  with  our
initialization routine. Within our program we'll include
the memory-resident routine at an offset of $100 so it
will reside at the easy to remember $6400 or decimal
25600.
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Our program is loaded at a base address of $6300. It
also  uses  some  of  the  video  registers  and  modifies
locations in zero page.

We  use  the  same  boilerplate  and  assembly
directives to ensure the program starts at the location
we expect.

Boilerplate  for  locating  the  start  of  the  program  in
memory.

Our  MAIN routine  is  quite  small.  It  adjusts  the
PROGEND location  so  that  future  BASIC  programs
won't  overwrite  our  memory-resident  program  and
then returns back to  Cody BASIC.  We don't  need to
copy any code because we use the loader to put our
program in the right place to begin with.

The short initialization routine called by Cody BASIC's
loader.

ADDR      = $6300               ; The actual loading address of the program

VID_BLNK  = $D000               ; Video blanking status register
VID_CNTL  = $D001               ; Video control register
VID_COLR  = $D002               ; Video color register
VID_BPTR  = $D003               ; Video base pointer register
VID_SCRL  = $D004               ; Video scroll register
VID_SCRC  = $D005               ; Video screen common colors register
VID_SPRC  = $D006               ; Video sprite control register

PROGEND   = $4B                 ; Boundary page for program memory
TEMP      = $FF                 ; Temporary variable in zero page

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR

MAIN        LDA #>ADDR          ; Move the program memory bounds down
            STA PROGEND

            RTS
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The interesting code is in the  CYCLE routine, which
color-cycles  the  border  color  on  the  screen  when
called.  We specify the location where this should be
located and the  64tass assembler emits the code at
the proper location within our binary.

The CYCLE routine is resident at address $6400.

As  with  all  other  programs  we  have  a  bit  of
boilerplate at the end as well.

The end of the program.

You can build this program like all the others. Run
64tass  --mw65c02  --nostart  -o  resident.bin
resident.asm and check the output:

* = $6400                       ; Start address of the color-cycle routine

CYCLE       PHA                 ; Preserve registers

            LDA VID_COLR        ; Increment the border color by one and store in temp
            INC A
            AND #$0F
            STA TEMP

            LDA VID_COLR        ; Combine the new value and the color register to update
            AND #$F0
            ORA TEMP
            STA VID_COLR

            PLA                 ; Restore registers and return
            RTS

LAST                            ; End of the entire program

.ENDLOGICAL
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A successful build with 64tass.

Load the program over a serial link using LOAD 1,1.
When  the  program  is  loaded  and  completed,  you'll
return  back  to  Cody  BASIC  as  though  nothing  had
happened. In fact, it will look like the Cody Computer
has just started up for the first time. However,  when
you call  SYS 25600 you should  notice  the  screen's
border color change. Try it several times to observe the
results.

Calling the resident program from Cody BASIC using
the SYS statement.

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file:   resident.asm
Output file:       resident.bin
Data:          9   $0000-$0008   $0009
Gap:         251   $0009-$0103   $00fb
Data:         21   $0104-$0118   $0015
Passes:            2

READY.
SYS 25600

READY.
SYS 25600

READY.
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In  some  programs  of  this  nature  it  might  be
better to introduce a jump table. In a jump table,
each  location  actually  contains  a  65C02  JMP
instruction  that  jumps  to  the  actual
implementation.  The  locations  for  each  JMP
instruction  are  hardcoded  and  do  not  change
between releases, but the code they jump to can.
This  can be useful  for  drivers  and libraries  that
may  change  internally  but  want  to  have  a
consistent external interface.
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Cartridges and SPI
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INTRODUCTION

The  Cody  Computer  also  supports  cartridges  that
can be plugged into the expansion port. If a cartridge is
detected,  a  binary  program  from  the  cartridge  is
loaded into memory and executed instead of booting
to Cody BASIC.  The program is  contained inside the
cartridge with a memory chip that supports the Serial
Peripheral Interface (SPI) protocol, and certain pins on
the expansion port are repurposed to implement SPI.

Cartridges  are  not  necessary  to  use  the  Cody
Computer.  Assembly  language  programs  can  be
loaded  over  a  serial  port  just  like  Cody  BASIC
programs.  Even  if  you  plan  not  to  use  cartridges,
examples in this chapter may be helpful if you plan to
implement the SPI protocol with the Cody Computer.

SPI is probably the simplest data transfer protocol
in common use. It's a three-wire protocol often used to
communicate  between  microcontrollers  and  their
peripherals. One line transmits data, one line receives
data,  and one line acts  as  a  clock.  A fourth line not
involved  in  the  actual  communication  acts  as  a  chip
select,  telling a chip when an SPI data transaction is
about to begin.

An SPI transaction begins by bringing the SPI chip
select  low.  From  there,  data  is  clocked  out  on  the
output pin while data is read from the input pin, using
the  SPI  clock  pin  for  the  clock  signal.  One  or  more
bytes are transferred in this way. Often a command of
some kind is clocked out first, with subsequent clocks
used to read in the result of the command. The exact
behavior depends on the device itself.
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There  are  actually  four  different  SPI  modes.  Each
mode  can  differ  based  on  the  SPI  clock  signal's
polarity, either being idle-high or idle-low. Each mode
can also differ based on the clock phase when data is
transmitted or received. This is one of the reasons it's
preferable  to  bit-bang  the  SPI  protocol  using  the
65C22's general-purpose I/O pins rather than relying
on a limited subset of modes that can be supported by
the built-in shift register.

The  Cody  Computer's  cartridges  are  built  around
the  SPI  protocol  with  some  extra  modifications  to
support  cartridge  detection  and  size  determination.
The  65C22's  CA1  and  CA2  handshaking  pins  on
expansion port pins 13 and 14 are used as a cartridge
detect. If a cartridge is detected, expansion port pin 8 is
used to read if the cartridge is 64K or smaller (0) or
larger (1) based on the cartridge's configuration.

Once set up to read from a cartridge, expansion port
pin 12 is connected to the SPI clock, pin 11 is connected
to  the  SPI  master  output/slave  input,  pin  10  is
connected to the master input/slave output, and pin 9
is  connected  to  the  SPI  chip  select.  This  pin
configuration  is  used  to  implement  the  SPI  protocol
and load the program.

CARTRIDGE DESIGN

The Cody Computer cartridge is a relatively simple
design,  consisting  at  heart  of  an  SPI  EEPROM,  a
decoupling capacitor, and a connector to plug into the
Cody  Computer.  It's  really  no  more  than  a
standardized pinout to interface an SPI EEPROM into
the system's expansion port.
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Schematic of the Cody Cartridge. Note that depending
on  assembly  choices,  the  board  can  be  either  a
programmer or just a cartridge.

The cartridge's  interface  is  a  20-pin  male  header
that  connects  to  the  female  socket  on  the  Cody
Computer's  expansion  port.  Most  of  the  pins  are
unused,  but several  are in use and directly wired to
pins on the SPI EEPROM. These are the SPI clock, MISO
(master-in-slave-out),  MOSI  (master-out-slave-in),
and inverted chip select.

Some  other  pins  are  used  to  support  the  Cody
Computer's  loading  of  cartridge  data.  Two  pins  are
connected to each other on the cartridge itself, making
it possible for the Cody Computer to detect a cartridge
because the connection is closed when a cartridge is
seated. Another pin is used to tell the Cody Computer
whether the SPI  EEPROM is  a  small  EEPROM (a low
value indicates a size of 64 kilobytes or less) or a large
EEPROM  (a  high  value  indicates  a  size  of  over  64
kilobytes).  This  is  necessary  because  the  smaller
EEPROMs only  accept  a  two-byte  address  while  the
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larger ones require a three-byte address in their SPI
transmissions.

The  standard  Cody  Computer  cartridge  design  is
interesting  in  that  it  can  be  used  to  build  either  a
cartridge or a programmer for the SPI EEPROMs used
in  cartridges.  Instead  of  two  versions  of  the  board,
there's  just  one  version,  but  different  jumper
connections  can  be  used  to  configure  it.  For  a
programmer,  jumper  wires  can  be  replaced with  pin
headers and jumpers/shunts, thereby letting the user
change the behavior just by moving the jumper blocks
around.

For development purposes we'll start by building a
board for programming purposes. We'll cover building
a  board  for  a  normal  cartridge  later  in  the  chapter,
along with a walkthrough of the mechanical assembly
for the case.

CARTRIDGE PROGRAMMER
ASSEMBLY

To build a cartridge's PCB as a programmer, header
pins are soldered into the board instead of using wires.
Jumpers  can  be  used  to  toggle  the  different
possibilities for the programmer's setup. They can also
be  used  for  testing  cartridges  after  they're
programmed. A socket is used to (more or less) easily
insert  and  remove  the  SPI  EEPROMs  being
programmed.

This circuit is actually simple enough that you could
build it using point-to-point wiring on a protoboard, as
long  as  the  protoboard  will  fit  into  the  Cody
Computer's  expansion  port  hole  in  the  back.
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Prototypes of the cartridge were built in exactly such a
way during the Cody Computer's development.

A cartridge programmer PCB alongside its hand-wired
prototype on protoboard.

However, the rest of the chapter assumes that you
have printed circuit boards available.

INSTALLING THE EXPANSION CONNECTOR

The programmer, like the cartridges themselves, has
a  20-pin  right  angle  .100"  male  connector.  This
matches  up  with  the  female  connector  on  the  Cody
Computer's  expanson  port  when  the  cartridge  is
connected.

For this step you'll need the following:

1 20-pin male .100" right-angle header pin

For this step you need to place the header pins into
J1, then solder the connector. It's very important that

• 
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the  headers  go  on  at  a  right  angle  so  they  will
correctly line up with the expansion port's socket.

Insert the header into J1. Ensure the pins are at a
right-angle to the board.
Solder the header to J1.

The board with the connector pins soldered at a right
angle.

INSTALLING THE SOCKET AND CAPACITOR

Once the connector is soldered on, it's time to add
an 8-pin socket and decoupling capacitor for the SPI
EEPROM.  The  socket  makes  it  easier  to  insert  and
remove  the  IC  to  be  programmed,  while  the
decoupling  capacitor  serves  the  same  purpose  as  it

1. 

2. 
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does for ICs on the Cody Computer's main PCB. You'll
need the following:

1 8-pin DIP socket
1 0.1µF ceramic capacitor (KEMET
C315C104K1R5TA or equivalent)

For this step you need to solder the IC socket and
the capacitor. The IC socket should have a small notch
or other mark at the top, and it should align with the
notch  on  the  PCB's  silkscreen  for  the  part.  The
decoupling  capacitor  is  not  polarized  and  can  be
soldered in either direction.

Solder the capacitor to C1.
Solder the IC socket to U1.

The board with the socket and capacitor added. Note
the mark on the IC socket.

• 
• 

1. 
2. 
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INSTALLING THE HEADERS

In  this  step  we'll  add  some  pin  headers  to  the
various jumper positions on the board. This makes it
possible  to  reconfigure  the  cartridge  programmer,
whereas for an actual cartridge you could just solder
them with jumper wire. This requires the following:

2 3-pin male .100" headers, vertical
1 2-pin male .100" header, vertical

Soldering  the  header  pins  is  relatively
straightforward:

Solder a 3-pin male header to JP1.
Solder a 3-pin male header to JP2.
Solder the 2-pin male header to JP3.

The board with the jumper headers added.

• 
• 

1. 
2. 
3. 
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INSERTING THE IC AND JUMPERS

Now we can add the EEPROM IC and jumpers. These
steps  assume  that  a  128-kilobyte  25LC1024  SPI
EEPROM  is  being  used,  so  the  jumpers  will  be
configured appropriately.

1 25LC1024 128-kilobyte SPI EEPROM or
equivalent (DIP-8)
3 2-pin jumpers/shunts (Harwin M7583-46 or
equivalent)

The IC must be carefully inserted without bending
the  pins.  Sliding  the  jumpers  into  position  is  often
easier with a pair of tweezers or forceps.

Place a jumper on JP1 connecting WR PROT and
WP OFF.
Place a jumper on JP2 connecting CART SIZE and
LARGE.
Place a jumper on JP3 connecting only one of the
two pins.
Insert the 25LC1024 into the socket so that the
pin marks align.

• 

• 

1. 

2. 

3. 

4. 
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The  programmer  as  configured  to  program  a
25LC1024 SPI EEPROM.

SPI PROGRAMMING IN BASIC

Now that  you  have  a  board  set  up  to  program a
cartridge, it's time to learn how to program it. In order
to program the SPI EEPROM you'll need to understand
some of the key concepts about SPI programming, but
you'll  also  need  to  understand  how  the  25LC21024
works when communicating over SPI. To help with that,
we'll write some simple Cody BASIC programs before
moving  on  to  a  more  fully-featured  programmer  in
assembly language.

SIMPLE SPI COMMUNICATION

Whenever  you're  attempting  to  use  SPI  to
communicate  with  a  device,  it's  a  good idea to  start
with a simple example and work from there. SPI has
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four different modes related to clock edges, and on top
of that, not every device is without its own quirks. For
our first example, we'll try to read an ID value from the
25LC1024 built  into  the cartridge as  it's  a  relatively
simple operation.

The  following  Cody  BASIC  program  sends  the
25LC1024  an  RDID  command  (decimal  171),  which
wakes  up  the  chip  and  reads  its  built-in  ID.  This  is
probably the easiest place to begin with the chip, as
the expected ID value is  a  known quantity  from the
datasheet. Obtaining it from the chip will tell us that
our external hardware is correctly connected and that
our program is working as expected.
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A program that reads the RDID from a 25LC1024 SPI
EEPROM.

For this  to  work you'll  need to have the cartridge
connected to  the expansion port.  It's  a  good idea to
turn the Cody Computer off, plug in the cartridge, and
then  power  it  on  again.  The  expansion  port  is  not
intended to  be  hot-pluggable,  and  connecting  some

10 REM READ EEPROM RDID
20 GOSUB 1000
30 O=171
40 FOR N=1 TO 5
50 GOSUB 2000
60 NEXT
70 GOSUB 3000
80 PRINT "RDID ID: ",I
90 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN
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pins before others could potentially cause unexpected
behavior or even damage.

When run, the program reads the RDID value from
the 25LC1024 EEPROM and prints the received value:

Output from the program reporting the RDID value as
41 decimal.

A TEST PROGRAM

Now that we can talk to the EEPROM, we'll want to
have  some  data  to  send  into  it.  Because  we're  also
trying  to  use  this  as  an  example  of  how  cartridges
work on the Cody Computer's expansion port, we'll put
together  a  small  program to  store  in  the  EEPROM's
memory.

Below is a very short assembly language program
that  prints  a  short  message  on  the  screen.  For  this
example, all we care about is that we can assemble this
code into some data we'll program into the EEPROM.

RUN
RDID ID: 41

READY.

;
; codycart.asm
;
; An example assembly language program for the Cody Computer. The program
; pokes the message "Cody!" into the default screen memory location after
; starting up, then loops forever.
;
; You can assemble the program with 64tass using the following command:
;
; 64tass --mw65c02 --nostart -o codycart.bin codycart.asm
;

ADDR    = $3000                 ; The actual loading address of the program
SCRRAM  = $C400                 ; The default location of screen memory

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)
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A simple assembly language program to store in an
EEPROM.

You can assemble this program just like the ones the
previous  chapter.  Assembled  into  a  binary  file,  the
program is only 26 bytes long. It can be represented
as a sequence of 26 numbers (0, 48, 21, 48, 162, 0, 189,
16, 48, 240, 6, 157, 0, 196, 232, 128, 245, 76, 13, 48, 67,
111, 100, 121, 33, and 0). We'll rely on this knowledge
to program it into the EEPROM chip for our example
cartridge.

WRITING TO THE EEPROM

Now  that  you  have  a  program  to  put  into  the
EEPROM,  you'll  need  a  way  to  actually  write  it.
Another  Cody  BASIC  program  very  similar  to  the
previous one can do this. Again, it's only an example,
but it can write the values from DATA statements into
the EEPROM's memory over SPI.

There are some details that need to be covered for
this to work. In particular, the 25LC1024 is broken up
into a sequence of 256-byte pages. While this is good

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

;
; The actual program.
;

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR

MAIN        LDX #0              ; The program starts running from here

_LOOP       LDA TEXT,X          ; Copies TEXT into screen memory
            BEQ _DONE

            STA SCRRAM,X

            INX
            BRA _LOOP

_DONE       JMP _DONE           ; Loops forever

TEXT        .NULL "Cody!"       ; TEXT as a null-terminated string

LAST                            ; End of the entire program

.ENDLOGICAL
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for the EEPROM (because write cycles are limited to
certain subsets of the whole memory), it's less good
for  us.  It  means  that  we  can't  just  start  at  memory
address 0 and count our way through as we write to
the  chip.  Instead,  we  have  to  stop  our  current  write
transaction and begin a new one at  the end of each
page.

Another complication is that the chip itself can take
some time to  write  a  byte.  We don't  need to  worry
about this in Cody BASIC because our program runs so
slow, but in a better EEPROM writer, you would want to
check the chip's internal registers to ensure the write
cycle had completed.

On the 25LC1024, writes require two steps. We first
send the WREN (write enable) command (decimal 6),
followed  by  the  actual  WRITE  (decimal  2)  with  the
starting address to write to. We then just loop over our
data until we reach the end, making sure that we stop
the  current  transaction  and start  over  at  the  end of
each page.

10 REM WRITE EEPROM DATA
20 A=0
30 REM BEGIN NEW PAGE
40 GOSUB 1000
50 O=6
60 GOSUB 2000
70 GOSUB 3000
80 REM WRITE OPERATION
90 GOSUB 1000
100 O=2
110 GOSUB 2000
120 O=0
130 GOSUB 2000
140 O=A/256
150 GOSUB 2000
160 O=AND(A,255)
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A  program  that  writes  data  into  a  25LC1024  SPI
EEPROM.

170 GOSUB 2000
180 READ N
190 IF N<0 THEN GOTO 260
200 O=N
210 GOSUB 2000
220 A=A+1
230 IF AND(A,255)>0 THEN GOTO 180
240 GOSUB 3000
250 GOTO 30
260 REM END OF DATA
270 GOSUB 3000
280 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN
4000 REM DATA TO PROGRAM
4010 DATA 0,48,21,48,162,0,189,16
4020 DATA 48,240,6,157,0,196,232,128
4030 DATA 245,76,13,48,67,111,100,121
4040 DATA 33,0,-1
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READING THE EEPROM

Now  that  we've  programmed  the  cartridge  we
should verify its contents. Fortunately we have another
Cody  BASIC  program  that  reads  from  the  cartridge
instead of writing to it. it's very similar to the previous
two  SPI  programs,  particularly  with  respect  to  the
various subroutines used for the actual SPI operations.
Where  it  differs  it  that  it's  set  up  to  run  the  READ
command (decimal 3), which reads the data stored in
the  EEPROM.  The  READ  operation  is  simpler  as  we
only need to  provide the starting address  (0 in  our
case) and then keep reading data one byte at a time.

10 REM READ EEPROM DATA
20 A=0
30 GOSUB 1000
40 O=3
50 GOSUB 2000
60 FOR N=1 TO 3
70 O=0
80 GOSUB 2000
90 NEXT
100 FOR N=1 TO 16
110 GOSUB 2000
120 PRINT A,TAB(10),I
130 A=A+1
140 NEXT
150 PRINT
160 PRINT "MORE (Y/N)";
170 INPUT S$
180 IF S$="Y" THEN GOTO 100
190 GOSUB 3000
200 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
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A program that reads the stored data from a 25LC1024
SPI EEPROM.

If  you run the program you should see the same
numbers  that  were  in  the  DATA statements  in  the
previous program:

2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN
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Reading the first bytes from the EEPROM.

BOOTING THE CARTRIDGE

Because the cartridge has been programmed,  you
can also boot from it and run the program it contains.
Turn off the Cody Computer and reaffix jumper JP3 so
that the cartridge detection is enabled on the cartridge
side. Then power the Cody Computer back on.

If everything works as expected, the words "Cody"
will appear at the top of the screen. It's as simple as
that.

When you're done, shut off the Cody Computer and
disconnect JP3, placing the header back on a single pin
so  that  it  doesn't  get  lost.  This  way the  cartridge is
ready to be programmed next time.

RUN
0         0
1         48
2         21
3         48
4         162
5         0
6         189
7         16
8         48
9         240
10        6
11        157
12        0
13        196
14        232
15        128

MORE (Y/N)?
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A PROGRAM FOR PROGRAMMING

It  would  be  possible  to  write  a  cartridge
programmer  in  Cody  BASIC,  but  it  would  also  run
slower than you would probably prefer. Like we talked
about in earlier chapters, you could write parts of your
program  in  assembly  language  and  call  them  from
BASIC to speed them up.  But it's  probably better to
just write a dedicated assembly language program in
this case, so in this section that's what we're going to
do.

What will  our program need to do? Once loaded,
the user must be able to send a binary file to the Cody
Computer.  Because  our  serial  communications  don't
have any checks on them, we'll actually require the file
to be sent twice.  We can verify the contents are the
same on both transmissions before proceeding. After
that we'll want to program the SPI EEPROM with the
data,  then read back from the SPI  EEPROM to make
sure everything was copied over correctly.

We  already  know  how  to  program  SPI  from  the
previous  section  and  the  provided  Cody  BASIC
examples.  We  also  have  code  in  the  Cody  BASIC
interpreter itself that can handle SPI communications
so  that  cartridges  can  be  loaded.  In  the  chapter  on
assembly language, we wrote an assembly language
program that received a binary file over the UART, in
that case to play a SID file. So you've probably seen all
the parts, just not assembled in quite this way.
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THE CODYPROG PROGRAM

Like  our  other  assembly  language  programs,  this
one starts out with a bunch of definitions that we get
out of the way in a hurry. Many of them, such as those
for screen memory addresses, 65C22 VIA addresses,
and  UART  addresses,  have  been  used  in  other
programs earlier in the book.

Some common definitions at the start of the program.

The zero page variables we use are very similar to
those in other programs. We also have some variables
for  a  pointer,  a  top  pointer,  and  a  length  of  the
program we're going to burn into the cartridge.  Our
SPI routines also need a couple of temporary variables
we'll define here.

ADDR      = $0300               ; The actual loading address of the program

SCRRAM    = $C400               ; Screen memory base address

UART1_BASE  = $D480             ; Register addresses for UART 1
UART1_CNTL  = UART1_BASE+0
UART1_CMND  = UART1_BASE+1
UART1_STAT  = UART1_BASE+2
UART1_RXHD  = UART1_BASE+4
UART1_RXTL  = UART1_BASE+5
UART1_TXHD  = UART1_BASE+6
UART1_TXTL  = UART1_BASE+7
UART1_RXBF  = UART1_BASE+8
UART1_TXBF  = UART1_BASE+16

VIA_BASE  = $9F00               ; VIA base address and register locations
VIA_IORB  = VIA_BASE+$0
VIA_IORA  = VIA_BASE+$1
VIA_DDRB  = VIA_BASE+$2
VIA_DDRA  = VIA_BASE+$3
VIA_T1CL  = VIA_BASE+$4
VIA_T1CH  = VIA_BASE+$5
VIA_SR    = VIA_BASE+$A
VIA_ACR   = VIA_BASE+$B
VIA_PCR   = VIA_BASE+$C
VIA_IFR   = VIA_BASE+$D
VIA_IER   = VIA_BASE+$E

STRPTR    = $D0                 ; Pointer to string (2 bytes)
SCRPTR    = $D2                 ; Pointer to screen (2 bytes)
PRGPTR    = $D4                 ; Pointer to the start of the program data
PRGTOP    = $D6                 ; Pointer to the end of the program data
PRGLEN    = $D8                 ; Length of the program in memory
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Zero-page variables used by the program.

We also define the start of our buffer for the binary
data at  $1000. Other new definitions include the pins
we'll  use  to  talk  to  the  SPI  EEPROM  inside  the
cartridge. The expansion port pins we're interested in
are wired to 65C22 VIA port B. These constants define
the bits that correspond to each pin in its register.

Other constants required by the program.

Our code contains the same preamble as the other
assembly language programs:

The  program's  header  containing  the  start  and  end
addresses.

The  MAIN routine  is  very  similar  to  the  CodySID
program's main routine. It has fewer things to do and
less to initialize, but the overall pattern is similar. We
initialize  some  variables,  draw  the  screen,  and  then

KEYROW0   = $DA                 ; Keyboard row 0
KEYROW1   = $DB                 ; Keyboard row 1
KEYROW2   = $DC                 ; Keyboard row 2
KEYROW3   = $DD                 ; Keyboard row 3
KEYROW4   = $DE                 ; Keyboard row 4
KEYROW5   = $DF                 ; Keyboard row 5

SPIINP    = $E0                 ; SPI input byte
SPIOUT    = $E1                 ; SPI output byte

PRGMEM    = $1000               ; Start of the program to burn into the EEPROM

CART_CLK  = $01                 ; Bit masks for 65C22 port B cartridge pins
CART_MOSI = $02
CART_MISO = $04
CART_CS   = $08
CART_SIZE = $10

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR
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scan the keyboard for menu item selections. If a menu
item is selected, we branch to that command and call
the appropriate routine.

The actual start of the program.

The KEYSCAN routine is also very similar. Again, we
don't  do  any  keyboard  debouncing  because  for  our
particular  use  case,  we  don't  need  it.  For  general-
purpose input, however, it would be a necessity.

;
; MAIN
;
; Main loop of the programmer. Responsible for initialization, information display,
; and menu selection.
;
MAIN        STZ PRGLEN          ; Clear program length
            STZ PRGLEN+1

            JSR SHOWSCRN

_LOOP       JSR KEYSCAN         ; Scan the keyboard

            LDA KEYROW0         ; Pressed Q for quit?
            AND #%00001
            BNE _QUIT

            LDA KEYROW1         ; Pressed L for load?
            AND #%10000
            BNE _LOAD

            LDA KEYROW5         ; Pressed P for program?
            AND #%10000
            BNE _PROG

            BRA _LOOP           ; Repeat main loop

_QUIT       RTS                 ; Return to BASIC

_LOAD       JSR CMDLOAD         ; Run the load command
            BRA _LOOP

_PROG       JSR CMDPROG         ; Run the program command
            BRA _LOOP

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN     PHA                   ; Preserve registers
            PHX

            STZ VIA_IORA          ; Start at the first row and first key of the keyboard
            LDX #0

_LOOP       LDA VIA_IORA          ; Read the keys for the current row from the VIA port
            EOR #$FF
            LSR A
            LSR A
            LSR A
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The keyboard-scanning routine.

The menu commands are significantly simpler than
in the SID player, and nearly all of the operations are
moved into subroutines closer to the action. CMDLOAD
loads and verifies the binary file coming in over the
serial link.  CMDPROG programs the SPI EEPROM and
reads its data back for verification.

Routines for the menu commands.

The  LOADBIN routine  is  very  similar  to  the  SID
player's LOADDATA routine. It starts at the beginning
of the memory buffer and waits for input data. Once a

            STA KEYROW0,X

            INC VIA_IORA          ; Move on to the next keyboard row
            INX

            CPX #6                ; Do we have any rows remaining to scan?
            BNE _LOOP

            PLX                   ; Restore registers
            PLA

            RTS

;
; CMDLOAD
;
; Implements the menu option to load a binary file over the UART connection.
;
CMDLOAD     JSR SHOWSCRN        ; Clear screen

            JSR UARTON          ; Receive the binary file
            JSR LOADBIN
            JSR UARTOFF

            JSR SHOWSCRN        ; Redraw screen with file length

            JSR UARTON          ; Verify the binary file
            JSR VERIBIN
            JSR UARTOFF

            RTS                 ; All done

;
; CMDPROG
;
; Implements the menu option to program the SPI EEPROM on the cartridge.
;
CMDPROG     JSR SHOWSCRN        ; Clear screen

            JSR PROGCART        ; Program the cartridge

            JSR VERICART        ; Verify the cartridge contents

            RTS                 ; All done
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byte has been received, it enters a loop and continues
to  read  bytes  until  a  timeout  is  exceeded.  Under
normal operations the timeout would indicate the end
of the incoming file.

LOADBIN loads a binary file over the UART.

;
; LOADBIN
;
; Loads a binary file into memory.
;
LOADBIN   LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
          STA PRGPTR+1

          LDX #MSG_WAITBINA     ; Display message about waiting for data
          JSR SHOWSTAT

_READ1    JSR UARTGET           ; Read the first byte
          BCC _READ1

          JSR _SAVE             ; Save it to memory

          LDX #MSG_RECVDATA     ; Display message about receiving data
          JSR SHOWSTAT

          LDX #$FF              ; Timeout counter

_READ2    DEX                   ; Wait for byte with timeout
          BEQ _DONE

          JSR UARTGET
          BCC _READ2

          JSR _SAVE             ; Save data

          LDX #$FF              ; Reset counter
          BRA _READ2

_DONE     SEC                   ; Calculate program length

          LDA PRGPTR+0
          SBC #<PRGMEM
          STA PRGLEN+0

          LDA PRGPTR+1
          SBC #>PRGMEM
          STA PRGLEN+1

          LDA PRGPTR+0          ; Update end of program
          STA PRGTOP+0

          LDA PRGPTR+1
          STA PRGTOP+1

          RTS

_SAVE     STA (PRGPTR)          ; Store data

          INC PRGPTR+0          ; Increment address
          BNE _NEXT
          INC PRGPTR+1

_NEXT     RTS
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Similar  to  LOADBIN is  the  VERIBIN routine.  This
routine verifies the content in the memory buffer is the
same as the content coming in over the UART. In this
situation, instead of storing each byte, we compare it
with the matching byte we already have to make sure
they're equal. Once we've come to the end of the file,
we also have to make sure we read the same number
of bytes both times.

;
; VERIBIN
;
; Verifies the binary file in memory.
;
VERIBIN   LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
          STA PRGPTR+1

          LDX #MSG_WAITREPE   ; Display message about waiting for data
          JSR SHOWSTAT

_READ1    JSR UARTGET           ; Read the first byte
          BCC _READ1

          JSR _VERIFY           ; Check the byte against the memory
          BNE _FAILED

          LDX #MSG_VERIDATA     ; Display message about verifying data
          JSR SHOWSTAT

          LDX #$FF              ; Timeout counter

_READ2    DEX                   ; Wait for byte with timeout
          BEQ _DONE
          JSR UARTGET
          BCC _READ2

          LDX #$FF              ; Reset counter

          JSR _VERIFY           ; Check the byte
          BNE _FAILED

          BRA _READ2

_DONE     LDA PRGPTR+0          ; Verify program length was the same
          CMP PRGTOP+0
          BNE _FAILED

          LDA PRGPTR+1
          CMP PRGTOP+1
          BNE _FAILED

          LDX #MSG_VERIFYOK     ; Update status message
          JSR SHOWSTAT

          RTS

_VERIFY   CMP (PRGPTR)          ; Compare bytes
          PHP

          INC PRGPTR+0          ; Increment address
          BNE _NEXT
          INC PRGPTR+1
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The VERIBIN routine verifies the program in memory.

Once the program has been loaded the remaining
task  is  to  write  the  program  into  the  EEPROM.  The
PROGCART routine takes care of this, and it's actually
somewhat complicated. It has to send the instructions
to enable writing to the EEPROM, then begin a second
SPI  transaction  with  the  actual  data  and  its  start
address in the EEPROM.

There  are  some  complications  here.  One  is  that
cartridges can either be small (64 kilobytes or less) or
large  (greater  than  64  kilobytes).  Small  cartridges
only  need  two  bytes  for  an  address  but  large
cartridges use three bytes. We check the size pin on
the expansion port to see what kind of cartridge the
programmer is set up for.

Another complication comes from a limitation in the
SPI  EEPROM's  writing  protocol.  Because  of  the
EEPROM's  design,  we  have  to  start  a  new  write
transaction  on  each  256-byte  page.  Because  our
memory buffer is page-aligned, every time we wrap to
another  page,  we  also  close  the  current  write
transaction  and begin  a  new one.  Between them we
must wait for the EEPROM to finish writing our data, so
we poll the EEPROM's status register in between.

_NEXT     PLP                   ; Restore flags and return
          RTS

_FAILED   STZ PRGLEN+0          ; Clear program length (bad file?)
          STZ PRGLEN+1

          LDX #MSG_VERIFYBAD    ; Update status message
          JSR SHOWSTAT

          RTS                   ; All done

;
; PROGCART
;
; Writes the program in memory to the SPI EEPROM on the cartridge.
;
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PROGCART  LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
          STA PRGPTR+1

          LDX #MSG_PROGDATA     ; Display message about programming data
          JSR SHOWSTAT

          JSR _BEGIN            ; Begin initial SPI transaction

_LOOP     LDA PRGPTR+0          ; Ensure we're not at the top of the data
          CMP PRGTOP+0
          BNE _CONT

          LDA PRGPTR+1
          CMP PRGTOP+1
          BNE _CONT

          JSR _END              ; Done programming

          LDX #MSG_CLEAR        ; Clear status message
          JSR SHOWSTAT

          RTS

_CONT     LDA (PRGPTR)          ; Send the next byte to the cartridge
          JSR CARTXFER

          INC PRGPTR+0          ; Increment address
          BNE _LOOP
          INC PRGPTR+1

          JSR _END              ; New page, need to start new transaction
          JSR _BEGIN

          BRA _LOOP

_BEGIN    JSR CARTON            ; Begin SPI transaction for write enable

          LDA #6                ; Write enable command
          JSR CARTXFER

          JSR CARTOFF           ; End SPI transction for write enable

          JSR CARTON            ; Begin SPI transaction for writing data

          LDA #2                ; Write starting address command
          JSR CARTXFER

          JSR CARTSIZE          ; Check cartridge size
          BEQ _ADDR

          LDA #0                ; Write address highest byte, greater than 64K only
          JSR CARTXFER

_ADDR     SEC                   ; Write address high byte
          LDA PRGPTR+1
          SBC #>PRGMEM
          JSR CARTXFER

          LDA #0                ; Write address low byte
          JSR CARTXFER

          RTS

_END      JSR CARTOFF           ; End previous transaction

          JSR CARTON            ; New transaction to read status register

_WAIT     LDA #5                ; Read status register command
          JSR CARTXFER

          LDA #0                ; Read the status register
          JSR CARTXFER

          AND #$01              ; Wait until previous write is completed
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PROGCART handles  SPI  EEPROM programming at  a
high level.

We  also  want  to  make  sure  there  weren't  any
glitches when we wrote to the EEPROM, so when we're
done,  we  use  the  VERICART routine  to  check  it.  A
simpler form of the  PROGCART routine,  it  reads the
data back from the EEPROM and compares each byte
to the contents in the memory buffer.

          BNE _WAIT

          JSR CARTOFF           ; End transaction and return

          RTS

;
; VERICART
;
; Reads the SPI EEPROM and compares it to the program in memory.
;
VERICART  LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
          STA PRGPTR+1

          LDX #MSG_VERIDATA     ; Display message about verifying data
          JSR SHOWSTAT

          JSR CARTON            ; Begin initial SPI transaction

          LDA #3                ; Read command
          JSR CARTXFER

          JSR CARTSIZE          ; Check cartridge size
          BEQ _ADDR

          LDA #0                ; Read address highest byte, greater than 64K only
          JSR CARTXFER

_ADDR     LDA #0                ; Read address high byte
          JSR CARTXFER

          LDA #0                ; Write address low byte
          JSR CARTXFER

_LOOP     LDA PRGPTR+0          ; Ensure we're not at the top of the data
          CMP PRGTOP+0
          BNE _CONT

          LDA PRGPTR+1
          CMP PRGTOP+1
          BNE _CONT

          JSR CARTOFF           ; Done reading

          LDX #MSG_VERIFYOK     ; Verify passed
          JSR SHOWSTAT

          RTS

_CONT     LDA #0                ; Read the next byte from the cartridge
          JSR CARTXFER
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The  VERICART routine  checks  the  program  contents
against the EEPROM.

While loading data or programming cartridges, we
want  to  update  the  current  status  message  on  the
screen.  The  SHOWSTAT routine  lets  us  redraw  just
that part of the screen without affecting anything else.

A  simple  routine  to  display  a  status  message  by
number.

A  larger  routine,  SHOWSCRN clears  the  entire
screen and draws the menu. This is performed far less
frequently, only at startup and at particular stopping
points in the program.

          CMP (PRGPTR)          ; Compare the bytes to verify
          BNE _FAILED

          INC PRGPTR+0          ; Increment address
          BNE _LOOP
          INC PRGPTR+1
          BRA _LOOP

_FAILED   JSR CARTOFF           ; Turn off SPI

          LDX #MSG_VERIFYBAD    ; Display verification failed message
          JSR SHOWSTAT

          RTS

;
; SHOWSTAT
;
; Shows a message in the status bar at the bottom of the screen.
; The message number should be in the X register.
;
SHOWSTAT  PHX                     ; Preserve message number

          LDX #0                  ; Clear status bar
          LDY #11
          JSR MOVESCRN

          LDX #MSG_CLEAR
          JSR PUTMSG

          LDX #0                  ; Print message
          LDY #11
          JSR MOVESCRN

          PLX
          JSR PUTMSG

          RTS

;
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A  rather  long  SHOWSCRN draws  most  of  the  user
interface.

The  underyling  UART  routines  for  loading  binary
files are identical to those in the SID player example in

; SHOWSCRN
;
; Shows the main screen.
;
SHOWSCRN  JSR CLRSCRN

          LDX #0
          LDY #0
          JSR MOVESCRN

          LDX #MSG_CODYPROG
          JSR PUTMSG

          LDX #0
          LDY #1
          JSR MOVESCRN

          LDX #MSG_SUBTITLE
          JSR PUTMSG

          LDX #0
          LDY #3
          JSR MOVESCRN

          LDX #MSG_LENGTH
          JSR PUTMSG

          LDX #9
          LDY #3
          JSR MOVESCRN

          LDA PRGLEN+1
          JSR PUTHEX

          LDX #11
          LDY #3
          JSR MOVESCRN

          LDA PRGLEN+0
          JSR PUTHEX

          LDX #0
          LDY #5
          JSR MOVESCRN

          LDX #MSG_LOADMENU
          JSR PUTMSG

          LDX #0
          LDY #6
          JSR MOVESCRN

          LDX #MSG_PROGMENU
          JSR PUTMSG

          LDX #0
          LDY #7
          JSR MOVESCRN

          LDX #MSG_QUITMENU
          JSR PUTMSG

          RTS
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the  previous  chapter.  The  UARTON routine  is  called
before beginning a UART operation.

UARTON turns on UART 1.

Its companion routine, UARTOFF, turns off the UART
at the end of a read operation.

UARTOFF shuts off UART 1.

Reading from the UART is handled by the UARTGET
routine.  It  checks  to  see  if  a  byte  is  in  the  receive
buffer.  If  not,  it  fails fast,  but if there is,  it  reads the

;
; UARTON
;
; Turns on UART 1.
;
UARTON    PHA
          PHY

_INIT     STZ UART1_RXTL          ; Clear out buffer registers
          STZ UART1_TXHD

          LDA #$0F                ; Set baud rate to 19200
          STA UART1_CNTL

          LDA #01                 ; Enable UART
          STA UART1_CMND

_WAIT     LDA UART1_STAT          ; Wait for UART to start up
          AND #$40
          BEQ _WAIT

          PLY
          PLA

          RTS                     ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF   PHA

          STZ UART1_CMND          ; Clear bit to stop UART

_WAIT     LDA UART1_STAT          ; Wait for UART to stop
          AND #$40
          BNE _WAIT

          PLA

          RTS
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byte and returns it in the accumulator. The carry flag is
used to indicate if a byte was read.

UARTGET polls  the  UART  and  returns  a  byte  if
available.

SPI  routines  are  contained  in  the  various  CART
routines  that  talk  to  the  cartridge  on  the  expansion
port. Because of the simple nature of the SPI protocol,
these routines are the same as those used to read a
cartridge in Cody BASIC. We just use them differently.

The only new routine is the  CARTSIZE routine that
tests whether the cartridge is small or large. It does so
by examining the value of the matching I/O pin.

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET   PHY

          LDA UART1_STAT          ; Test no error bits set in the status register
          BIT #$06
          BNE _ERR

          LDA UART1_RXTL          ; Compare current tail to current head position
          CMP UART1_RXHD
          BEQ _EMPTY

          TAY                     ; Read the next character from the buffer
          LDA UART1_RXBF,Y

          PHA                     ; Increment the receiver tail position
          INY
          TYA
          AND #$07
          STA UART1_RXTL
          PLA

          PLY
          SEC                     ; Set carry to indicate a character was read
          RTS

_EMPTY    PLY
          CLC                     ; Clear carry to indicate no character read
          RTS

_ERR      LDX #MSG_ERROR          ; UART error, display error status message
          JSR SHOWSTAT

_DONE     JMP _DONE

;
; CARTSIZE
;
; Checks the cartridge size as small (64K or less) or large (greater than 64K).
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A  simple  routine  to  check  a  cartridge's  size  before
writing.

The  CARTON routine begins an SPI transaction by
setting  the  appropriate  pins  on  the  expansion  port.
Most importantly, it brings the SPI chip select pin from
high to low to initiate the transaction itself.

CARTON begins an SPI transaction.

CARTOFF brings the SPI chip select high to end the
current transaction.

CARTOFF ends the current SPI transaction.

The  CARTXFER routine  is  more  complicated  and
handles the actual exchange of data. A byte is shifted

; Cartridges greater than 64K require an additional address byte.
;
CARTSIZE  LDA VIA_IORB
          AND #CART_SIZE

          RTS

;
; CARTON
;
; Starts an SPI transation on the cartridge pins for the expansion port. The proper
; directions for 65C22 port B are set, outputs are set, and then the chip select is
; brought low.
;
; Calls to CARTON should be matched by a call to CARTOFF. The presence of a cartridge
; should be verified by a prior call to CARTCHECK.
;
CARTON    LDA #(CART_CLK | CART_MOSI | CART_CS)    ; Set port B directions
          STA VIA_DDRB

          LDA #CART_CS        ; Start with SPI select high
          STA VIA_IORB

          LDA #0              ; Bring select low to begin a cycle
          STA VIA_IORB

          RTS

;
; CARTOFF
;
; Brings the chip select high at the end of an SPI transaction with a cartridge.
;
CARTOFF   LDA #CART_CS        ; Bring select high to end the transaction
          STA VIA_IORB

          RTS
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out over the SPI pins while another byte is shifted in at
the same time. Rather than use the 65C22 VIA's shift
register (which has complications that we won't cover
here),  we bit-bang the port directly.  SPI data is sent
with the highest bit first, so we shift ot the left and look
at our carry bits.

The CARTXFER sends and receives a single SPI byte.

;
; CARTXFER
;
; Transfers a single byte during an SPI transaction with a cartridge. The value
; to send should be stored in the accumulator, and it will be replaced by the
; value received.
;
CARTXFER  PHX

          STA SPIOUT

          STZ SPIINP

          LDX #8              ; 8 bits to read

_LOOP     STZ VIA_IORB        ; Bring the clock low

          LDA #0              ; Start with no data

          ROL SPIOUT          ; Get output bit

          BCC _SEND

          ORA #CART_MOSI      ; Output bit was a 1

_SEND     STA VIA_IORB        ; Put the bit on MOSI

          ORA #CART_CLK       ; Bring the SPI clock high
          STA VIA_IORB

          ROL SPIINP          ; Rotate SPI input for next bit

          LDA VIA_IORB        ; Read the incoming MISO
          AND #CART_MISO

          BEQ _NEXT

          LDA SPIINP
          ORA #1
          STA SPIINP

_NEXT     DEX                 ; Next loop (if any remain)
          BNE _LOOP

          PLX

          LDA SPIINP

          RTS
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The other routines are copied verbatim from earlier
examples.  MOVESCRN moves  the  current  screen
pointer to a particular row and column.

A routine to position the next output on the screen.

Another  routine  you've  seen  before,  CLRSCRN,
clears the entire screen by filling it with whitespace.

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN  LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          INY                     ; Increment pointer for each row
_LOOPY    CLC
          LDA SCRPTR+0
          ADC #40
          STA SCRPTR+0
          LDA SCRPTR+1
          ADC #0
          STA SCRPTR+1
          DEY
          BNE _LOOPY

          CLC                     ; Add position on column
          TXA
          ADC SCRPTR+0
          STA SCRPTR+0
          LDA SCRPTR+1
          ADC #0
          STA SCRPTR+1

          RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN   LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          LDA #20                 ; Clear screen by filling with whitespaces

          LDY #25                 ; Loop 25 times on Y

_LOOPY    LDX #40                 ; Loop 40 times on X for each Y

_LOOPX    STA (SCRPTR)            ; Store zero

          INC SCRPTR+0            ; Increment screen position
          BNE _NEXT
          INC SCRPTR+1

_NEXT     DEX                     ; Next X
          BNE _LOOPX
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The screen-clearing routine.

The  PUTMSG routine puts a string identified by a
message  number  onto  the  screen  starting  at  the
current location.

PUTMSG prints a message on the screen.

The PUTCHR routine is used internally to copy each
individual character in the message.

PUTCHR plots the individual characters.

          DEY                     ; Next Y
          BNE _LOOPY

          RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG      PHA
            PHY

            LDA MSGS_L,X        ; Load the pointer for the string to print
            STA STRPTR+0
            LDA MSGS_H,X
            STA STRPTR+1

            LDY #0

_LOOP       LDA (STRPTR),Y      ; Read the next character (check for null)
            BEQ _DONE

            JSR PUTCHR          ; Copy the character and move to next
            INY

            BRA _LOOP           ; Next loop

_DONE       PLY
            PLA

            RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR      STA (SCRPTR)        ; Copy the character

            INC SCRPTR+0        ; Increment screen position
            BNE _DONE
            INC SCRPTR+1

_DONE       RTS
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The  PUTHEX routine  plots  the  byte  in  the
accumulator as two hex digits.  In the SID player this
routine  was  used  a  lot  to  show the  current  register
values. In this program we only need it to display the
program's length as a hex value for sanity checking.

PUTHEX prints a byte as two hex digits.

The message table in this program is different,  so
our constants below are different.

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;
PUTHEX      PHA
            PHX
            TAX
            JSR HEXTOASCII
            PHA
            TXA
            LSR A
            LSR A
            LSR A
            LSR A
            JSR HEXTOASCII
            PHA
            PLA
            JSR PUTCHR
            PLA
            JSR PUTCHR
            PLX
            PLA
            RTS
HEXTOASCII  AND #$F
            CLC
            ADC #48
            CMP #58
            BCC _DONE
            ADC #6
_DONE       RTS

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYPROG  = 0
MSG_SUBTITLE  = 1
MSG_LOADMENU  = 2
MSG_PROGMENU  = 3
MSG_QUITMENU  = 4
MSG_WAITBINA  = 5
MSG_WAITREPE  = 6
MSG_RECVDATA  = 7
MSG_PROGDATA  = 8
MSG_VERIDATA  = 9
MSG_VERIFYOK  = 10
MSG_VERIFYBAD = 11
MSG_LENGTH    = 12
MSG_CLEAR     = 13
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The constants for the messages in the string table.

The  actual  string  contents  of  the  messages,  of
course, are also different. The text relates to the menu
options and status updates involved in programming
the SPI EEPROM in the cartridge.

The string literals for the program's messages.

The message table consists of the string addresses
split into low and high bytes. As in the other programs,
this allows a quick lookup of the string using an index.

MSG_ERROR     = 14

;
; The strings displayed by the program.
;
STR_CODYPROG  .NULL "CodyProg"
STR_SUBTITLE  .NULL "The Cody Cartridge Programmer"
STR_LOADMENU  .NULL "(L)oad binary"
STR_PROGMENU  .NULL "(P)rogram cartridge"
STR_QUITMENU  .NULL "(Q)uit"
STR_WAITBINA  .NULL "Waiting for binary data..."
STR_WAITREPE  .NULL "Waiting for repeat data to verify..."
STR_RECVDATA  .NULL "Receiving data..."
STR_PROGDATA  .NULL "Programming data..."
STR_VERIDATA  .NULL "Verifying data..."
STR_VERIFYOK  .NULL "Verify OK."
STR_VERIFYBAD .NULL "Verify FAILED."
STR_LENGTH    .NULL "Length: $"
STR_CLEAR     .NULL "                                    "
STR_ERROR     .NULL "ERROR"

;
; Low bytes of the string table addresses.
;
MSGS_L
  .BYTE <STR_CODYPROG
  .BYTE <STR_SUBTITLE
  .BYTE <STR_LOADMENU
  .BYTE <STR_PROGMENU
  .BYTE <STR_QUITMENU
  .BYTE <STR_WAITBINA
  .BYTE <STR_WAITREPE
  .BYTE <STR_RECVDATA
  .BYTE <STR_PROGDATA
  .BYTE <STR_VERIDATA
  .BYTE <STR_VERIFYOK
  .BYTE <STR_VERIFYBAD
  .BYTE <STR_LENGTH
  .BYTE <STR_CLEAR
  .BYTE <STR_ERROR

;
; High bytes of the string table addresses.
;
MSGS_H
  .BYTE >STR_CODYPROG
  .BYTE >STR_SUBTITLE
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The low and high portions of the strings' addresses.

The program ends with the same boilerplate as the
others.

The end of the program.

USING THE PROGRAMMER

Build the programmer utility by running it through
64tass assembler  on  your  PC.  Just  run  64tass  --
mw65c02  --nostart  -o  codyprog.bin  codyprog.asm.
These are the same steps as in the previous chapter for
assembly language programs.

Once you've done that, turn off the Cody Computer
and plug the cartridge programmer into the expansion
slot.  Turn the  Cody Computer  back  on and load the
programmer  utility  using  the  LOAD  1,1 command.
Remember  that  the  second  argument  is  also  a  1
because  the  program  is  a  binary  and  not  a  BASIC
program.

Once loaded we can begin programming a cartridge.
Press the L key to load a binary to the programmer,
then send the codybros.bin binary file you built in the
previous chapter. You will actually be prompted for the

  .BYTE >STR_LOADMENU
  .BYTE >STR_PROGMENU
  .BYTE >STR_QUITMENU
  .BYTE >STR_WAITBINA
  .BYTE >STR_WAITREPE
  .BYTE >STR_RECVDATA
  .BYTE >STR_PROGDATA
  .BYTE >STR_VERIDATA
  .BYTE >STR_VERIFYOK
  .BYTE >STR_VERIFYBAD
  .BYTE >STR_LENGTH
  .BYTE >STR_CLEAR
  .BYTE >STR_ERROR

LAST                              ; End of the entire program

.ENDLOGICAL
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file  twice,  first  for  the  load  and  the  second  time  to
verify the contents are identical.

The programmer program running and waiting for a
binary file.

Once  the  binary  is  verified,  press  the  P  key  to
program  the  cartridge.  This  will  begin  the
programming of the SPI EEPROM inserted into the DIP
socket  on  the  programmer  board.  It  will  take  a  few
moments  and  then  read  the  contents  back  to  verify
that no errors occurred while programming.

Once done you can test out the cartridge. Turn off
the Cody Computer and reconnect JP3,  the cartridge
detect,  on the cartridge programmer board.  Turn the
Cody Computer back on and watch the program load
from the cartridge.
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The Cody Bros example from the previous chapter now
running as a cartridge.

CARTRIDGE CASE ASSEMBLY

Cartridges,  particularly  the  more  permanent  kind,
can be built  into a case.  STL files are provided for a
case  that  will  fit  the  cartridge  PCB.  Assembly  is
relatively straightforward.

When building a cartridge PCB for use as an actual
cartridge rather  than as  a  programmer,  it's  better  if
you solder  actual  jumpers  on the board rather  than
using  header  pins  and  blocks.  You  would  make  the
same connections the jumper blocks would when the
programmer is used in cartridge mode (including the
JP3  cartridge-detect),  but  make  them  in  a  more
permanent fashion. However, even the PCB built as a
programmer  will  (barely)  fit  into  the  provided
cartridge case design.

511



For this step you'll need the following:

1 completed cartridge PCB (see above notes)
1 cartridge top (CartridgeTop.stl)
1 cartridge bottom (CartridgeBottom.stl)
1 4 M3 x 10mm self-tapping screw, round/pan
head (US #4 x 3/8")
Screwdriver

The cartridge halves are intended to be printed with
the outside parts against the print bed. For the top half
of the cartridge, it will require some supports for the
recessed  label  area.  Removing  these  supports
shouldn't  be  too  difficult,  and  with  some  care,  any
damage from the removal should be hidden under the
label area.

To begin ensure that the finished PCB fits into the
cartridge  bottom.  The  PCB  should  fit  regardless  of
whether it was built as a cartridge or a programmer.
Sanding may be required.

• 
• 
• 
• 

• 
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The cartridge case parts with board inserted. For a true
"cartridge"  the  PCB  should  be  built  as  an  actual
cartridge rather than a programmer, but it should fit
mechanically either way.

With the board in  place,  pop the top and bottom
halves of  the cartridge together.  Some sanding may
again be required to ensure a snug fit.  Take the M3
screw and screw it into the cartridge through the back.
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Inserting  the  M3  screw  that  holds  the  cartridge
together.

This should affix the two halves together as well as
secure the board. A recessed area on the cartridge is
suitable  for  affixing  a  permanent  label.  Additional
sanding or post-processing may be required to ensure
a smooth surface for affixing the label.
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The finished cartridge waiting for a label.
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Afterword



ONE GOOD LITTLE DUDE

He wasn't much of a dog, but he was a great little
kid. A few memories of the real Cody as we knew him.

This Used to Be the Future. Cody gazing at relics of the
space shuttle program. Pima Air and Space Museum,
Tucson, Arizona.
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Model  Behavior.  Studying  a  wooden  model  of  the
ESA's  Jules  Verne  as  docked  with  Zvezda.  Ripley's
Believe-It-or-Not, Saint Augustine, Florida.
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Star  Trekkin'.  Science  Officer  Cody  conducting  a
routine planetary survey near Kodachrome Basin State
Park. Devil's Garden, Utah.
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Digitize Me, Daddy! Cody retracing the steps of Galaxy
Quest. Goblin Valley State Park, Utah.
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Preparing  for  Launch.  Cody  watching  as  I  fumble
around in a bag for a model rocket engine and igniter.
Bonneville Salt Flats, Utah.
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Artiste.  Cody and his  mom taking a  break  from the
Commodore Amiga's Personal Paint. Folkston, Georgia.
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Just a Wee Calculator. Cody with an early version of
the circuit  that would grow into the Cody Computer.
Folkston, Georgia.
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Design Review. Cody posing with a late revision of the
Cody  Computer  on  a  breadboard  (literally).  Mesa,
Arizona.
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Shopping  Trip.  Cody  and  his  mom  in  the
semiconductor aisle of a now-defunct Fry's Electronics.
Phoenix, Arizona.
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Duplication. Cody watching our new Creality Ender 3
Pro  print  a  tiny  little  dog  for  a  test  print.  Mesa,
Arizona.
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Appendices



APPENDIX A: MEMORY MAP

The  Cody  Computer's  64  kilobytes  of  memory
contains different  RAM and ROM regions as  well  as
several  memory-mapped  peripherals.  This  memory
map will help you when designing the layout of your
own programs, particularly in assembly language. You
will  need  to  know  the  addresses  of  the  various
peripherals whether programming in Cody BASIC or in
assembly language.

Address Description

$0000 65C02 zero page variables

$0100 65C02 stack page

$9F00 65C22 Versatile Interface Adapter (VIA)
registers

$A000 Beginning of Propeller shared memory

$D000 Video Interface Device (VID) registers

$D040 Video Interface Device (VID) control bank

$D060 Video Interface Device (VID) data bank

$D080 Video Interface Device (VID) sprite banks

$D400 Sound Interface Device (SID) registers

$D480 UART 1 registers

$D4A0 UART 2 registers

$E000 Cody BASIC ROM (character set)

$E800 Cody BASIC ROM (BASIC interpreter)

$FFFF End of memory
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65C02 ZERO PAGE VARIABLES

In Cody BASIC most of the 65C02 zero page is used
by the interpreter. Several of these memory locations
are intended for use by Cody BASIC programs through
the PEEK and POKE operations.

The  ISRPTR address  is  relevant  to  assembly
language programs that wish to register an interrupt
handler.  Cody  BASIC  already  registers  an  interrupt
handler at this address on startup.

Address Description

$0000 SYS call A register (Cody BASIC)

$0001 SYS call X register (Cody BASIC)

$0002 SYS call Y register (Cody BASIC)

$0008 ISRPTR (2 bytes, assembly)

$000E INPUT prompt character code (Cody
BASIC)

$0010 Keyboard row 0 state (Cody BASIC)

$0011 Keyboard row 1 state (Cody BASIC)

$0012 Keyboard row 2 state (Cody BASIC)

$0013 Keyboard row 3 state (Cody BASIC)

$0014 Keyboard row 4 state (Cody BASIC)

$0015 Keyboard row 5 state (Cody BASIC)

$0016 Joystick 1 state (Cody BASIC)

$0017 Joystick 2 state (Cody BASIC)

$004B Boundary page for program memory
(Cody BASIC)
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65C22 VERSATILE INTERFACE ADAPTER (VIA)
REGISTERS

The 65C22 is a 6502-family I/O chip currently in
production by the Western Design Center. Aside from
the UARTs implemented by the Propeller,  all  of  the
Cody Computer's input and output is handled by this
chip. It's the modern version of the classic 6522 VIA
used in many vintage computers.

The below table lists the VIA registers as they exist
within the Cody Computer's  memory map.  Port  A is
used  internally  for  keyboard  and  joystick  scanning
while port B is open for use on the expansion port.

For detailed documentation on the chip's functions,
refer to WDC's data sheet.

Address Description

$9F00 Input/output register B

$9F01 Input/output register A

$9F02 Data direction register B

$9F03 Data direction register A

$9F04 Timer 1 latch/counter (low byte)

$9F05 Timer 2 counter (high byte)

$9F06 Timer 1 latch (low byte)

$9F07 Timer 1 latch (high byte)

$9F08 Timer 2 latch/counter (low byte)

$9F09 Timer 2 counter (high byte)

$9F0A Shift register

$9F0B Auxiliary control register

$9F0C Peripheral control register

$9F0D Interrupt flag register
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Address Description

$9F0E Interrupt enable registr

$9F0F Input/output register A (no handshake)

VIDEO INTERFACE DEVICE (VID) REGISTERS

The  Cody  VID  is  a  software-implemented  video
device built using the Propeller. It is inspired by, but
different from, the VIC-II  and its  multicolor  graphics
mode.

Address Description

$D000 Blanking register (nonzero during
blanking interval)

$D001 Control register

Bit 0 disables screen output.
Bit 1 enables vertical scrolling (24 rows).
Bit 2 enables horizontal scrolling (38 columns).
Bit 3 enables row effects.
Bit 4 enables bitmap mode.

$D002 Color register

Bits 0-3 contain border color.
Bits 4-7 contain color memory location.

$D003 Base register

Bits 0-3 contain character memory location.
Bits 4-7 contain screen memory location.

$D004 Scroll register

• 
• 
• 
• 
• 

• 
• 

• 
• 
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Address Description

Bits 0-3 contain vertical scroll (0-7).
Bits 4-7 contain horizontal scroll (0-3).

$D005 Screen colors register

Bits 0-3 contain character color 2.
Bits 4-7 contain character color 3.

$D006 Sprite register

Bits 0-3 contain common sprite color.
Bits 4-7 contain current sprite bank.

The  Video  Interface  Device  also  has  two  banks
responsible for implementing row effects. A row effect
changes part of the screen for one of the 25 character
rows and replaces the the raster interrupt effects used
on the Commodore 64. One bank controls the effect to
apply while the other bank contains the replacement
value.

Address Description

$D040 Row effect control bank (32 bytes)

Bits 0-4 contain row number.
Bits 5-6 contain destination (see below).
Bit 7 enables the effect.

Destinations can be the following: 

00 overrides the base register.

• 
• 

• 
• 

• 
• 

• 
• 
• 

• 
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Address Description

01 overrides the scroll register.
10 overrides the screen register.
11 overrides the sprite register.

$D060 Row effect data bank (32 bytes)

The VID has four different sprite banks that take up
the remainder of the page:

Address Description

$D080 Sprite bank 0

$D0A0 Sprite bank 1

$D0C0 Sprite bank 2

$D0E0 Sprite bank 3

Each entry in a sprite bank is a contiguous group of
four bytes. A single sprite bank has eight sprites, all of
which are set up exactly like the below table.

Offset Description

+0 Sprite x-coordinate (0 to 184)

+1 Sprite y-coordinate (0 to 242)

+2 Sprite colors

Bits 0-3 contain color 1.
Bits 4-7 contain color 2.

+3 Sprite location.

• 
• 
• 

• 
• 
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SOUND INTERFACE DEVICE (SID) REGISTERS

The  Cody  Computer  has  a  sound  interface  device
based  on  the  Commodore/MOS  6581.  It  is
implemented within the Propeller chip as a software
emulation. Not all SID features are supported and the
implementation  is  not  an  exact  SID  replacement.
Filters  and  combined  waveforms,  among  other
features, are not implemented at all.

Refer to Chapter 8, Sound and Music Programming,
for an explanation of the frequency and ADSR values.

Address Description

$D400 Voice 1 frequency value (low byte)

$D401 Voice 1 frequency value (high byte)

$D402 Voice 1 pulse duty cycle (low byte)

$D403 Voice 1 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D404 Voice 1 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 3 oscillator.
Bit 2 enables ring modulation with voice 3.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 
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Address Description

$D405 Voice 1 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D406 Voice 1 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D407 Voice 2 frequency value (low byte)

$D408 Voice 2 frequency value (high byte)

$D409 Voice 2 pulse duty cycle (low byte)

$D40A Voice 2 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D40B Voice 2 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 1 oscillator.
Bit 2 enables ring modulation with voice 1.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D40C Voice 2 attack and decay register

Bits 0-3 contain the decay value.

• 
• 

• 
• 

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
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Address Description

Bits 4-7 contain the attack value.

$D40D Voice 2 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D40E Voice 3 frequency value (low byte)

$D40F Voice 3 frequency value (high byte)

$D410 Voice 3 pulse duty cycle (low byte)

$D411 Voice 3 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D412 Voice 3 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 2 oscillator.
Bit 2 enables ring modulation with voice 2.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D413 Voice 3 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D414 Voice 1 sustain and release register

• 

• 
• 

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
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Address Description

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D415 Reserved

$D416 Reserved

$D417 Reserved

$D418 Volume control

Bits 0-3 contain the global volume.

$D419 Reserved

$D41A Reserved

$D41B Voice 3 oscillator (read)

$D41C Voice 3 envelope (read)

UART 1 REGISTERS

Cody  Computer  UART  1  is  connected  to  the  Prop
Plug port on the back of the computer. As with most
Cody Computer peripherals,  it  is  implemented using
the Propeller. This device is generally used for serial
communications with your PC or for transferring files.
Bit rate options are copied from the 6551 ACIA:

$0 is not supported.
$1 for 50 BPS.
$2 for 75 BPS.
$3 for 110 BPS.
$4 for 135 BPS.
$5 for 150 BPS.
$6 for 300 BPS.

• 
• 

• 

• 
• 
• 
• 
• 
• 
• 
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$7 for 600 BPS.
$8 for 1200 BPS.
$9 for 1800 BPS.
$A for 2400 BPS.
$B for 3600 BPS.
$C for 4800 BPS.
$D for 7200 BPS.
$E for 9600 BPS.
$F for 19200 BPS.

Address Description

$D480 Control register

Bits 0-3 contain the bit rate.

$D481 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes. 

$D482 Status register

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

$D483 Reserved

$D484 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

• 
• 
• 
• 
• 
• 
• 
• 
• 

• 

• 

• 
• 
• 
• 
• 

• 
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Address Description

$D485 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D486 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D487 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D488 Receive ring buffer (8 bytes)

$D490 Transmit ring buffer (8 bytes)

UART 2 REGISTERS

Cody Computer UART 2 is  identical  in function to
UART  1.  However,  UART  2  is  connected  to  the
expansion port.

Address Description

$D4A0 Control register

Bits 0-3 contain the bit rate.

$D4A1 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes. 

$D4A2 Status register

• 

• 

• 

• 

• 
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Address Description

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

$D4A3 Reserved

$D4A4 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A5 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D4A6 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A7 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A8 Receive ring buffer (8 bytes)

$D4B0 Transmit ring buffer (8 bytes)

• 
• 
• 
• 
• 

• 

• 

• 

• 
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APPENDIX B: COLOR CODES

The color codes used by the Cody Computer's Video
Interface  Device  are  the  same  as  those  from  the
Commodore  VIC-II  chip.  The  actual  colors  used  are
from the Propeller NTSC palette.

Code (dec) Code (hex) Color

0 $0 Black

1 $1 White

2 $2 Red

3 $3 Cyan

4 $4 Purple

5 $5 Green

6 $6 Blue

7 $7 Yellow

8 $8 Orange

9 $9 Brown

10 $A Light red

11 $B Dark gray

12 $C Gray

13 $D Light green

14 $E Light blue

15 $F Light gray
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APPENDIX C: CODY BASIC

This  appendix  contains  a  brief  reference  for  Cody
BASIC.  For  more  information  and  examples  refer  to
Chapter  5:  Using  Cody  BASIC and  Chapter  6:
Advanced Cody BASIC.

LINE NUMBERS

All Cody BASIC statements in a program must have
a line number. A handful of statements and commands
can be evaluated immediately at  the BASIC prompt,
but this is the exception and not the rule.

COMMENTS

Lines  beginning with  the  REM (remark)  statement
will be ignored. Each line incurs a small performance
penalty as the statement's token must be processed
and the rest of the line skipped over.

VARIABLES

Numeric variables are the letters A through Z. Each
variable can store a 16-bit signed integer from -32768
to  32767 inclusive.  When used  in  certain  situations,
such as POKE statements, numbers are interpreted as
their unsigned equivalents to address the entire Cody
Computer memory.

A numeric variable is actually the first element in a
numeric array of 128 values. A specific element can be
accessed  by  indexing  with  a  number  or  numeric
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expression,  such  as  A(10).  Arrays  are  declared  by
default in Cody BASIC.

String variables are the letters A$ through Z$ (note
the trailing dollar sign character). Each string can store
up to 255 possible characters and a terminating null
character. Strings are declared by default.

Assignment  is  made  using  the  = operator.  Each
assignment must be on its own line and the type of the
expression  must  match  the  type  of  the  variable.  A
numeric variable must have a numeric expression on
the  right  side,  while  a  string  variable  must  have  a
string expression on the right side instead.

NUMERIC EXPRESSIONS

Supported  numeric  operators  are  + (addition),  -
(subtraction), * (multiplication) and / (division). Order
of  operations  is  obeyed,  with  mulitplication  and
division occurring before addition and subtraction.

Expressions  can  be  grouped  using  ( (left
parenthesis)  and  ) (right  parenthesis).  A  leading  -
(unary minus) can be used to obtain the negative of a
number or expression.

STRING EXPRESSIONS

The  only  supported  operator  for  strings  is  +
(concatenation).  This  operator  is  only  supported  in
very  limited  circumstances  involving  explicit  string
expressions (assignment,  PRINT, and the right side of
expressions in IF statements).
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RELATIONAL EXPRESSIONS

Relational  expressions  are  only  used  in  IF
statements. Supported relational operators are < (less
than),  > (greater  than),  <= (less than or  equal),  >=
(greater than or equal), = (equal), and <> (not equal).

For numbers a relational expression consists of two
numeric  expressions  with  a  relational  operator.  For
strings  a  relational  expression  consists  of  a  string
variable on the left side and a string expression on the
right side.

MATHEMATICAL FUNCTIONS

Several mathematical functions are present in Cody
BASIC.

ABS(n) returns the absolute value of a number.
MOD(m, n) returns the result of m modulo n.
SQR(n) returns the integer square root of a
number.
RND() returns a pseudorandom number.
RND(n) seeds the pseudorandom generator with
a new value.

BITWISE FUNCTIONS

The typical bitwise operations are implemented as
Cody BASIC functions.

AND(m, n) returns the bitwise-and of two
numbers.
OR(m, n) returns the bitwise-or of two numbers.

• 
• 
• 

• 
• 

• 

• 
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XOR(m, n) returns the bitwise exclusive-or of two
numbers.
NOT(n) returns the bitwise negation of a number.

STRING FUNCTIONS RETURNING NUMBERS

Some functions that take a string variable argument
are used in numeric expressions.

ASC(s$) returns the number of the first character
in a string variable.
VAL(s$) parses a number from the start of a
string variable.
LEN(s$) returns the number of characters in a
string variable.

STRING FUNCTIONS RETURNING STRINGS

Other string functions return strings and are used in
string expressions.

CHR$(n,...,n) converts one or more numbers to
string characters.
STR$(n) converts a number to its string
representation.
SUB$(s$,m,n) returns a substring of length n
starting at m.

FORMATTING FUNCTIONS

Two  functions  can  only  be  used  to  control
formatting in PRINT statements.

AT(x,y) moves the output to the specified
coordinates.

• 

• 

• 

• 

• 

• 

• 

• 

• 
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TAB(n) moves the output to a particular tab
column on screen.

OTHER FUNCTIONS

A  couple  of  functions  don't  fit  into  a  specific
category.

PEEK(n) returns the byte at a specific memory
address.
TI returns the current time count in jiffies (1/60th
of a second).

COMMANDS

Several  commands  are  used  to  interact  with
rudimentary Cody BASIC facilities.

NEW clears the program memory and starts a
new program.
LOAD m,n saves the current program on UART m
and mode n. Use 0 for BASIC programs and 1 for
binary programs.
SAVE n saves the current program on UART n.
RUN runs the current BASIC program starting at
the first line.
LIST lists the program.
LIST m lists the program starting with a
particular line.
LIST m,n lists the program between two line
numbers.

• 

• 

• 

• 

• 

• 
• 

• 
• 

• 
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CONTROL STATEMENTS

Control statements manage the flow through a Cody
BASIC program.

IF r THEN s evaluates statement s if relational
expression r is true.
GOTO n jumps to a particular line in the
program.
GOSUB n calls a particular line with the intention
of RETURNing.
RETURN returns to the line after the last GOSUB.
FOR i=m TO n loops i from m to n with a
matching NEXT.
NEXT starts the next loop with the matching FOR.
END exits the current program.

INPUT AND OUTPUT STATEMENTS

Cody BASIC has several  statements for  structured
input and output.

INPUT v,...,v reads one-per-line numeric or string
values into one or more variables v.
PRINT prints a blank line.
PRINT e,...,e prints one or more numeric or string
expressions. The statement will move on to the
next line unless ; (semicolon) is at the end.
OPEN m,n redirects future INPUT and PRINT
statements to UART m with bit rate specifier n.
CLOSE closes a UART and directs back to the
keyboard and screen.

• 

• 

• 

• 
• 

• 
• 

• 

• 
• 

• 

• 

549



The most recent keyboard and joystick matrix scans
performed by the BASIC interpreter can be read from
zero page addresses 16 through 23. The input prompt
character  can  be  changed  by  changing  zero  page
address 14.

DATA STATEMENTS

Cody  BASIC  supports  a  limited  form  of  DATA
statements  for  literals.  Data  will  be  read  from  each
statement  in  the  program  starting  at  the  beginning
and going to the end.

DATA n,..,n declares one or more numeric literals
separated by commas.
READ v,..,v reads one or more literals from DATA
into number variables.
RESTORE moves the data location back to the
beginning of the program.

OTHER STATEMENTS

Some  statements  don't  easily  fit  into  a  specific
category.

POKE m,n pokes byte n into memory address m.
SYS n calls address n in assembly language.
Values for registers A, X, and Y can be passed in
the first three zero page variables.

• 

• 

• 

• 
• 
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ERRORS

Cody BASIC has limited error handling inspired by
Tiny BASIC.

LOGIC errors occur when a statement was
syntactically valid but wrong in context.
SYNTAX errors occur when a statement could not
be correctly parsed.
SYSTEM errors occur when a statement fails
because of low-level problems.

• 

• 

• 
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Image

APPENDIX D: CODSCII TABLE

The CODSCII  character set is the default character
set used by the Cody Computer and Cody BASIC. It's
an  extended  ASCII  character  set  with  the  top  128
values  used  for  Commodore  PETSCII  characters  and
custom  control  codes  for  colors  and  terminal
operations.

Dec Hex Description

0 $00 Null

1 $01 Start of heading

2 $02 Start of text

3 $03 End of text

4 $04 End of transmission

5 $05 Enquiry

6 $06 Acknowledge

7 $07 Bell

8 $08 Backspace

9 $09 Horizontal tab

10 $0A Line feed

11 $0B Vertical tab

12 $0C Form feed

13 $0D Carriage return

14 $0E Shift out

15 $0F Shift in

16 $10 Data link escape
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17 $11 Device control 1 (XON)

18 $12 Device control 2

19 $13 Device control 3 (XOFF)

20 $14 Device control 4

21 $15 Negative acknowledge

22 $16 Synchronous idle

23 $17 End of transmission block

24 $18 Cancel

25 $19 End of medium

26 $1A Substitute

27 $1B Escape

28 $1C File separator

29 $1D Group separator

30 $1E Record separator

31 $1F Unit separator

32 $20 Whitespace

33 $21 Exclamation mark

34 $22 Double quotes

35 $23 Hash symbol

36 $24 Dollar sign

37 $25 Percent

38 $26 Ampersand

39 $27 Single quote

40 $28 Left parenthesis

41 $29 Right parenthesis
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42 $2A Asterisk

43 $2B Plus

44 $2C Comma

45 $2D Minus

46 $2E Period

47 $2F Slash

48 $30 Zero

49 $31 One

50 $32 Two

51 $33 Three

52 $34 Four

53 $35 Five

54 $36 Six

55 $37 Seven

56 $38 Eight

57 $39 Nine

58 $3A Colon

59 $3B Semicolon

60 $3C Less than

61 $3D Equal

62 $3E Greater than

63 $3F Question mark

64 $40 At symbol

65 $41 Uppercase A

66 $42 Uppercase B
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67 $43 Uppercase C

68 $44 Uppercase D

69 $45 Uppercase E

70 $46 Uppercase F

71 $47 Uppercase G

72 $48 Uppercase H

73 $49 Uppercase I

74 $4A Uppercase J

75 $4B Uppercase K

76 $4C Uppercase L

77 $4D Uppercase M

78 $4E Uppercase N

79 $4F Uppercase O

80 $50 Uppercase P

81 $51 Uppercase Q

82 $52 Uppercase R

83 $53 Uppercase S

84 $54 Uppercase T

85 $55 Uppercase U

86 $56 Uppercase V

87 $57 Uppercase W

88 $58 Uppercase X

89 $59 Uppercase Y

90 $5A Uppercase Z

91 $5B Left bracket
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92 $5C Backslash

93 $5D Right bracket

94 $5E Caret

95 $5F Underscore

96 $60 Backquote

97 $61 Lowercase a

98 $62 Lowercase b

99 $63 Lowercase c

100 $64 Lowercase d

101 $65 Lowercase e

102 $66 Lowercase f

103 $67 Lowercase g

104 $68 Lowercase h

105 $69 Lowercase i

106 $6A Lowercase j

107 $6B Lowercase k

108 $6C Lowercase l

109 $6D Lowercase m

110 $6E Lowercase n

111 $6F Lowercase o

112 $70 Lowercase p

113 $71 Lowercase q

114 $72 Lowercase r

115 $73 Lowercase s

116 $74 Lowercase t

556



117 $75 Lowercase u

118 $76 Lowercase v

119 $77 Lowercase w

120 $78 Lowercase x

121 $79 Lowercase y

122 $7A Lowercase z

123 $7B Left brace

124 $7C Pipe

125 $7D Right brace

126 $7E Tilde

127 $7F Unused/Reserved

128 $80 Pound sign

129 $81 Up arrow

130 $82 Left arrow

131 $83 Horizontal line

132 $84 Spade

133 $85 Vertical line

134 $86 Horizontal line

135 $87 Horizontal line up 1

136 $88 Horizontal line up 2

137 $89 Horizontal line down 1

138 $8A Vertical line left 1

139 $8B Vertical line duplicate

140 $8C Quarter circle bottom left

141 $8D Quarter circle top right
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142 $8E Quarter circle top left

143 $8F Box bottom left corner

144 $90 Diagonal down

145 $91 Diagonal up

146 $92 Box top left corner

147 $93 Box top right corner

148 $94 Dot

149 $95 Horizontal line down 2

150 $96 Heart

151 $97 Vertical line left 1 duplicate

152 $98 Quarter circle bottom right

153 $99 X

154 $9A Dot with hole

155 $9B Club

156 $9C Vertical line duplicate

157 $9D Diamond

158 $9E Cross

159 $9F Dotted left

160 $A0 Vertical line duplicate

161 $A1 Pi

162 $A2 Filled diagonal top right

163 $A3 Blank

164 $A4 Filled box left

165 $A5 Filled box bottom

166 $A6 Horizontal line top
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167 $A7 Horizontal line bottom

168 $A8 Vertical line left

169 $A9 Dotted square

170 $AA Vertical line right

171 $AB Dotted bottom

172 $AC Diagonal filled top left

173 $AD Vertical line right duplicate

174 $AE T right

175 $AF Filled quarter box bottom right

176 $B0 Box top right

177 $B1 Box bottom left

178 $B2 Horizontal line bottom duplicate

179 $B3 Box bottom right

180 $B4 T up

181 $B5 T down

182 $B6 T left

183 $B7 Vertical line left duplicate

184 $B8 Filled left half duplicate

185 $B9 Filled right half duplicate

186 $BA Horizontal line top

187 $BB Horizontal partial fill top

188 $BC Horizontal partial fill bottom

189 $BD Box bottom right corner

190 $BE Filled box lower left

191 $BF Filled box top right
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192 $C0 Box top left

193 $C1 Filled box top left

194 $C2 Checkered square

195 $C3 Unused/Reserved

196 $C4 Unused/Reserved

197 $C5 Unused/Reserved

198 $C6 Unused/Reserved

199 $C7 Unused/Reserved

200 $C8 Unused/Reserved

201 $C9 Unused/Reserved

202 $CA Unused/Reserved

203 $CB Unused/Reserved

204 $CC Unused/Reserved

205 $CD Unused/Reserved

206 $CE Unused/Reserved

207 $CF Unused/Reserved

208 $D0 Unused/Reserved

209 $D1 Unused/Reserved

210 $D2 Unused/Reserved

211 $D3 Unused/Reserved

212 $D4 Unused/Reserved

213 $D5 Unused/Reserved

214 $D6 Unused/Reserved

215 $D7 Unused/Reserved

216 $D8 Unused/Reserved
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217 $D9 Unused/Reserved

218 $DA Unused/Reserved

219 $DB Unused/Reserved

220 $DC Unused/Reserved

221 $DD Unused/Reserved

222 $DE Clear screen

223 $DF Reverse field

224 $E0 Background black

225 $E1 Background white

226 $E2 Background red

227 $E3 Background cyan

228 $E4 Background purple

229 $E5 Background green

230 $E6 Background blue

231 $E7 Background yellow

232 $E8 Background orange

233 $E9 Background brown

234 $EA Background light red

235 $EB Background dark gray

236 $EC Background gray

237 $ED Background light green

238 $EE Background light blue

239 $EF Background light gray

240 $F0 Foreground black

241 $F1 Foreground white
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242 $F2 Foreground red

243 $F3 Foreground cyan

244 $F4 Foreground purple

245 $F5 Foreground green

246 $F6 Foreground blue

247 $F7 Foreground yellow

248 $F8 Foreground orange

249 $F9 Foreground brown

250 $FA Foreground light red

251 $FB Foreground dark gray

252 $FC Foreground gray

253 $FD Foreground light green

254 $FE Foreground light blue

255 $FF Foreground light gray
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