

The Cody Computer Book
DRAFT

The Cody
Computer

Book
Frederick John Milens III

Copyright © 2024-2025 Frederick John Milens III. All
rights reserved.

Photography by Frederick John Milens III and Ashanna
Biliter.

Written in HTML5 and converted to PDF using
Weasyprint. Typefaces used are Orkney, Anka Coder
Narrow, and CMU Typewriter.

Artwork created with Inkscape and KiCad. Photographs
for the book content were taken on a Nikon 1 S1.

For more information and sources/designs please visit
www.codycomputer.org.

THIS IS A DRAFT COPY.

https://www.codycomputer.org

To Cody Biliter-Milens
2006-2020

Table of Contents

1. Introduction .. 13
Introduction .. 14
What's a Home Computer? 17
Commodore as Inspiration 20
The Cody Computer Design 25
Comparisons and Context .. 31

2. Hardware and Firmware Design 37
Introduction ... 38
Mechanical Design .. 42
Electronic Design .. 49
Propeller Firmware .. 66

3. Software Design ... 109
Introduction ... 110
Startup and Initialization ... 111
Tokenization and Interpretation 126
Numeric and String Expressions 142
Control and Data Statements 150
Input and Output Statements 162
Loading and Saving Programs 169
Serial Routines ... 177
Screen Output .. 180

4. Assembly Instructions ... 187
Introduction ... 188
Notes on 3D Printing ... 188
Keyboard Assembly ... 191
Printed Circuit Board Assembly 199
Case Assembly ... 220
Initial Setup .. 235

5. Using Cody BASIC ... 239
Introduction ... 240

Using the Keyboard .. 240
The Read-Eval-Print Loop 242
Typing and Editing Programs 243
Input and Output ... 245
Variables, Numbers, and Strings 247
Control Statements ... 250
Loading and Saving Programs 254
Understanding Error Messages 259

6. Advanced Cody BASIC .. 263
Introduction ... 264
Working With Numbers 264
Text Manipulation and Strings 270
Print Formatting ... 277
File Input and Output .. 286
Including Data in Programs 292
Timekeeping .. 294
Reading and Writing Memory 295
Using Machine Code ... 298
Programming Hints .. 302

7. Graphics Programming 307
Introduction ... 308
Changing the Border Color 309
Working With Screen Memory 310
Working With Color Memory 313
Characters and Character Memory 316
Waiting for Blanking ... 321
Scrolling the Screen .. 323
Moving Graphics With Sprites 327
Disabling Video Output ... 334
Row Effects .. 335
Bitmapped Graphics .. 345
High Resolution Graphics 348

8. Sound and Music Programming 353
Introduction ... 354
Making a Sound ... 355
Creating Sounds With Numbers 360
Playing a Simple Song .. 368
Sound Effects ... 371
A Practical Sound Program 379
Ring Modulation ... 382

9. Input and Output Programming 385
Introduction ... 386
Keyboard and Joystick Input 387
Serial Input and Output ... 391
General-Purpose Input and Output 400
Special Pins and Shift Registers 404
SPI Communication and Cartridges 409

10. Assembly Language Programming 411
Introduction ... 412
The CodySID Music Player 413
The "Cody Bros." Demo .. 438
Memory-Resident Programs 463

11. Cartridges and SPI ... 469
Introduction ... 470
Cartridge Design ... 471
Cartridge Programmer Assembly 473
SPI Programming in BASIC 479
A Program for Programming 489
Cartridge Case Assembly 511

Afterword ... 517
One Good Little Dude ... 518

Appendices ... 529
Appendix A: Memory Map 530
Appendix B: Color Codes 543
Appendix C: Cody BASIC 544

Appendix D: CODSCII Table 552

Introduction

1

INTRODUCTION

Welcome to The Cody Computer Book, a guide to
building and programming your own 8-bit computer.
The computer you'll build is inspired by the popular
home computers of the 1980s—particularly the
Commodore series—though it is not a direct clone of
or compatible with any of them. Rather, it tries to be a
somewhat-faithful modern take on a computer from
that era, with many of the same limitations that
inspired ingenuity and creativity in an earlier time.
Some aspects have been updated and others
simplified for ease of use, but in all cases we've tried
to preserve the aesthetic of the era. Most of all, we've
tried to make it approachable and fun.

If you follow the book, you'll build a computer with
a period-appropriate 65C02 processor running at 1
megahertz and accessing 64 kilobytes of memory.
You'll get an analog NTSC video output with blocky
character graphics and sprites, synthesized audio, and
serial ports for loading and saving programs—all
through a Parallax Propeller microcontroller that
replaces the features of half a dozen legacy chips.
You'll even build a fully-mechanical keyboard and a
toylike 3D-printed case inspired by the keyboard
wedges of the 1980s, complete with joystick ports for
games and an expansion port for your own peripherals
or cartridges. Once it's up and running, you'll start to
program in Cody BASIC and move on to 65C02
assembly.

While the computer itself belongs in the 1980s, the
spirit is that of the 1970s—open hardware and open

14

software that is readily accessible to the end user.
Unlike most modern reinventions of the classic home
computer, the entire design is intended to be
constructable by a single person, at home, using
techniques and tools available to today's maker
community. All the parts are hobbyist-friendly, and
even the more obscure ones are currently in
production from historically reliable companies. All
the design files, including its own custom BASIC
dialect, are released under copyleft licenses. And
should the worst ever come to pass, synthesizable
implementations of all the core components already
exist in the wild.

Building the Cody Computer isn't an incredibly
difficult project, but you'll need some basic skills and
access to a few things. You'll need to solder a couple of
circuit boards, one for the computer and one for the
keyboard, and you'll also need to be able to assemble
them into a 3D-printed case. All the design files you'll
need are provided so that you can order your own
boards or make your own tweaks when 3D printing. A
large section of this book is devoted to build
instructions to help you, but it assumes that you
already know the basics.

We've tried to make it easy to source the parts
without a lot of hassle. The electronics should all be
available through a single order from Mouser,
including the keyboard switches, but you may find it
more cost-effective to order cheaper keyswitches
through another reseller instead. If you've built any
projects like this at home, you'll know that sometimes
it helps to shop around. We're also assuming that you
have access to items such as PLA filament through the

15

same means you'll use to print the case. The
remainder of the items you'll need are things that can
be sourced wherever you can find a hardware or craft
store.

You'll have to install some software to finish
programming the Cody Computer once it's built. One
of the key components in the project, the Parallax
Propeller, has software that you'll need to use when
programming the Propeller's firmware. You'll also
need to install a terminal program so that the Cody
Computer can exchange data with another device.
Lastly, if you want to get into assembly language
programming, you'll need to have a 65C02 assembler
that you're familiar with. The Cody Computer
standardizes on the 64tass cross-assembler which is
also used to assemble the built-in Cody BASIC.

For the best chance of success you should already
have some significant experience with electronics,
programming, soldering, and 3D printing, or have
people around who can help you with the topics you
don't know. You'll especially need that knowledge
when something doesn't go well and you need to solve
a problem. If you've done any programming of any
kind, built an intermediate electronics kit, downloaded
software to an Arduino, or set up some command-line
programs on your computer, you'll already have a lot
of the technical background you'll need. If you've
screwed up all of those but were able to fix it yourself,
you're ready.

In terms of tooling, a good workspace, a good
soldering iron, and a reliable if standard fused-
filament 3D printer are the most important items to
have around. You'll also need to have a means of

16

obtaining some double-sided circuit boards from the
design files, one for the keyboard and one for the main
board. You may have to order them from an offshore
supply house and expect to have some spares, or
perhaps go in with a friend who also wants to build a
copy.

Here's an anecdote to give you an idea of what to
expect: All the 3D printing was done on a more-or-
less stock Creality Ender 3 Pro, mostly with Hatchbox
or Inland PLA filaments, and we went through a lot as
we tried different designs. For electronics, a standard
multimeter was used for most measurements, with a
Siglent SDS1104X-E oscilloscope only being used a
few times to diagnose problems during prototyping.
We ordered our boards from Aisler throughout the
project because of their out-of-the-box support for
KiCad, but they should be manufacturable by other
board houses.

We didn't need anything especially fancy to
build the Cody Computer, nor did we get paid to
write any of this. When it came time to get some
of the tools we didn't have on hand, we
intentionally picked the options that would be
most accessible to people financially. In many
respects it's kind of amazing it actually works!

WHAT'S A HOME COMPUTER?

What constitutes a home computer varies a lot
depending on the era. Because the Cody Computer is
channeling the early 1980s, it's worth revisiting the

17

1970s and 1980s to discuss exactly what computers
were like at the time. As with other new technologies
being introduced to the marketplace for the first time,
there were many new systems being released from a
variety of manufacturers large and small, much of it
forgotten or otherwise lost outside of collectors'
circles. It wasn't just a couple of famous companies and
their famous products. There were literally too many
to list here.

The earliest home computers resembled a tiny
version of the 1960s Batcomputer more than anything
else. The Kenbak-1 of the 1970s was made without any
microprocessors at all, instead built with what looked
like a small city of individual logic chips and
programmed via a front panel of buttons and switches.
Professional computers of the era were also built from
collections of chips like this, though those used more
powerful chips with a higher level of integration.

Machines with microprocessors, such as the MITS
Altair and the IMSAI 8080 (famously used in
WarGames), became available by the mid-1970s.
These also sported a blinking-lights-and-switches
appearance, with programs generally loaded manually
or by paper tape readers. Finding an external terminal
to talk to your computer became an adventure in itself.
Projects like the TV Typewriter were popular and led to
experimentation with input terminals and cheap video
output hardware.

A large number of the systems of that era came in
kit form, often described in magazine articles that
functioned as build instructions or user guides. Single
board computers or modular systems became quite
popular. Among those would be systems important in

18

the history of the 6502 microprocessor, such as the
Jolt and MOS Technology's KIM-1; that latter device
was in many respects the first of the Commodore
computers.

Taken as a whole, however, these machines were
often more like a minicomputer for the home rather
than a home computer. Yet even in this era, much of
the home computer culture was being established.
Microsoft got its start by selling BASIC interpreters for
these systems, while the People's Computer Company
created the first of many versions of the open Tiny
BASIC instead. Standards for saving and loading
programs emerged, such as the Kansas City Standard
for storing data on the audio cassettes of the era.
Commercial operating systems such as CP/M became
available for many systems. And users began sharing
programs via magazines, mail, and computer clubs.

The concept of the home computer began to change
with systems like the Sol-20 and Apple 1, including
the keyboard and video output within the computer
itself. By 1977, the Commodore PET, Apple II, and
Tandy TRS-80 were all launched to the public as
complete systems. Graphics capabilities were limited
and the game-system-inspired Atari 800 wasn't
released until two years later. At this point, the
outlines of the stereotypical home computer became
apparent: A wedge-shaped computer, a built-in
keyboard, support for cartridges and cassettes for data
storage, joystick or controller ports, and output to a
dedicated monitor or home television.

By the 1980s, the line between home computer and
game system became blurry. Existing game systems
received add-on keyboards and BASIC interpreters to

19

resemble a home computer. The Nintendo was sold in
its native Japan as the Famicom, with keyboards, BASIC
cartridges, and disk drives made available. Computer
manufacturers began including more advanced
graphics and sound features in their products. By 1982,
the color-video ZX Spectrum was released in the UK,
and in the US, the Commodore 64 was released with
game-like graphics and sound capabilities. Storage
devices improved as floppy drives became more
common than cassettes, particularly in the US market.

As the 1980s continued, more advanced computers
eclipsed the earlier 8-bit systems. The Amiga, Atari ST,
Macintosh, and the IBM PC represented the next
generation of computer technology. Yet companies
persisted in the 8-bit market. Amstrad released its
CPC family with impressive bitmap graphics for its
day. Handhelds like the Atari Lynx and Nintendo
Game Boy utilized 8-bit 6502 and Z80
microprocessors. The 65816, a 16-bit variant of the
6502, was used in the Apple IIGS (with capabilities
often surpassing the Macintosh itself) and Super
Nintendo. Despite those successes, by the middle of
the 1990s, the 8-bit world was all but gone, save for
third-party companies and aftermarket add-ons that
gave existing systems a new lease on life.

COMMODORE AS INSPIRATION

While not compatible with the Commodore series of
8-bit computers, much of the inspiration for the Cody
Computer comes from that lineage. Commodore
produced one of the most influential series of 8-bit
computers. Many of their systems were known for

20

providing an exceptional feature set at a low price,
while much of the company's design and marketing
had been directed at producing capable systems for
the general public rather than computing nerds or
enthusiasts.

Along with their significance to the early history of
home computing, you'll find that much of the Cody
Computer's functionality was inspired by how
Commodore did things. Not everyone has firsthand
experience with one of these systems, so to provide
some historical context, we'll briefly review some of
the better-known entries in the Commodore 8-bit
family.

Commodore actually began as a typewriter
company, moving by necessity into the new markets of
electronic adding machines and calculators in the
1960s and 1970s. Competition in the market was
brutal, and Commodore began acquiring electronics
companies as part of its business strategy. One of the
acquisitions was MOS Technology, the company
responsible for the 6502 microprocessor. As part of
the purchase, Commodore also gained access to the
engineering talent behind the company.

Realizing the potential in the home computer
market, Commodore began manufacturing computers
using its own chips starting in the late 1970s. Future
designs would continue to leverage their in-house
electronics expertise instead of relying on off-the-
shelf components. Commodore's sales pitch marketed
their systems as friendly computers that provided
amazing features for the price. Despite their successes,
changing markets, cutbacks on engineering, and

21

problematic business practices proved too much to
bear; Commodore went bankrupt in 1994.

KIM-1

The KIM-1 was a single board computer produced by
MOS Technology in the mid-1970s. Its primary
purpose was to serve as a reference system for their
6502 processor. Out of the box it had a keypad and
numeric display for interaction and programming,
while mass storage was available by connecting to
cassettes or paper tape. Clones were made by other
companies and aftermarket enhancements included
video output. Many of the starter 65C02 projects
you'll find on the Internet are, in some sense, the
spiritual successors of these early single board
computers.

COMMODORE PET

The PET was Commodore's first real entry into the
computer market. Many of the characteristics
associated with Commodore's computers began with
this model. Featuring a 6502 processor, a built-in
keyboard, cassette, monochrome monitor, and a copy
of Microsoft BASIC, the machine was intended as a
more practical computer at its release in 1977. The
machine also supported the IEEE-488 bus, providing
use of a variety of peripherals and storage devices.

Because of the computer's text-only display, a
graphical character set called PETSCII was invented to
make games and entertainment applications more
feasible. The characters were prominently featured on
Commodore keyboards throughout the 8-bit era.

22

PETSCII graphics remain one of the most uniquely-
identifiable aspects of a Commodore computer
system, often finding their way into hobbyist graphics
and compact homebrew games.

VIC-20

After other research and development attempts at a
color PET successor, Commodore released the VIC-20
as a “friendly computer” that could be plugged into
your television set. The computer had expansion and
cartridge slots, both of which were heavily used
because of the computer's minimal standard memory.
Commodore replaced the PET's IEEE-488 bus with
their own serial version, the IEC bus. The VIC-20 had
an optional floppy drive but datasettes were most
popular at this point. BASIC was still standard and a
joystick was added for gaming.

The VIC-20 also set a precedent for powerful
peripheral chips made custom by Commodore. The
VIC-20 used the VIC chip for handling video, sound,
and other system functions. It produced two-color
character graphics at a moderate resolution and four-
color character graphics by halving the horizontal
resolution, which became the standard approach in
Commodore systems. Games and images were
displayed by changing the colors and characters
themselves. For sound, it produced three
programmable square wave channels and a single
noise channel.

23

COMMODORE 64

The best-known of Commodore's computers, the
Commodore 64 contained the famous VIC-II and SID
chips that made it a compelling video game system.
Expansion and user ports existed for cartridges and
add-ons, and a stripped-down C64 variant was later
released as a console-like game system. Early models
of the C64 bore a strong resemblance to the prior
VIC-20. Datasettes were still very common but floppy
drives became standard for the machine in the United
States.

Much of the C64's unique character came from its
custom support chips. The VIC-II supported character
and bitmap graphics modes at higher resolution than
the VIC-20, but continued with the VIC's tradition of a
low-color high-res mode and a multicolor low-res
mode. It also supported up to eight sprites at a time,
including extra functions like collision detection. Raster
interrupts allowed programmers to change graphics
content while the screen was actually being drawn.

The SID was also a breakthrough for its era, at least
within the home computing market. It was a sound chip
built around digital synthesis principles rather than
being a mere tone generator. It supported a total of
three different sound generators called voices, each of
which could produce at least four different types of
sounds. Based on the principles behind music
synthesizers, different waveforms, envelopes, and
filters were available to craft audio output.

24

COMMODORE PLUS/4

The Plus/4 began as a cheap computer to compete
with the ZX Spectrum and similar systems. Much like
the VIC-20, video, sound, and other functions were
combined into the single TED chip, which could
produce more colors but lacked many VIC-II and SID
features. The computer also shipped with a faster
6502 processor and a more advanced version of
Commodore's BASIC.

Management changes at Commodore led to the
technology being repurposed into an entire suite of
business computers with built-in productivity
software, marketed as the successor to the
Commodore 64 and priced to match. As a result of
these miscalculations, the entire line failed in the
American market. In recent years developers have
shown the system's full potential, porting existing
titles from the C64 and creating new ones—including
the well-known Pets Rescue platformer in 2019.

THE CODY COMPUTER DESIGN

Having reviewed the systems that inspired it, it's
time to learn more about the Cody Computer's own
design. The Cody Computer's overall design is quite
simple, based around a handful of computer chips and
some discrete components. It has a built-in keyboard
just like its 1980s predecessors. Instead of using
FPGAs and programmable logic, the design is limited
to modern equivalents of the chips that would have
been available in the era. When a modern option is

25

unavailable, a close substitute was chosen instead. The
Cody Computer was never intended as a product to be
sold. It's really a DIY project that can be the jumping-
off point for your own designs even if you don't build
one as-is.

Like many retrocomputers, the Cody Computer is
built around the 65C02 microprocessor. It's a modern
variant of the traditional 6502 originally produced by
MOS Technology, then Commodore, and finally the
Western Design Center. It can run at speeds over 14
megahertz, but the Cody Computer runs it at a mere 1
megahertz for reasons of both simplicity and period
authenticity. It shares the same 6502 instruction set as
its 1970s and 1980s predecessors, but replaces many
of the original 6502's illegal instructions with new
ones for bit setting, bit testing, and storing registers on
the stack. Some bug fixes are also present. Otherwise
it shares the same simple but powerful 6502 design,
with a single accumulator register, X and Y indexing
registers, 64 kilobytes of addressable memory space,
and a variety of powerful but easily comprehensible
addressing modes.

The Cody Computer also relies on the Propeller, a
very powerful and completely custom microcontroller
created by Parallax, a small company with a long
commitment to education, hobbyists, and bespoke
engineering. It dates to the early 2000s and has a
total of eight separate processors, called cogs, that can
run up to 20 million instructions per second. Its hub
memory region contains 32 kilobytes of RAM and 32
kilobytes of ROM, including an interpreter for
Parallax's SPIN programming language. All of this is

26

available in a 40-pin DIP package that fits with the
overall aesthetic of the Cody Computer.

The Propeller is the Cody Computer's equivalent of
the VIC, TED, and other custom chips. Out of the eight
cogs, we devote five to video generation, one to sound
generation, one to serial communication, and one to
managing the data and address bus for the 65C02. For
performance reasons the Propeller is programmed
directly in PASM, the Propeller's low-level RISC
instruction set, rather than SPIN. From the 65C02's
perspective it doesn't matter, as the Propeller presents
itself as memory-mapped hardware.

MEMORY

The Cody Computer can address a total of 64
kilobytes of memory. The lower 40 kilobytes of
memory are all handled by a single AS6C1008 static
RAM chip. A single page of memory is mapped to a
65C22 Versatile Interface Adapter for input and
output. The remaining 24 kilobytes of memory are all
handled by the Propeller chip itself. 16 kilobytes are
used as shared RAM for video and simulated
peripherals.

Instead of a separate ROM chip, the Cody
Computer's ROM is actually included inside the
firmware used by the Propeller, and when memory
accesses hit the appropriate region, the ROM contents
are returned. The top 8 kilobytes of RAM store the
Cody BASIC ROM and a copy of the character set. In
reality these are kept as 8 kilobytes in the Propeller
immediately after the shared RAM section.

27

INPUT AND OUTPUT

Most of the Cody Computer's I/O is controlled by a
single 65C22 Versatile Interface Adapter (VIA). The
65C22 contains two bidirectional 8-bit I/O ports, a
shift register, some additional handshaking pins, and
internal timers.

One of the two I/O ports is used to scan the
keyboard and joysticks, all of which are wired together
into the same matrix. Three pins are used to select one
of eight rows (six keyboard rows and two joysticks)
with the help of a CD4051 1-of-8 switch, with the
remaining five pins used to read in the keys or joystick
buttons for that row.

The other I/O port and the shift register are both
wired to a general-purpose expansion port where they
can be used to interface with other devices. The
65C22's handshaking lines are instead used to detect
whether a cartridge containing an SPI EEPROM is
present.

SERIAL PORTS

The Cody Computer has two serial ports, both of
which can operate at speeds of up to 19200 baud.
They're actually implemented as a dual UART
peripheral running in a single cog on the Propeller.
Both UARTs are hardcoded to support only an 8-N-1
protocol (one start bit, eight data bits, no parity bit,
and 1 stop bit). Each UART is polling-based but utilizes
ring buffers to reduce the need for 65C02
intervention.

28

It's assumed that the serial channels being used are
unlikely to be prone to errors, particularly at the
relatively low rates supported by the emulated
peripherals. Some checks for simple errors are
performed at the UART level, and data sent using the
standard serial protocol contains no checksums or
similar measures.

One of the serial ports is actually the same port as
the Prop Plug connection for programming the board.
This is intended to connect to another system (such as
a terminal application) to load and save data and
programs. It would even be possible to build a
Datasette-like device that could be interfaced via this
connection. The other serial port is routed to the
expansion slot alongside the pins connected to the
65C22 VIA.

VIDEO

Video output is handled by the Cody Video Interface
Device (VID) peripheral implemented in the Propeller.
It supports a character graphics mode where the
screen is divided into 40 columns and 25 rows of
characters. Each character has four horizontal pixels
and eight vertical pixels, similar to the Commodore
64's multicolor character mode. Each pixel can be one
of four colors, two of which are unique to the individual
screen location and two of which are shared by the
entire screen. There is also a similar multicolor mode
for bitmapped graphics. High resolution character
graphics and bitmapped graphics modes allow a more
standard eight-by-eight pixel character region at the

29

expense of some of the more game-like graphics
features.

In fact, the VID has many game-focused features.
Up to 8 multicolor sprites can also appear on each line.
Smooth scrolling is supported. Additional features
allow changing some of the data dynamically to allow
more colors, characters, or sprites to appear on the
screen. These allow raster-interrupt-like effects
through the use of built-in video chip features.
However, some of these features are only available in
the normal multicolor modes and not the more limited
high-resolution graphics modes.

Video generation is very complex. In the Cody
Computer, most of the Propeller's internal resources
are devoted to the video system. One of the
Propeller's cogs is devoted to generating the actual
NTSC video signal while four other cogs run in the
background to generate video data. These cogs take
the screen memory, color memory, character memory,
and sprite memory contents and generate pixel colors
that are included in the NTSC signal.

SOUND

Audio is produced by the Cody Sound Interface
Device (SID), a simplified version of the famous SID
from the Commodore 64. This peripheral is also
implemented using the Propeller and contains a rough
emulation of the SID in a single cog. The peripheral
supports three voices with Attack-Decay-Sustain-
Release (ADSR) envelopes. The SID's sawtooth,
triangle, pulse, and white noise waves are supported,

30

and it also has a rudimentary attempt at features such
as ring modulation.

However, the Cody SID is not a full SID emulation.
Decay constants are linear instead of exponential and
filters are not implemented. Many other differences
also exist, and it's best to view the Cody SID as a SID-
like device with its own unique characteristics.

COMPARISONS AND CONTEXT

The Cody Computer is not compatible with any of
the Commodore lineage (though, to be fair, they were
rarely very compatible with each other). In terms of
inspiration and design decisions, however, there is a
significant debt. Much of the overall philosophy and
even some specific details are very similar. During
development I sometimes considered it a “Commodore
Junior”, a simplified system that was also an homage
to the Commodore 64 in particular. I also took
inspiration from how much the Plus/4 engineers were
able to preserve a Commodore feeling despite
stripping so much of the C64 away.

For example, the Cody Computer has two video
modes inspired by the C64 and Plus/4. Its character-
based graphics mode is influened by those machines'
multicolor character mode. Similarly, the sprite
graphics are very similar to the VIC-II's multicolor
sprites, even though they don't support features like
collision detection and scale-doubling. Built-in
support for additional sprite banks is likewise
influenced by sprite multiplexing routines from the
C64. Its bitmap mode is also very similar to those on
the C64 and Plus/4, falling somewhere between the

31

VIC-II and TED in terms of its limitations. The high-
resolution mode is also very similar to the
Commodore line and may make it easier to port
certain applications.

Audio functionality is largely copied from the
Commodore SID design. The Propeller uses a port of a
SID emulation library from the Arduino to mimic basic
synthesis functions, providing waveforms and ADSR
functionality very similar in nature to the SID chip.
Many other features including combined waveforms
and filters were intentionally not implemented. The
SID registers are mapped to the same locations as on
the C64, and there is at least a minimal level of C64
compatibility.

Two side-mounted joystick ports are available as on
later Commodore machines, but they're wired into the
keyboard matrix as rows. The keyboard itself is far
from a standard Commodore layout and actively
avoids the multi-labelled PETSCII hieroglyphics of
times past. A dedicated expansion port exposes many
of the 65C22 VIA's I/O pins and a second UART from
the Propeller, but it does not expose the 6502 bus as
on Commodore machines. No dedicated “user port”
exists, but the same serial port used to exchange
programs is intended for something similar.

For loading and saving files, standard serial
communication is used like a very simple datasette.
For the Cody Computer, a dedicated mass storage
device is not only excessive but ruins the retro spirit.
Instead, the intended target is a terminal or file
application running on another computer or phone.
However, it wouldn't be difficult to build a Datasette-

32

like device that could interface with the Cody
Computer over this serial port.

The Cody BASIC provided with the computer is
closer to a tokenized Tiny Basic from the 1970s than to
a 1980s Microsoft BASIC. It supports 16-bit integer
math rather than floating point, has a limited set of
commands, and has a limited feature set. However, the
Cody Computer's extensions, including arrays and
strings, were largely inspired by Microsoft BASIC from
the Commodore. Cody BASIC is also tokenized, though
it stores the programs as plain ASCII to make it easier
to load and save BASIC programs from modern
computers. Tokenization happens when loading,
requiring some input delays by the sender so that the
tokenizer can keep up.

For compatibility reasons the software uses what is
essentially an extended ASCII, but the PETSCII
graphics characters are available. Cody BASIC does not
allow directly entering the characters into the input,
but the character codes can be specified in CHR$
commands. Cody BASIC also understands a reserved
set of character codes that work as control codes,
including clearing the screen, changing foreground
and background colors, and implementing a reverse-
field effect. So in most respects, Commodore-style
PETSCII graphics are still possible even in a BASIC
program, just done differently.

The Plus/4 approach of packing a huge amount of
functionality into the TED chip was a major inspiration
for using the Parallax Propeller as a similar device. The
Propeller's advanced capabilities then opened the door
to creating a more C64-like set of features. The low-
resolution PETSCII graphics in the Cody Computer's

33

font were inspired by various 40-column extensions
written for the VIC-20. Having grown up with a
Commodore 64, the source of the inspiration was
never far away.

In fairness, many of the major decisions were taken
on the basis of what elicited the best response from
one small dog. I wouldn't have done it like this. My
original thought was to add a microcontroller or two
and create a modernized PET. Instead the real Cody
preferred SID and TED music, YouTube videos and
emulations of Commodore games, Propeller demos on
the TV, and so many other things I attempted to find
some way to work in.

In many respects, he reminded me of myself as a
very young child working on computers, electronics, or
rockets with my father or uncle. My brain liked what it
saw and had a glimpse of the big picture, yet I found
myself overwhelmed by all the strange details and
held back by tiny hands. And Cody was, in so many
ways, a small dog with the heart and mind of a very
young boy.

In any event, thanks to my four-legged
management, what you see here is what we got. Yet
Cody demonstrated better acumen, wisdom, and
aesthetics through his smiles, gestures, and tail wags
than I ever encountered in my working career. I'll
always have doubts about certain design choices or
implementation details on my part, but I think Cody
was right about the big picture. His apparent interest
(or lack thereof) determined so much of what did and
didn't make the cut. While he was there for so much of
this work, he's no longer here for one last final

34

inspection, big smile, or wag of the tail. But I do hope
he would have been proud.

35

Hardware and Firmware
Design

2

INTRODUCTION

In finished form the Cody Computer is small by
computer standards, fitting into a rectangle about the
size of a large laptop trackpad and a couple of inches
thick. Much of the industrial design is inspired by the
Commodore 64 and similar 1980s computers with
additional influence from the collected works of Tomy,
Playskool, or Fisher-Price. The overall intent was to
produce something that would be identifable as an
old-school computer yet come across to a bystander
as unintimidating, fun, and approachable.

From the top view you'll notice a prominent case
badge (complete with an inlaid rainbow-colored badge
in the finished product), a large 10mm power LED
(blue according to the design, but you can replace it),
and a 30-key keyboard. The keycaps are custom but
compatible with Cherry MX keystems, though the
Cody Computer uses a nonstandard spacing to fit
everything into such a small package. Standard
keycaps won't work unless you decided to saw them
down.

38

Top of Cody Computer showing case badge, power
LED, and keyboard.

While you'll spend most of your time from this
position, looking down at the machine and using the
keyboard, much of its most important functionality is
elsewhere. In particular, a variety of ports on the back
and right side of the computer are used to interface
with the outside world.

39

Back of Cody Computer showing expansion port, video,
audio, and Propeller port.

Most of the Cody Computer's ports appear on the
computer's lower back panel. The largest is an
expansion port that can be used to interface external
devices or boot from cartridges. We'll discuss the
electrical characteristics of the expansion port later.
For now, it's enough to know it's here.

Next to the expansion port are RCA jacks for NTSC
composite video and mono audio output. The video
output can be connected to any device that supports
NTSC video input (unless, in rare circumstances, the
display or converter is incompatible with the software-
generated video from the Cody Computer). The audio
output is generally connected to a splitter and then to
the left and right channels of the display.

The last connector on the back is a four-pin DuPont
connector compatible with Parallax's specifications for
their Prop Plug. Initially used to download the
firmware to a finished Cody Computer, it later doubles
as a serial communications port to other computers,

40

mobile phones, or compatible devices using the same
mechanism.

The remaining ports are on the computer's right
side (as viewed from the top).

Right side of Cody Computer showing joystick ports
and DC power connector.

Two of the ports are standard Atari-style joystick
ports used by many of the best 1980s computers.
Purely digital, they lack support for the analog
paddles of the Atari and Commodore systems, but
otherwise are nearly identical. Each presents as a male
DB9 connector suitable for use with any standard
Atari-compatible joystick.

The other port is the DC barrel jack responsible for
delivering power to the Cody Computer. Input is
typically around 5 volts delivered from a wall-wart or
other transformer plugged into a mains outlet.
Because no switch is built into the Cody Computer, I
suggest connecting an external inline switch between
the DC jack and wall-wart.

41

MECHANICAL DESIGN

We'll explain how to build the Cody Computer in
the chapter on assembly, but first it's good to have
some idea of what you're actually building. Aside from
a few core components, switches, and fasteners, the
Cody Computer is designed to be printed on any
reasonable fused-filament 3D printer.

The case itself is held together with some semi-
permanent screws on the lower half that also secure
the main printed circuit board. The screws also hold
some slotted brackets for the keyboard module, and
some rare earth magnets hold a removable top section
to finish the enclosure.

In addition to being easy to assemble, the Cody
Computer is designed to be easy to take apart. The
magnets allow the top of the case to be easily
removed for a closer inspection of the keyboard and
case interior. The keyboard itself can be easily slid out
of its brackets to expose the main printed circuit board
for the entire system. If you do this a lot, you may find
yourself in need of some additional glue, but the idea
is for the system to be open for inquiry in every
possible way.

CASE BOTTOM

The bottom subassembly, built around the case
bottom itself, is essentially a stack. The printed circuit
board containing the circuitry for the computer rests
on standoffs at the base of the case. Above the PCB are
two brackets used to provide some support for the top

42

of the case, as well as a mounting location for the
keyboard.

Cutaway view of the bottom section of the Cody
Computer.

The entire stack is held together by four screws that
are inserted from the bottom of the case through holes
in the PCB and into the mounting brackets at top. Pilot
holes for the screws are designed into the brackets,
though they may need to be adjusted for particular
printers.

Holes in the back of the case expose the expansion
port, video and audio connectors, and serial port on
the back of the printed circuit board.

The mounting brackets contain slots to slide the
keyboard assembly into. The right bracket also
contains punchouts for the joystick ports and DC
power connector. Recessed holes at the top of the
brackets contain magnets that will anchor to the case
top. The keyboard itself is a separate piece.

KEYBOARD MODULE

The keyboard module consists of a keyboard plate, a
printed circuit board, and a set of Cherry MX

43

compatible mechanical keyswitches and their keycaps.
The printed circuit board rests along the bottom of the
keyboard plate, with the keyswitches pressed in from
the top. The switches are soldered into the PCB, along
with a DuPont connector, and the keycaps pressed on.

Cutaway view of the keyboard module.

The keyboard plate is sized to friction-fit into the
slots on the brackets mentioned earlier. One side of
the keyboard is slid into place, followed by the other.
This allows the keyboard to be removed and the
underlying PCB for the Cody Computer to be
examined for educational purposes.

44

Bottom assembly with keyboard module slotted into
place.

With the keyboard in place, all that remains is the
top cover for the Cody Computer.

CASE TOP

Similar to the bottom cover, the top cover has holes
for the keyboard, case badge, and the holder for the
power LED. These parts are glued or press-fit to the
top of the case. Four bosses for magnets also exist on
the top of the case. In these locations magnets are
glued into place, matching those inserted into the
brackets attached to the lower half of the computer.

45

Cutaway view of the top section of the Cody Computer.

With the magnets correctly affixed to the brackets
and the case top, the top cover can be easily popped
on and off the remainder of the assembly.

Cutaway view of the assembled Cody Computer.

OPENSCAD FILES

All mechanical designs for the Cody Computer were
created using OpenSCAD and released under an
open-source license. This means that the original
design files are available to review and even change if
you need to. The generated STL files for each
component are available and should be the primary

46

source for printing Cody Computer parts under normal
circumstances. The OpenSCAD files were only there to
produce the canonical set of STLs for the Cody
Computer using a standard open source tool.

However, the OpenSCAD files are available if you
need to adjust them for your own 3D printer or parts.
They're direct translations from pencil-and-paper
sketches so they aren't particularly pleasant to work
with. The files aren't done in a parametric CAD style,
magic numbers are everywhere, and changes to one
measurement will often necessitate other changes. To
the extent that changes are possible, it's wise to limit
them to adding or subtracting fudge factors for specific
3D printer setups or part substitutions.

module CaseBottom() {

 difference() {

 union() {

 // bottom with cavity
 difference () {

 // main shape
 hull() {

 translate([0, 2, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

 translate([0, 103, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

 translate([0, 0, 25]) cube([165, 105, 1]);

 }

 // interior
 translate([2, 2, 2]) cube([161, 101, 25]);

 }

 // PCB mounting standoffs
 translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
 translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
 }

 // screw heads
 translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
 translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);

 // screw holes (gives a couple of layers to punch out rather than using supports)
 translate([2.5 + 5, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
 translate([2.5 + 5, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);

47

Example from Case.scad showing heavy use of magic
numbers.

The Case.scad file contains the designs for the case
top, case bottom, LED holder, badge, and badge inlays.
Each portion of the design resides in its own SCAD
module (CaseTop, CaseBottom, LEDHolder,
LEDHolder, CaseBadge, and BadgeInlay). In some
cases these modules rely on other modules within the
same file.

The Keyboard.scad file contains the designs for the
keyboard plate (as the KeyboardPlate module) and
keyboard brackets. The two keyboard brackets are
somewhat different as one contains punchouts for the
DB9 Atari joystick ports
(KeyboardBracketWithHoles), while the other does
not (KeyboardBracket). A helper module, DB9Hole,
contains the shape of the hole.

The Keycap.scad file contains the keycap designs.
The Keycap module has the design for a normal
keycap, with the legend specified as a parameter. The
designs for the keycap legends exist as SVG files in a

 translate([2.5 + 5 + 150, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);

 // vent holes
 for(count = [0 : 6]) {
 translate([15 + count * 8, 15, 0]) VentHole();
 translate([15 + count * 8, 105 - 15 - 30, 0]) VentHole();
 translate([165 - 15 - 4 - count * 8, 15, 0]) VentHole();
 translate([165 - 15 - 4 - count * 8, 105 - 15 - 30, 0]) VentHole();
 }

 // expansion port
 translate([2.5 + 34.2, 0, 4]) cube([58, 10, 17 + 10]);

 // video port
 translate([2.5 + 95.7, 0, 11.23]) cube([12, 10, 17]);

 // audio port
 translate([2.5 + 114.9, 0, 11.23]) cube([12, 10, 17]);

 // prop plug port
 translate([2.5 + 134.1, 0, 11.23]) cube([12, 10, 17]);

 // side panel
 translate([0, 10 + 2.5, 11.23]) cube([5, 80, 15]);
 }
}

48

subdirectory, with the appropriate SVG legend being
subtracted from the keycap's face based on the
parameter.

The spacebar is a special keycap and has its own
module, Spacebar. Supporting modules are KeySlice,
which generates a two-dimensional keycap shape
used for extrusion, and KeyStem, which creates a
Cherry MX-compatible keystem. The tolerances for a
suitable keystem are quite small, and if you need to
modify any of the SCAD files directly, it will likely be
this one.

The Keychain.scad file is unused for the actual Cody
Computer build, but I've included it anyway. It's a
design for a simple keychain based on the Cody
Computer's case badge and has similar assembly
requirements. During the Cody Computer's
development, one of these was used to test the
longevity of air-dried clay for keycap legends.

ELECTRONIC DESIGN

We've discussed the overall concept behind the
Cody Computer and how it fits together mechanically,
so now we'll talk about how the actual electronics work.
In many respects this is a guided tour through the
schematics, starting with the power supply and going
on to the microprocessor, RAM, and other major
components.

While excerpts of the schematics are available here,
the full schematics are also available as original files
or PDF exports. It's recommended to follow along with
those if you're particularly interested in any of the
electrical details. The Cody Computer was designed

49

using KiCad 5 and later KiCad 6, so even the software
used to design it is available as free and open source
software.

POWER SUPPLY

The Cody Computer's power supply circuit is simple
but very important. Almost all of the glitches and
transient faults encountered when developing the
computer were actually the result of glitches in the
power supply, either from third-party power supply
boards or from loose connections in the wires
supplying power to the breadboards.

Schematic of the Cody Computer's power supply.

For the power supply circuit, a standard DC barrel
jack (J1) supplies power from a wall-wart transformer
or other device. The external device typically supplies
power at a level around 5 or 6 volts. This is regulated
by a LM2937ET-3.3 voltage regulator (U2) that
produces 3.3 volts from the input. There's also a rather
large capacitor (C5) to take care of any minor wobbles.
A 1 kilohm resistor (R1) connects to a 2-pin plug (J2)
for the power LED, so that the LED turns on whenever
power is being supplied to the circuit as a whole.

50

The power supply circuit is a subset of the power
supply circuit featured in Andy Lindsay's Propeller
Education Kit Labs: Fundamentals. Aimed at students,
that circuit was powered from a 9 volt battery and had
regulators for both 5 volts and 3.3 volts. Only a subset
of that circuit is needed here for the 3.3 volt supply.

Andy Lindsay's text and the associated kit were
my introduction to the Propeller and were very
useful in getting started. I went through a few 9
volt batteries during my own later experiments
and ran into some weirdness when the batteries
started to go dead. For very long-term projects
use your bench power supply.

There are also individual 0.1 microfarad decoupling
capacitors scattered throughout the circuit, typically
one per integrated circuit and sometimes more. These
are omitted from the simplified schematics in this
section but appear in the full schematic. We place
these capacitors very close to the positive voltage and
ground pins on each integrated circuit to ensure a
reliable and noise-free power supply.

51

Part of a Cody Computer schematic showing some
decoupling capacitors.

Note that as the Cody Computer doesn't have a
built-in power switch because of space constraints, it's
beneficial to get an inline switch. There are many
power switches that accept a DC jack connector, and
similar switches have been used on everything from
the ZX81 to most of today's Raspberry Pi models. Such
items are available from Amazon, Sparkfun, and a
variety of other retailers, usually costing less than a
few dollars.

PROPELLER

Much of the circuit is offloaded to a single
microcontroller, the Parallax Propeller. It does most of
the same jobs as Commodore's old VIC or TED, and
sometimes a lot more. Fortunately, it's able to keep up
as it's a rather unique (and open-source) device that
actually contains eight lightweight processor "cogs" on
a single chip. It's used to clock the 65C02
microprocessor, monitor and decode the 65C02 bus,
perform serial communications, and generate video
and sound. The complexity of the schematic sheet
containing the Propeller gives you an idea of just how

52

important the chip is to the Cody Computer's
functioning.

Schematic of the Propeller and closely-related
circuitry.

When the circuit powers up, the Propeller (U3)
wakes up using its own internal oscillator. It later
switches to a 5 megahertz crystal (Y1) which internally
is multiplied by 16 to give an actual clock frequency of
80 megahertz. Because each Propeller instruction
takes four cycles (with some exceptions), there are 20
million instructions per second per cog. That's a lot of
CPU cycles, especially when you take into account the
Propeller's built-in support for video generation. On
the other hand, it has a lot to do!

On startup, it checks to see if a program is being
uploaded via the Prop Plug. If a program is being
uploaded, the Prop Plug (J3) generates a reset pulse
and begins sending the program. We need this feature
to program the Propeller for the first time, but after

53

that, external devices shouldn't be able to reset the
computer. To inhibit this, a small jumper (JP1) connects
the Prop Plug reset pin to the Propeller's reset pin and
a pull-up resistor (R2). When removed, the Prop
Plug's reset pin is disconnected so the Propeller's reset
pin cannot be pulled low and trigger a reset. Other
features are unaffected, allowing it to work as a serial
user port to communicate with other devices.

Aside from the rare circumstance when the
Propeller is being programmed, it will load its
firmware from a 32 kilobyte I2C EEPROM (U4), a
24LC256 or similar. The Propeller has an internal 64
kilobyte memory space of its own, half of which is
RAM and half of which is ROM. The content of the 32
kilobyte I2C EEPROM is copied into the RAM portion
and then run, first using the Propeller's built-in SPIN
interpreter, but soon dropping directly into the
Propeller's own assembly language. Contained in that
EEPROM is not only the program for the Propeller but
also the ROM for the 65C02.

Once the Propeller begins running its code, most of
its I/O pins are used for communicating with the
65C02's system bus and other devices. Eight of the
Propeller's I/O pins, P16 through P21, are used to
generate the 65C02's PHI2 clock signal and reset
pulse, chip select signals for other devices on the
board, and monitor the read/write signal from the
65C02. An additional two pins are used for a second
UART that interfaces with the Cody Computer's
expansion port.

When running, one of the Propeller's many
responsibilities is to decode the 65C02's address bus.
Along with the mentioned read/write signal, it uses I/

54

O pins P0 through P15 to interface with the 65C02's
address and data buses. We're even able to share
some pins and minimize part count because of a
unique characteristic of the 65C02's bus. The 65C02
puts the address on the address bus throughout a
clock cycle, but it only puts the data on the data bus
during the latter half of the cycle when PHI2 is high.
During the first part, when PHI2 is low, the data bus is
essentially disconnected.

This means that we can actually share the same pins
on the Propeller (P0 through P7) for both. We just
need a way to control the lower eight bits of the
address bus and shut them off to avoid a collision
when PHI2 is high. To solve that problem, a 74HC541
buffer (U1) sends the lower eight address bits to the
Propeller when enabled. When disabled, its outputs
are also tristated, allowing the data lines access
instead.

This technique can be used by any 6502-based
system, not just a Propeller-based one. In the
Propeller community it became popularized from
Dennis Ferron's PROP-6502 and Jac Goudsmit's
Propeddle, both of which used it to solve a similar
problem of conserving I/O pins on the Propeller.

The Propeller is also responsible for generating
NTSC video. The chip itself has built-in circuitry for
generating NTSC or PAL video output, generating a
variety of colors. However, the circuitry still needs to
be programmed on the software side and interfaced on

55

the hardware side using a digital-to-analog converter
(DAC) made of resistors.

Schematic detail showing the video output pins,
resistor DAC, and RCA jack.

For the Cody Computer, I/O pins P24 through P26
are used as the video output pins. These are summed
into a single analog signal through a DAC made of up
of 1.1 kilohm (R6), 560 ohm (R5), and 270 ohm (R4)
resistors connected to an RCA composite video jack
(J4). The Cody Computer uses 1% tolerance resistors
for this particular part of the circuit, but the values
aren't that finicky. Some resistor values in the same
ballpark should suffice for our purposes. The resistor
values themselves come from André Lamothe's
Unleashing the Propeller C3 about the eponymous
credit card sized computer.

Audio output is handled by the Propeller as well.
The Propeller's internal counters and support for pulse
width modulation is used to output a pulse with a
changing duty cycle. The stronger the signal, the
longer the pulse stays on before turning off. This
output, in turn, gets converted by support circuitry into
a normal audio signal.

56

Schematic detail of the audio circuit.

For the Cody Computer, Propeller I/O pin P27 is
used for the audio output. It connects to a 220 ohm
resistor (R7) which is itself connected to a 0.1
microfarad capacitor (C6). The resistor and capacitor
essentially smooth out the on-or-off pulses generated
by the Propeller. This output is further filtered by a
larger 10 microfarad capacitor (C7) that also couples
the output to the RCA output jack (J5).

The circuit itself comes from a September 2006
Propeller forum posting by Parallax engineer Paul
Baker, who noted that the circuit was not necessarily
“optimal” but would suffice. I've been using it since I
started prototyping with the Propeller on a
breadboard, and it's been a part of what became the
Cody Computer ever since. You'll find many variations
of the same circuit floating around with different
component values for different frequency cutoffs.

65C02

The Cody Computer's brain is the 65C02
microprocessor (U5). The actual computing performed
by the Cody Computer happens entirely as a result of

57

the 65C02's actions. It's also responsible for directing
what happens in the rest of the circuit, though the
Propeller assists greatly when it comes to decoding
the 65C02's address bus.

Schematic detail showing the 65C02 microprocessor
and its connections.

The Propeller's generated PHI2 signal is directed to
the 65C02's input on pin 37; this pin has gone by
various names over the years, but in modern variants,
it's essentially the PHI2 clock input. A Propeller-
generated reset pulse is also applied to its reset pin on
startup. The 65C02's IRQ line is connected to the
corresponding pin on the 65C22 I/O chip so that
timers and output port events can signal the processor
when needed.

The 65C02's other interrupt line, the non-maskable
interrupt (NMI), isn't used in the Cody Computer and
is connected to 3.3 volts. Several other 65C02 pins,
such as those for setting overflow or enabling the

58

address bus, are also tied high. Some unused pins are
left unconnected and do not pose a concern for our
purposes.

One notable pin is the RDY pin, which is connected
to a 3.3 kilohm pull-up resistor (R8) rather than
directly tied high to 3.3 volts. This is because on the
65C02, a WAI (wait for interrupt) instruction can
actually make the RDY pin go low. The 65C02 has no
built-in pull-up resistor to deal with this problem.
Without a pullup resistor, the 65C02 would
essentially be connecting the positive voltage to a
logic zero when a WAI instruction runs. To avoid that
problem, there needs to be a pull-up resistor.

The 65C02's other connections are to the system
bus. The 65C02's address pins (or a subset thereof)
are wired to the Propeller, SRAM, and 65C22. The data
bus pins are similarly connected. Lastly, the 65C02's
RWB pin, a read-write strobe indicating whether the
current bus operation is a read or a write, is connected
to the same devices and completes the necessary bus
signals. The PHI2 clock generated by the Propeller is
used throughout the entire circuit instead of the PHI2
output from the 65C02. The Propeller generates the
master clock, so the 65C02's PHI2 output is left
unconnected.

RAM

Most of the Cody Computer's RAM is provided by a
single AS6C1008 static RAM chip (U6). The chip is
actually a 128 kilobyte memory chip, but the Cody
Computer uses less than half of that—40 kilobytes
reside in the static RAM and the top 24 kilobytes are

59

inside the Propeller itself. Unfortunately, while there
are 32 kilobyte static RAM chips and 128 kilobyte
static RAM chips readily available, modern production
of 64 kilobyte static RAM is nonexistent. As a result,
designers just use the next biggest size and ignore the
extra space.

Schematic detail showing static RAM connections.

The static RAM itself is rather unremarkable. The
address and data pins come directly from the 65C02,
as does the read/write strobe indicating the type of
memory operation in progress. The PHI2 clock and chip
select both come from the Propeller, which is
responsible for decoding addresses and selecting the
appropriate chip.

If you look closely at the address and data lines
you'll realize they don't match up with the exact same
line on the 65C02. For example, the 65C02's address
line A12 is connected to the static RAM's address line
A8. It may appear to be an error, but it's a quite
intentional choice. The static RAM is really just a
sequential bunch of byte-sized buckets, and it doesn't

60

care what 65C02 address maps to its own internal
address as long as the mapping is one-to-one.

You can't use this in all cases, but for static RAM
chips and similar, switching around the lines like this is
a common trick when you're trying to route your
printed circuit board. That's what happened to the
Cody Computer; it was easier to route the connections
if some of the address lines were moved around.

65C22 AND I/O

Aside from two serial ports provided by the
Propeller, all input and output from the Cody
Computer is handled by a single 65C22 Versatile
Interface Adapter (U7). We use some additional
circuitry to assist in scanning the keyboard, thus
freeing up more of the 65C22's I/O pins for an
expansion port. In general, the Cody Computer's I/O is
there to provide mechanism, not policy. In other words,
you have direct access to I/O pins which you can
program however you want, whether that's to perform
modern SPI or I2C communications or just turn
individual lines on and off. The only exception is when
a Cody Computer cartridge is inserted into the
expansion port, at which point certain pins read binary
code from an external SPI memory.

61

65C22 and associated I/O ports.

The 65C22 is connected to the system's data and
address buses, with the PHI2 clock and chip selects
being provided by the Propeller. The 65C22 also has
an /IRQ pin that's connected to the 65C02's own
interrupt pin, thereby letting the 65C22 trigger
interrupts based on timers or I/O events. The
remainder of the 65C02's pins are dedicated to two
output ports, port A and port B, both of which are 8-bit
and have some additional out-of-band pins used to
handle handshaking or for general I/O.

The Cody Computer uses the 65C22's port A to scan
the keyboard and joysticks. The keyboard and joystick
ports are all combined into the same matrix, consisting
of five columns and eight rows. The last two of the
eight matrix rows are the two joystick ports, with all
other rows part of the keyboard itself.

To cut down on pin counts, the CD4051 one-of-eight
analog switch (U8) is used to assist in scanning rows.

62

Three output lines from the 65C22 are used to select
one of eight outputs on the CD4051. This specific use
of the CD4051 goes back to the Oric computer.

The use of the CD4051 as a keyboard scanning
aid is explained as part of Garth Wilson's Circuit
Potpourri. His entire Wilson Mines Company
website is a vital resource for those new to the
65C02, with his 6502 Primer required reading for
anyone embarking on their own 65C02 computer
design.

Both the keyboard rows and keyboard columns are
connected to the actual keyboard by the keyboard
connector (J7). Each column is connected to a pull-up
resistor (R9 through R13) so that, by default, a key that
is not pressed will register as a logic 1. When a row is
scanned, the selected row is pulled low by the CD4051,
with all others left disconnected in a high-impedance
state. In this situation, when a key is pressed, it
completes the circuit to ground, resulting in a logic 0
for the pressed key.

The joystick ports, which reside on the main board,
work in a similar fashion. Both joystick ports are male
DB9 connectors (J8 and J9) that support a subset of
the Atari joystick pinout common to the 8-bit era. Each
port has the standard connections for up, down, left,
right, and fire button wired as the keys for a keyboard
row, while the ground pin for each port is wired as one
of the rows on the CD4051's outputs. To scan a joystick,
one selects the row just as for a keyboard, then reads
the joystick pins.

63

One minor difference is that the joystick pins have
diodes (D1 through D10) connected to them to avoid
ghosting, a phenomenon where simultaneous
keypresses can result in erroneous data. We don't
worry about this for the keyboard itself, as there are a
very limited number of valid multiple-key
combinations and ghosting will not be a problem for
those. However, for the joysticks, where vigorous action
and many multiple presses can be expected, we need
to directly deal with the ghosting issue.

The remainder of the 65C22's I/O pins are
connected to the expansion port (J6). All eight I/O
pins from 65C22 port B are routed there and can be
used as general-purpose pins in most situations. The
CB1 and CB2 pins can be used as handshake pins for
communication with compatible devices, but also
feature a shift-register mode that will likely be more
useful for most applications. While not connected to
the 65C22, the Propeller's second UART has its
transmit and receive pins routed to the expansion port
as well.

The CA1 and CA2 handshake pins, not used with
port A, are used to check whether a Cody Computer
cartridge has been connected to the expansion slot.
CA1 is tied high via a 10 kilohm resistor (R14), but will
be pulled down during the cartridge-check routine if
CA1 and CA2 are actually tied together by a cartridge
in the slot. In all other cases, CA1 will remain at a high
logic level and not trigger anything.

In the event a cartridge is detected, the value of PB4
is examined to determine whether the cartridge uses
two-byte or three-byte addressing. Following that,
PB0 through PB3 are used to read the contents of the

64

cartridge into memory over a lowest-common-
denominator SPI protocol for memories.

KEYBOARD

The Cody Computer's keyboard exists as a separate
schematic and printed circuit board. It contains 29 keys
and a spacebar. The physical layout of the keys differs
significantly from the electrical layout, with the
keyboard itself arranged in a very compact QWERTY
layout. The keyboard also uses a nonstandard spacing
to keep the size down.

Three of the keys—the Cody, Meta, and Arrow keys
—are special keys used to select other characters,
change caps lock, and delete or enter text. Two
switches are actually combined into the spacebar, one
on each side of the spacebar' keycap. This solution was
actually easier than designing a nonstandard spacebar
stabilizer.

Schematic with keyboard matrix and connector.

The keyboard matrix consists of 31 Cherry MX or
compatible switches (SW1 through SW31) arranged

65

into an electrical matrix of five columns and six rows.
The spacebar uses two switches (SW4 and SW5)
placed on either end of the spacebar; from the
standpoint of the keyboard matrix they're more or less
the same switch. The matrix is wired to the keyboard
connector (J1) and is connected to the main board via a
cable.

No diodes are added to the keyboard to prevent
ghosting. Instead the Cody Computer is designed so
that no more than two keys would need to be pressed
simultaneously at any time, thereby avoiding ghosting
issues; at least three simultaneous presses would be
necessary to produce ghosting.

Note that this means the keyboard is a poor choice
for arcade games or similar. In those situations the
joystick ports are the more proper input device. As
mentioned above, these do have diodes to prevent
ghosting and allow the joysticks to be read without
problems under heavy use.

PROPELLER FIRMWARE

As mentioned earlier, much of the Cody Computer's
functionality comes from the Propeller chip. That
functionality is specified within the Propeller's
firmware. Mostly written in the Propeller's own
assembly language, PASM, with minor use of SPIN, the
Propeller's interpreted high-level language, it should
be at least somewhat understandable to anyone with
experience in low-level programming. The files are
released under the GPL and are available with the rest
of the Cody Computer's files.

66

The Propeller actually contains eight small
processors, each of which can run its own small
program of up to 512 instructions. While this may not
sound like a lot, it suffices for most low-level
programming, and larger programs can be written in
SPIN or executed using various low-level
workarounds.

For our purposes, we rely on the fast, deterministic
execution of Propeller assembly language code, so
those don't apply to us. Instead, we break up the
necessary parts of the Cody Computer's emulated
hardware into small programs, then start them up on
individual cogs, letting them run until the computer is
shut off.

The firmware is split up into five files:

The cody_computer.spin file contains startup
code and drives the circuit.
The cody_uart.spin file contains code for two
emulated serial UARTs.
The cody_audio.spin file contains a rough
emulation of the SID sound chip.
The cody_video.spin file contains code for NTSC
color video generation.
The cody_line.spin file contains per-line
rendering code used for video.

Each file is heavily commented but we'll do a brief
review of each one here in the book. If you're new to
the Propeller you may want to find a reference for
PASM and SPIN from the Parallax website, especially if
you're going to be following through in the original
source files.

•

•

•

•

•

67

CODY_COMPUTER.SPIN

The cody_computer.spin file contains the main
startup code for the entire Cody Computer, both
Propeller and 65C02 code, and acts as the overall
driver for the rest of the system. Everything else that
happens in the Cody Computer directly or indirectly
happens because of the contents of this file.

In its DAT section it declares the memory regions
that will be visible to the 65C02 bus. One region is a
16-kilobyte area containing zeroes, used for the
emulated 16-kilobyte RAM. Following that is an 8-
kilobyte area that contains the contents of the cody.bin
file, the 65C02 firmware that contains the Cody
Computer's code and BASIC interpreter.

Declarations for shared memory mapped into the
65C02's address space.

The actual startup code is written in SPIN, the
Propeller's interpreted language, and is contained in
the start method. The Propeller contains a copy of the
SPIN interpreter, and once it starts up, it calls this
routine and starts interpreting the code. From there,
control is passed to us. Our code starts the audio,
UART, and video cogs of the code, then uses the
Propeller's coginit function to replace the code in the
current cog with the driver code under cogmain.

DAT

memory

 long 0[4096] ' 16K shared RAM starting at 65C02 address $A000
 long ' 8K ROM (BASIC, character set) starting at 65C02 address $E000
 FILE "cody.bin"

68

The Cody Computer's startup sequence as written in
SPIN.

The rest of the file is written in PASM. When control
is passed to cogmain, the assembly language entry
point, it sets up some of the Propeller's I/O pins and
does some quick memory calculations to speed up the
code later. After that, it emits a reset pulse to start the
65C02 by calling the emit_reset routine.

The entry point in Propeller PASM.

PUB start

 audio.start(@memory)
 uart.start(@memory)
 video.start(@memory)

 waitcnt(cnt + 10000)
 coginit(0, @cogmain, @memory)

cogmain mov memory_ptr, PAR

 ' adjust ROM cutoff location with start address of memory
 add BOUNDARY_ROM, memory_ptr

 ' configure the IO pins used for 6502 and bus signals
 mov OUTA, INIT_OUTA
 mov DIRA, INIT_DIRA

 ' run 65C02 reset sequence of 10 clocks with reset high
 call #emit_reset

 ' dummy read to align our code with hub access windows
 ' before commencing the main loop driving the 6502
 rdbyte data, addr

emit_reset
 ' begin with reset high and emit 20 clock cycles
 or OUTA, MASK_RES
 mov count, #20
:loop
 ' clock low
 andn OUTA, MASK_PHI
 mov temp, cnt
 add temp, #40
 waitcnt temp, temp

 ' clock high
 or OUTA, MASK_PHI
 mov temp, cnt
 add temp, #40
 waitcnt temp, temp

 ' bring reset low after 10 cycles
 cmp count, #10 wz

69

The Propeller emit_reset routine that starts the
65C02.

Once done, the program enters the main loop, under
cycle, where it handles all the operations necessary to
drive the circuit for a single cycle. It brings the PHI2
clock signal for the 65C02 low, reads the address on
the bus to determine what device to use, selects the
appropriate device, and brings the PHI2 clock signal
high. Checks are also performed to determine if the
Propeller itself is the device being selected, which will
happen if the address is at the top 24 kilobytes of
memory.

Because this main loop also produces the main clock
for the rest of the circuit, it must be exact with its
timing. In order to achieve that, we perform what is
called a hub operation, syncing the code up with the
rest of the Propeller, before entering the main loop.
After that, we go through and add up the time
required for each instruction, including other hub
operations, to ensure that a stable 1 megahertz clock
results from the code regardless of any path taken
through it.

if_z andn OUTA, MASK_RES

 ' next clock cycle
 djnz count, #:loop

 ' bring reset high when done
 or OUTA, MASK_RES

emit_reset_ret ret

cycle
 ' Begin the main 6502 loop by bringing phi low to end
 ' the previous cycle, then reset the OUTA/DIRA config.
 '
 ' Once we've reset our state to begin the next cycle,
 ' read from the inputs and determine what we need to do.

 andn OUTA, MASK_PHI ' phi2 low at start (1)
 mov DIRA, INIT_DIRA ' reset IO direction (2)
 mov OUTA, INIT_OUTA ' reset output state (3)
 mov addr, INA ' read address (4)
 and addr, MASK_WORD ' mask address bits (5)

70

The main loop that drives the rest of the circuit,
including the 65C02.

In this latter case, it also has to read data from the
65C02's bus into the Propeller or write data from the
Propeller onto the 65C02's bus. In these cases, control
jumps to the internal branch, and on to the labelled
read or write sections depending on the exact
operation. It also performs a special check to see if the
65C02 is attempting to write to the top 8 kilobytes,
and if so, ignore it. This emulates a traditional ROM at
the top of the address space by making it unwritable.

 cmp addr, BOUNDARY_RAM wc ' test address for prop memory (6)
if_nc jmp #internal ' prop internal memory path (7)
 cmp addr, BOUNDARY_VIA wc ' test address for sram or io (8)
if_nc andn OUTA, MASK_IOSEL ' io selected (9)
if_c andn OUTA, MASK_RAMSEL ' otherwise ram selected (10)
 or OUTA, MASK_ABE_PHI ' address bus off, phi2 high (11)
 nop ' wait (12)
 nop ' wait (13)
 nop ' wait (14)
 nop ' wait (15)
 nop ' wait (16)
 nop ' wait (17)
 nop ' wait (18)
 nop ' wait (19)
 jmp #cycle ' next loop (20)

 ' Accessing hub memory so capture the address while the
 ' address bus is enabled, then process as read or write.

internal sub addr, BOUNDARY_RAM ' adjust address for prop (8)
 add addr, memory_ptr ' adjust with base pointer (9)
 test MASK_RWB, INA wz ' read or write op? (10)
 or OUTA, MASK_ABE_PHI ' address bus off, phi2 high (11)
if_z jmp #write ' write operation (12)

 ' Performing a read operation from the hub memory, so we
 ' have to read from memory during the hub window and put
 ' the data on the data bus (note that the pin direction
 ' also has to be changed to actually put the data on the
 ' 6502 bus).

read nop ' wait (13)
 nop ' wait (14)
 rdbyte data, addr ' read byte (15, 16)
 or OUTA, data ' set output data (17)
 or DIRA, MASK_LOBYTE ' enable outputs (18)
 nop ' wait (19)
 jmp #cycle ' next loop (20)

 ' Performing a write operation, so we need to get the
 ' data from the 6502 data bus and write it to hub ram
 ' during our hub window.

write mov data, INA ' get input data (13)
 cmp addr, BOUNDARY_ROM wc ' test for non-writeable ROM area (14)
if_c wrbyte data, addr ' write input data (15, 16)
 nop ' wait (17)

71

The paths taken when the Propeller's memory is
accessed by the 65C02.

CODY_UART.SPIN

The Cody Computer contains two UART devices used
for serial communication. However, both are
implemented purely in software inside the Propeller
and are exposed to the 65C02 through shared
memory in the Propeller. Each UART uses ring buffers
in memory for transmitted and received information, a
technique very common in serial communications.

Both are defined in the same file and run in the
same cog, with coroutines used to interleave the
running code for both UARTs. The Propeller has a
special machine language instruction, jmpret, that
performs a jump while updating a return address,
making it well-suited for implementing coroutines.

The cody_uart.spin file contains a start method
that's called by the main program to launch the UART
cog. Passed along as a parameter is the base of the
shared memory area in the Propeller. Because the
UART will talk to the rest of the circuit using addresses
in shared memory it needs to know where the shared
memory begins within the Propeller. From there, the
start method, written in SPIN, eventually launches a
new cog with assembly code using cognew.

 nop ' wait (18)
 nop ' wait (19)
 jmp #cycle ' next loop (20)

PUB start(mem_ptr)

72

The UART start entry point written in SPIN.

The assembly code, starting under cogmain, begins
by adjusting a variety of memory pointers with the
base address of shared memory. This way the
adjustment only occurs once at the start of the
program rather than each time it reads or writes a
value. After that, it configures the Propeller I/O pins
used for serial I/O and does initial setup for the
coroutines.

Two variables, uart1_task and uart2_task, store the
current positions within the uart1 and uart2 routines
(the names are just a convention and could have been
anything). The UARTs are implemented within the
uart1 and uart2 routines, which are identical except
that they use different local variables and I/O pins.

The PASM cogmain that sets up the UARTs.

Control initially begins with uart1. On each loop it
begins by checking if the UART is enabled, and if so,
reading the baud rate from the UART's configuration
settings. Once read the baud rate is converted to a
time value using the BAUD_RATE_TABLE. If the UART

 cognew(@cogmain, mem_ptr)

cogmain
 ' Adjust all pointers using hub memory base address
 mov temp, #18
:adjust add UART1_CONTROL, PAR
 add :adjust, INC_DEST
 djnz temp, #:adjust

 ' Initialize serial port pins
 or DIRA, UART1_TX_PIN
 or OUTA, UART1_TX_PIN

 or DIRA, UART2_TX_PIN
 or OUTA, UART2_TX_PIN

 ' Prepare to run as coroutines
 mov uart2_task, #uart2

73

is disabled then it does some cleanup at the end and
loops until the UART is reenabled.

The initial lines of the UART1 routine.

BAUD_RATE_TABLE lookup table that maps register
values to time delays.

When the UART is running, it checks to see if any
bits remain to be sent, and if so, whether enough time
has elapsed since the last bit to send another one. If
there are no more bits to send, it checks to see if there
are more bytes to send in the transmit ring buffer and
brings in the next byte. Using that byte, it constructs

uart1
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' Is the UART running?
 rdbyte temp, UART1_COMMAND
 test temp, #$01 wz
if_z jmp #:disabled

 ' Mark UART1 status bit as high
 or uart1_state, #$40
 wrbyte uart1_state, UART1_STATUS

 ' Get the baud rate for the UART
 rdbyte temp, UART1_CONTROL
 and temp, #$0F
 add temp, #BAUD_RATE_TABLE
 movs :baud, temp
 nop
:baud mov uart1_delta, 0-0

BAUD_RATE_TABLE long 0 ' 0x0
 long (80_000_000 / 50) ' 0x1
 long (80_000_000 / 75) ' 0x2
 long (80_000_000 / 110) ' 0x3

 long (80_000_000 / 135) ' 0x4
 long (80_000_000 / 150) ' 0x5
 long (80_000_000 / 300) ' 0x6
 long (80_000_000 / 600) ' 0x7

 long (80_000_000 / 1200) ' 0x8
 long (80_000_000 / 1800) ' 0x9
 long (80_000_000 / 2400) ' 0xA
 long (80_000_000 / 3600) ' 0xB

 long (80_000_000 / 4800) ' 0xC
 long (80_000_000 / 7200) ' 0xD
 long (80_000_000 / 9600) ' 0xE
 long (80_000_000 / 19200) ' 0xF

74

the entire frame for the byte, including a start bit and
a stop bit, and saves it so that the code can send it out
a bit at a time.

 ' Yield to other UART
:transmit jmpret uart1_task, uart2_task

 ' Do we have bits left to send?
 cmp uart1_tx_left, #0 wz
if_nz jmp #:send

 ' Get buffer head and tail positions
 rdbyte head, UART1_TXHEAD
 and head, #$07

 rdbyte tail, UART1_TXTAIL
 and tail, #$07

 ' Is the buffer empty? If so, move on
 cmp head, tail wz
if_z jmp #:receive

 ' Mark transmit bit as high
 or uart1_state, #$10
 wrbyte uart1_state, UART1_STATUS

 ' Read the next item from memory
 mov temp, UART1_TXBUF
 add temp, tail
 rdbyte uart1_tx_bits, temp

 ' Update the tail position
 add tail, #1
 and tail, #$07
 wrbyte tail, UART1_TXTAIL

 ' Construct frame for bits (start and stop bit)
 or uart1_tx_bits, #$100
 shl uart1_tx_bits, #2
 or uart1_tx_bits, #1

 ' Calculate first timestamp to send a bit
 mov uart1_tx_time, CNT
 add uart1_tx_time, uart1_delta

 ' Loop 11 times (high, start, data, stop)
 mov uart1_tx_left, #11

:send
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' See if it's time to send data
 mov temp, uart1_tx_time
 sub temp, CNT
 cmps temp, #0 wc
if_nc jmp #:receive

 ' Shift out the next bit
 shr uart1_tx_bits, #1 wc
 muxc OUTA, UART1_TX_PIN
 add uart1_tx_time, uart1_delta

 ' Decrement bit count by one
 sub uart1_tx_left, #1 wz

 ' Clear transmit bit when done with the byte
if_z andn uart1_state, #$10

75

Code path taken when transmitting bits.

The receive process is generally the same, checking
to see if a bit needs to be read, and if no receive
operation is in progress, whether a start bit has been
encountered. As bytes are read, they are added to the
receive buffer similar to how they're consumed from
the transmit buffer. Throughout the process, the code
updates various local variables, status bits in shared
memory, and at key points jumps back to the other
UART so both run concurrently.

if_z wrbyte uart1_state, UART1_STATUS

:receive
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' Are we already receiving a byte?
 cmp uart1_rx_left, #0 wz
if_nz jmp #:recv

 ' Do we have a start bit? (start bits are 0)
 test UART1_RX_PIN, INA wz
if_nz jmp #uart1

 ' Mark receive bit as high
 or uart1_state, #$08
 wrbyte uart1_state, UART1_STATUS

 ' Calculate first timestamp to receive a bit
 mov uart1_rx_time, uart1_delta
 shr uart1_rx_time, #1
 add uart1_rx_time, uart1_delta
 add uart1_rx_time, CNT

 ' Clear out bits
 mov uart1_rx_bits, #0

 ' Nine bits to receive (includes the stop bit)
 mov uart1_rx_left, #9

:recv
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' See if it's time to receive data
 mov temp, uart1_rx_time
 sub temp, CNT
 cmps temp, #0 wc
if_nc jmp #uart1

 ' Read the next bit
 test UART1_RX_PIN, INA wz
if_nz or uart1_rx_bits, BIT_9
 shr uart1_rx_bits, #1
 add uart1_rx_time, uart1_delta

 ' Decrement number of bits left to read
 sub uart1_rx_left, #1 wz
if_nz jmp #uart1

76

Code path taken when receiving bits.

Some special paths exist for when errors are
detected or the UART is disabled. During error
conditions an appropriate bit is set in the status
register to indicate the nature of the problem. When
the UART is disabled, it is also an opportunity to reset
the UART for the next time it's used. Some of the
internal variables in particular need cleared out.

 ' Test stop bit was set (framing error?)
 test uart1_rx_bits, BIT_8 wz
if_z jmp #:frame

 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' Get buffer head and tail positions
 rdbyte head, UART1_RXHEAD
 and head, #$07

 rdbyte tail, UART1_RXTAIL
 and tail, #$07

 ' Check for overflow (can only store 7 items)
 mov temp, tail
 sub temp, head
 abs temp, temp
 cmp temp, #7 wc
if_nc jmp #:overflow

 ' Calculate address for next byte in buffer
 mov temp, UART1_RXBUF
 add temp, head

 ' Calculate new buffer head position
 add head, #1
 and head, #$07

 ' Update buffer and position
 wrbyte uart1_rx_bits, temp
 wrbyte head, UART1_RXHEAD

 ' Clear receive bit at end of byte
 andn uart1_state, #$08
 wrbyte uart1_state, UART1_STATUS

 jmp #uart1

:frame
 ' Set frame bit (bit 1) on status register
 or uart1_state, #$02
 wrbyte uart1_state, UART1_STATUS

 jmp #uart1

:overflow
 ' Set overflow bit (bit 2) on status register
 or uart1_state, #$04
 wrbyte uart1_state, UART1_STATUS

 jmp #uart1

77

Special paths used when an error is found or the UART
is turned off.

The UART code, while not as complex as other
portions of the firmware, still contains a variety of
concepts that may be new. For a simple example of
implementing a single UART on the Propeller, one
might start with the Full Duplex Serial example by
Propeller designer Chip Gracey posted on the
Propeller OBEX. The code uses coroutines to toggle
between the receive and transmit paths for a single
software UART and lacks many of the complicating
factors in the Cody Computer UART code. It is very
useful as a learning aid or reference.

CODY_AUDIO.SPIN

The Cody Computer uses a simplified version of the
Commodore SID chip for its sound generation. Instead
of a real SID, one of the cogs in the Propeller is
devoted to generating audio output, and a portion of
the shared memory is set aside to mimic the SID's
registers.

The Cody Computer's implementation is in most
respects a port of the GPL-licensed MOS6581 SID
Emulator Arduino Library by Christoph Haberer and
Mario Patino. In addition to rewriting the library in
PASM from the original code, many changes were

:disabled
 ' Clear any pending bits in the system
 mov uart1_rx_left, #0
 mov uart1_tx_left, #0
 mov uart1_state, #0

 ' Clear out any registers managed by the UART
 wrbyte ZERO, UART1_RXHEAD
 wrbyte ZERO, UART1_TXTAIL
 wrbyte ZERO, UART1_STATUS

 jmp #uart1

78

made to support the Propeller's similar but not
identical output-pin hardware. Yet other changes had
to be made to integrate it into the Cody Computer as a
whole.

SIDcog is a more complete emulation for the
Propeller created by Johannes Ahlebrand and
later enhanced by Ada Gottensträter. The
emulator is excellent but some timing and space
requirements on top of our already busy Propeller
made it a challenge to integrate. Nonetheless, the
possibility exists for an interested reader.

As with the other portions of Propeller firmware, the
implementation is written using PASM. A small SPIN
method, start, launches the cog with PASM code
starting at cogmain, similar to the UART. The PASM
code begins by adjusting some internal memory
pointers relative to the shared memory region, sets up
an output pin for the audio signal, and initializes some
variables used for the main loop.

One important step is setting the cog's ctra register
to enable what's known as the duty single-ended
mode on the pin we've selected for audio output. Each
cog has an internal counter that can be used for a
variety of operations. In this case we're using the
counter to quickly generate an on-or-off output with a
varying duty cycle faster than we could possibly do in
software alone.

The external circuitry discussed in the previous
section smoothes this out into an analog waveform
despite the actual output being a digital on-or-off.

79

Once enabled, we can put an output value into the
matching frqa register to control the duty cycle, and
by extension, control the sound that comes out of the
Propeller.

The cogmain entry point in PASM.

From there the code enters main_loop, which
begins by waiting until enough time has elapsed to
run the main loop again. The Cody Computer's SID has
a sample rate of 16 kilohertz, which means that we
want the main loop to run 16000 times per second.
The Propeller's clock ticks 80 million times per second,
so after dividing the Propeller's clock by the desired
sampling rate, we realize we need to run the loop once
every 5000 ticks. And because each Propeller
instruction takes four of its clock cycles, we calculate
that our loop has to run in no more than 1250
instructions.

When the loop is ready to run again, it begins by
updating the white noise generator. White noise was
one of the waveform options for the real SID, so we
also need a source for it here. Our implementation
follows the Arduino SID emulator mentioned
previously, so it uses a linear feedback shift register
implemented in software.

cogmain
 ' Calculate actual position of registers
 add REGS_BASE, PAR
 add OSC3_PTR, PAR
 add ENV3_PTR, PAR

 ' Configure output for sound
 mov dira, INIT_DIRA
 mov ctra, INIT_CTRA

 ' Configure timing
 mov time, cnt
 add time, WAIT_TIME

 mov output, #0

80

In a linear feedback shift register, a sequence of bits
is generated by storing a seed value, extracting certain
bits, shifting the original value, A portion of the result
can be extracted and used for other purposes (such as
noise), with other portions of the result fed back in to
repeat the proces on the next iteration.

Once the noise value is updated, the code runs the
:voice_loop three times, one for each voice.
Subroutines for processing the voice are called from
within the loop. Once done, the voices are combined
and output by calling the make_output routine.

The Cody SID's main loop.

The voice_begin routine prepares everything for
generating a voice. Because the Propeller's assembly

main_loop

:loop
 ' Wait for next cycle
 waitcnt time, WAIT_TIME

 ' Update noise
 mov temp, noise
 and temp, #$1
 neg temp, temp
 and temp, NOISE_BITS
 shr noise, #1
 xor noise, temp
 and noise, MASK_16

 ' Start at beginning of internal voice states on each main loop
 movs readvar, #state1
 movd savevar, #state1

 ' Start at beginning of registers on each main loop
 mov register_ptr, REGS_BASE

 ' Three voices to process
 mov voice_count, #3
:voice_loop
 call #voice_begin
 call #make_wave
 call #make_envelope
 call #make_waveform
 call #voice_end

 djnz voice_count, #:voice_loop

 ' Combine into a single output
 call #make_output

 ' Repeat the main loop
 jmp #:loop

81

language has very limited support for indirect
addressing, the code has to copy variables for each
voice to temporary variables used within the loop.
When it's done processing the current voice, it copies
them back at the end.

Once that initial per-voice setup is completed, the
code performs special checks for the SID's sync and
test bits. If the sync bit is enabled the code syncs the
current voice's phase with another voice, but if the test
bit is set, the code resets most of the current voice's
internal state.

The voice_begin routine called at the start of each
loop.

The next part of the loop is in make_wave, which
generates the wave portion of the current voice. The
wave, which is the raw triangle, sawtooth, pulse, or

voice_begin
 ' Read the registers for a single voice into COG memory
 movd :readreg, #voice_freq_l
 mov count, #7
:readreg rdbyte 0-0, register_ptr
 add :readreg, INC_DEST
 add register_ptr, #1
 djnz count, #:readreg

 ' Copy the internal states for the current voice into temp vars
 movd readvar, #state
 mov count, #7
readvar mov 0-0, 0-0
 add readvar, INC_BOTH
 djnz count, #readvar

 ' Sync voice if the other voice indicates it's time to sync,
 ' test if sync bit is on AND it's time to sync (order is)
 ' reversed because we're counting down).
 cmp voice_count, #2 wc,wz
if_nc movd :testsync, #sync3 ' Voice 1 uses voice 3
if_z movd :testsync, #sync1 ' Voice 2 uses voice 1
if_c movd :testsync, #sync2 ' Voice 3 uses voice 2
 nop
:testsync test 0-0, voice_control wz
if_nz mov phase, #0

 ' Reset voice if the test bit is on
 test voice_control, #$08 wz
if_nz mov phase, #0
if_nz mov amplitude, #0
if_nz mov state, #0

voice_begin_ret ret

82

noise signal, is shaped by an envelope in a later step.
However, it comprises the base upon which the rest of
the sound is built.

To begin, it takes the frequency specified for the
voice, using that to update an internal phase counter.
This counter is used to determine what portion of a
particular wave to generate based on how much time
has gone by. Different code paths,
:triangle, :sawtooth, :pulse, and :noise, exist for each
supported wave type.

make_wave
 ' Combine frequency into 16 bit number
 ' Shift by 2 because frequency * 4000 / 16 KHz sample rate
 mov freq_coefficient, voice_freq_h
 shl freq_coefficient, #8
 or freq_coefficient, voice_freq_l
 shr freq_coefficient, #2

 ' Calculate next phase
 mov temp_phase, phase
 add temp_phase, freq_coefficient

 ' If we overflowed, set our internal sync bit to apply later
 testn temp_phase, MASK_16 wz
 muxnz sync, #$02

 ' Limit phase calculation to 16 bits internally
 and temp_phase, MASK_16

:triangle
 ' Triangle waveform?
 test voice_control, #$10 wz
if_z jmp #:sawtooth

 ' Time to invert? (Goes up half the time, then down half the time)
 ' Double the value to make sure it covers the full range
 mov wave, phase
 test wave, BIT_15 wz
 shl wave, #1
if_nz xor wave, MASK_16
 and wave, MASK_16
 jmp #:done

:sawtooth
 ' Sawtooth waveform?
 test voice_control, #$20 wz
if_z jmp #:pulse

 mov wave, phase
 jmp #:done

:pulse
 ' Pulse waveform?
 test voice_control, #$40 wz
if_z jmp #:noise

 mov temp, voice_pulse_h
 shl temp, #8
 or temp, voice_pulse_l
 shl temp, #4
 and temp, MASK_16

83

The make_wave routine generates a voice's
underlying sound.

After generating the wave, make_envelope runs to
generate the ADSR envelope. ADSR, short for Attack-
Decay-Sustain-Release, is a key concept in synthesis,
specifying the "envelope" for a sound. The attack
specifies how long it takes to reach a maximum
volume once a sound is started, while the decay
specifies how long it takes for the sound to go back
down to its sustain level after peaking. The release
specifies how long the sound takes to fade out once
the sound is shut off.

For the Cody Computer's SID, a voice is turned on
when its gate bit is set, so the code checks it to see if
the sound has started. It also refers to an internal state
variable to determine where it is in the ADSR
envelope. As part of the calculations, precomputed
tables ATTACK_RATES, DECAY_RATES, and
SUSTAIN_LEVELS are used to look up how much to
add or subtract during the attack and decay or what

 cmp phase, temp wc
if_c mov wave, MASK_16
if_nc mov wave, #0

 jmp #:done

:noise
 ' Noise waveform?
 test voice_control, #$80 wz
if_z jmp #:done

 mov temp, phase
 xor temp, temp_phase
 test temp, PHASEBIT_NOISE wz
if_nz mov temp, noise
if_nz and temp, MASK_16
if_nz mov wave, temp

:done
 ' Update phase for the current voice (limited to unsigned 16 bits)
 mov phase, temp_phase

 ' Ensure wave only has 16 bits of resolution
 and wave, MASK_16

make_wave_ret ret

84

volume level to hold at during sustain. At the end of
the calculation, it has generated the envelope that will
be combined with the previously-generated wave.

make_envelope
 ' Is gate bit set? (playing a note?)
 test voice_control, #$01 wz
if_z jmp #:release

:attack
 ' Gate bit set, but are we on attack or decay state?
 tjnz state, #:decay

 ' Increment amplitude with attack value from table
 movs :addattack, #ATTACK_RATES
 mov temp, voice_attack_decay
 shr temp, #4
 add :addattack, temp
 nop
:addattack add amplitude, 0-0

 ' Did we reach the maximum value (end of attack portion?)
 cmp amplitude, MAXLEVEL wc
if_c jmp #:done

 ' Cap at maximum amplitude, enter decay phase
 mov amplitude, MAXLEVEL
 mov state, #1

 jmp #:done

:decay
 ' Look up the matching sustain value from the table
 mov temp, voice_sustain_release
 shr temp, #4
 add temp, #SUSTAIN_LEVELS
 movs :getsustain, temp
 nop
:getsustain mov level_sustain, 0-0

 ' Did we reach that sustain level?
 cmp level_sustain, amplitude wc
if_nc jmp #:done

 ' Subtract the current decay value from our amplitude,
 ' but don't let our amplitude fall below zero
 mov temp, voice_attack_decay
 and temp, #$0F
 add temp, #DECAY_RATES
 movs :subdecay, temp
 nop
:subdecay sub amplitude, 0-0 wc
if_c mov amplitude, #0

 ' Limit amplitude from falling below sustain level
 min amplitude, level_sustain

 jmp #:done

:release
 ' Gate bit is off so not in attack state
 mov state, #0

 ' Have we reached zero amplitude?
 tjz amplitude, #:done

 ' Subtract the current decay value from our amplitude,
 ' but don't let our amplitude fall below zero
 mov temp, voice_sustain_release
 and temp, #$0F
 add temp, #DECAY_RATES

85

The make_envelope routine generates a voice's ADSR
envelope.

The make_waveform combines both of these values
together. It first checks if ring modulation is enabled
and applies it if so. Ring modulation is a technique
where one voice is combined with the output of
another to generate unique sounds, and the SID chip
implemented a special case of ring modulation that we
attempt to mimic.

Once ring modulation has been applied, the wave
value and the envelope value are multiplied together
to get the final waveform value for this voice in the
loop.

 movs :subrelease, temp
 nop
:subrelease sub amplitude, 0-0 wc
if_c mov amplitude, #0

 ' Scale envelope from 24 to 16 bits resolution
:done mov envelope, amplitude
 shr envelope, #8

make_envelope_ret ret

make_waveform
 ' We'll be multiplying the wave value by the envelope value
 mov x, wave

:ring
 ' Ring modulation bit?
 test voice_control, #$04 wz
if_z jmp #:done

 ' For "ring modulation" we invert the wave based on another's phase
 ' (Order is reversed because we're counting down)
 cmp voice_count, #2 wc,wz
if_nc movd :testphase, #phase3 ' Voice 1 uses voice 3
if_z movd :testphase, #phase1 ' Voice 2 uses voice 1
if_c movd :testphase, #phase2 ' Voice 3 uses voice 2
 nop
:testphase test 0-0, BIT_15 wz
if_nz xor x, MASK_16

:done
 ' Multiply the wave by the envelope
 mov y, envelope
 call #multiply

 ' Scale result down from 32 to 16 bits
 shr y, #16
 mov output, y

86

The make_waveform routine that combines the wave
and envelope.

After that, there are some bookkeeping tasks to
perform, such as copying the temporary variables back
to their original locations. At the end of each voice
loop the voice_end routine is called. This handles any
final processing or cleanup at the end of a voice. As a
practical matter, it's responsible for copying the
temporary voice variables back to their permanent
locations. Just as voice_begin copied them in at the
beginning of the loop, this routine does the reverse
when the voice has come to an end. Once that's done,
the voice_loop repeats for each remaining voice.

The voice_end routine saves the values of temporary
variables.

Once output values for all three voices have been
generated, make_output puts them together. All three
voices are combined together (with the possible
exception of voice 3, which can be shut off), multiplied
by the current global volume, and scaled to the range
supported by the audio output circuitry. Once the
combined output value is written to the Propeller's
frqa register, the rest is handled by hardware, and a
pulse-width-modulated signal is output to the audio
circuitry on the board.

make_waveform_ret ret

voice_end
 movs savevar, #state
 mov count, #7
savevar mov 0-0, 0-0
 add savevar, INC_BOTH
 djnz count, #savevar

voice_end_ret ret

87

A few other operations are also performed, such as
updating a couple of shared memory locations with
some internal values from voice 3. The SID did this and
the values were often used for random numbers or
special audio effects, so here we do something similar
to keep the spirit alive. Other features such as filters
haven't been implemented.

The make_output routine merges all three voices into
one output.

Note that because the Propeller has no built-in
multiplication hardware, all multiplication is done in
software. While this sounds somewhat primitive, it
also helps keep the Propeller the simple and

make_output
 ' Read the filter registers
 movd :readfilt, #filter_cutoff_l
 mov count, #4
:readfilt rdbyte 0-0, register_ptr
 add :readfilt, INC_DEST
 add register_ptr, #1
 djnz count, #:readfilt

 ' Combine outputs (voice 3 is a special case)
 mov x, output1
 add x, output2

 ' Voice 3 is skipped if bit is set
 test filter_mode_volume, #$80 wz
if_z add x, output3

 ' Apply volume setting
 mov y, filter_mode_volume
 and y, #$0F
 call #multiply
 shr y, #4

 ' Scale output value to Propeller PWM value
 mov output, y
 sub output, BIT_15
 shl output, #11
 add output, BIT_31
 mov frqa, output

 ' Write high byte of voice 3 oscillator waveform
 mov temp, wave3
 shr temp, #8
 wrbyte temp, OSC3_PTR

 ' Write high byte of voice 3 envelope
 mov temp, envelope3
 shr temp, #8
 wrbyte temp, ENV3_PTR

make_output_ret ret

88

deterministic system it is from a hardware standpoint.
We have a routine, multiply, that was taken from
Appendix B of the Propeller's reference manual and
multiplies two 16-bit numbers together. This suffices
for our purposes and doesn't take that many cycles.

The software multiply routine.

CODY_VIDEO.SPIN

A significant portion of the Propeller's capabilities
are used to implement the Cody Computer's Video
Interface Device (VID). Five of the chip's eight cogs are
devoted to some aspect of video generation, and the
chip's custom video generation hardware is utilized to
generate an NTSC-compatible analog video signal.
The Propeller contains circuitry that can generate all
the relevant portions of a video signal, including
blanking and color sync pulses.

Using the circuitry involves configuring a counter to
the appropriate output rate for the video signal, then
using the waitvid instruction to pass color and pixel
data to it. As a special case, we can actually call
waitvid with four colors and four pixels, making it
possible to use any of the Propeller's colors anywhere
on the screen.

multiply
 shl x, #16 ' Get multiplicand into x high bits
 mov t, #16 ' Ready for 16 multiplier bits
 shr y, #1 wc ' Get initial multiplier bit into c
:loop

if_c add y, x wc ' If carry set, add multiplicand into product
 rcr y, #1 wc ' Get next multiplier bit into c, shift product

 ' Loop until done
 djnz t, #:loop

multiply_ret ret

89

Software-based NTSC video generation from first
principles isn't something that can be easily summed
up in a few paragraphs. One level of detail would be to
discuss the characteristics of the signal itself, while
another would be to discuss in depth the Propeller's
unique capacities for analog video output. In this book
it's assumed that all of that just works, instead
focusing on how these capabilities are used at a high
level to implement the Cody Computer's video
interface device.

For a more in-depth discussion of video generation
without all the extra complications caused by the Cody
Computer, one might start with Eric Ball's NTSC and
PAL Driver Templates available on the Propeller OBEX.
Portions of that code were foundational to the Cody
Computer's own video code, and it's an excellent
walkthrough of analog video generation in the context
of the Propeller. I'd also recommend reading any of
the relevant Propeller forum postings.

Video generation on the Cody Computer begins in
the cody_video.spin file. Memory is reserved for four
scanline "mailboxes" in the scanlines variable, which
will later be used to communicate with the cogs
responsible for rendering the video lines. A lookup
table, COLOR_TABLE, is also defined to map Cody
Computer color codes to their Propeller equivalents.
On startup, the start SPIN method sets up the scanline
mailboxes, then launches the video signal generation
cog with PASM code starting at cogmain.

PUB start(mem_ptr) | index

 ' Start up the scanline renderer cogs
 repeat index from 0 to 3

 ' Set up each mailbox
 mailboxes[index * 100 + 0] := index

90

SPIN portion of the video startup code.

The cogmain code first calls the load_params
routine to read in the locations of shared memory and
the four mailboxes for the scanline cogs. It also uses
the shared memory base address to calculate the
positions of some of the video registers used by the
video signal generator.

The main loop for the NTSC video generation code.

After that, cogmain calls the init_video routine to
set up vcfg for the video mode and what bank of
output pins to use, ctra for the counter mode, and frqa
for the video frequency. The video output pins are also
set as outputs in dira, as without doing so, the video
will not actually be emitted on the pins selected in
vcfg. (For more detail on these Propeller registers,
refer to the Propeller reference manual in particular.)

 mailboxes[index * 100 + 1] := mem_ptr
 mailboxes[index * 100 + 2] := @COLOR_TABLE
 mailboxes[index * 100 + 3] := 0

 ' Launch the corresponding cog
 line_renderer.start(@mailboxes + index * 400)

 ' Launch the video cog itself once the scanline cogs are running
 launch_cog(mem_ptr, @COLOR_TABLE, @mailboxes+0, @mailboxes+400, @mailboxes+800, @mailboxes+1200)

PRI launch_cog(mem_ptr, ctable_ptr, scan1_ptr, scan2_ptr, scan3_ptr, scan4_ptr)

 cognew(@cogmain, @mem_ptr)

cogmain
 call #load_params
 call #init_video
:loop
 call #frame
 jmp #:loop

init_video
 ' Sets up the parameters for video generation
 mov vcfg, ivcfg

 ' Internal PLL mode, PLLA = 16 * colorburst frequency
 mov ctra, ictra

 ' 2 * colorburst frequency
 mov frqa, ifrqa

91

Initialization of the Propeller's video registers and
output pins.

After that the load_params routine is responsible
for retrieving the parameters passed from SPIN. The
previously-mentioned launch_cog routine in SPIN
used the SPIN interpreter's stack to hold multiple
parameters, passing the address of the first one to the
newly-created cog running the code. The PASM code
sequentially reads parameters from the SPIN stack
beginning at that starting address. It also adjusts a few
addresses along the way.

 ' Configure selected video pins as outputs
 or dira, idira

init_video_ret ret

load_params
 mov params_ptr, PAR

 rdlong memory_ptr, params_ptr
 add params_ptr, #4

 rdlong lookup_ptr, params_ptr
 add params_ptr, #4

 rdlong temp, params_ptr
 add toggle1_ptr, temp
 add buffer1_ptr, temp
 add buffer5_ptr, temp
 add params_ptr, #4

 rdlong temp, params_ptr
 add toggle2_ptr, temp
 add buffer2_ptr, temp
 add buffer6_ptr, temp
 add params_ptr, #4

 rdlong temp, params_ptr
 add toggle3_ptr, temp
 add buffer3_ptr, temp
 add buffer7_ptr, temp
 add params_ptr, #4

 rdlong temp, params_ptr
 add toggle4_ptr, temp
 add buffer4_ptr, temp
 add buffer8_ptr, temp
 add params_ptr, #4

 mov vblreg_ptr, memory_ptr
 add vblreg_ptr, VBLANK_REG_OFFSET

 mov ctlreg_ptr, memory_ptr
 add ctlreg_ptr, CONTROL_REG_OFFSET

 mov colreg_ptr, memory_ptr
 add colreg_ptr, COLOR_REG_OFFSET

92

PASM for loading parameters from the SPIN
launch_cog routine.

From this point the video generator code enters an
infinite loop, outputting video signals for NTSC frames
one after the other. The scanline generators are set to
the start of a new frame, a vertical sync pulse is
generated by calling vertical_sync, the video control
and border color registers are read, blank lines are
generated by calling ntsc_blank_lines, and at last the
scanline generators are turned on.

The top border is generated via top_border, the
drawable screen area via screen_area, and the bottom
border via a call to bottom_border. The vertical
blanking register is also updated during this process
to indicate when the 65C02 can generally update
video memory or registers without fear of collision.

load_params_ret ret

frame
 ' Generate NTSC vertical sync
 call #vertical_sync

 ' Generate NTSC blank lines after vertical sync
 call #ntsc_blank_lines

 ' Set vertical blanking indicator to zero (not safe to update)
 wrbyte ZERO, vblreg_ptr

 ' Read current video control register from memory
 rdbyte control, ctlreg_ptr

 ' Read current border color and convert to Propeller color
 rdbyte border, colreg_ptr
 shl border, #1
 add border, lookup_ptr
 rdword border, border

 ' Reset scanline generators back to beginning
 wrlong TOGGLE_FRAME, toggle1_ptr
 wrlong TOGGLE_FRAME, toggle2_ptr
 wrlong TOGGLE_FRAME, toggle3_ptr
 wrlong TOGGLE_FRAME, toggle4_ptr

 ' Draw part of the screen top border
 call #top_border

 ' Turn scanline generators on
 wrlong TOGGLE_LINE1, toggle1_ptr
 wrlong TOGGLE_LINE1, toggle2_ptr
 wrlong TOGGLE_LINE1, toggle3_ptr
 wrlong TOGGLE_LINE1, toggle4_ptr

93

The frame routine generates a single TV frame.

Most of the work occurs in the screen_area routine
where the actual screen is drawn. A quick check is
performed to see if vertical scrolling is enabled, and if
so, reduce the size of the vertical area by one row.
After that, it loops for each row on the screen, toggling
the scanline renderers and generating a video signal
for each rendered scanline by calling the scanline
routine.

The scanline renderers are called in order, giving
each renderer the equivalent of four scanlines to
render the next line. To make this possible, each
scanline renderer has two buffers so that it can be
rendering a new line while the previous line is being
sent out.

 ' Draw the rest of the screen top border
 call #top_border

 ' Draw the screen (and horizontal borders)
 call #screen_area

 ' Set vertical blanking indicator to 1 (safe to update)
 wrbyte ONE, vblreg_ptr

 ' Draw screen bottom border
 call #bottom_border

frame_ret ret

screen_area
 ' Generate additional top border lines if vertical scroll enabled
 test control, #%00000010 wz
if_nz call #scroll_border

 ' 25 groups of lines to generate (assuming no vertical scrolling)
 mov numline, #25

 ' Adjust number of lines if vertical scrolling enabled
 test control, #%00000010 wz
if_nz sub numline, #1

 ' Render scanlines behind the scenes as we generate NTSC signals
:loop wrlong TOGGLE_LINE2, toggle1_ptr
 mov source, buffer1_ptr
 call #scanline

 wrlong TOGGLE_LINE2, toggle2_ptr
 mov source, buffer2_ptr
 call #scanline

 wrlong TOGGLE_LINE2, toggle3_ptr
 mov source, buffer3_ptr
 call #scanline

94

PASM routine for generating the drawable screen area.

The scanline routine actually generates the video
signal for a single line in the drawable screen area. It
generates the horizontal sync at the start of the line,
followed by the NTSC signal's back porch. Following
that, a total of 40 waitvids are performed in a loop.

The exact output and timing depends on the current
video mode. For the lower-resolution multicolor mode,
each waitvid consists of four pixels read from a
scanline renderer's inactive buffer. In the high-
resolution mode, eight pixels are read and the data
format in the scanline buffer is somewhat different.
While the output timing differs (each high-resolution
pixel takes half the time of a lower-resolution pixel)
most of the same Propeller configuration values are
used for both outputs.

Once all the pixels have been output, the NTSC
signal's front porch is generated to end the line. The
horizontal_sync, front_porch, and back_porch

 wrlong TOGGLE_LINE2, toggle4_ptr
 mov source, buffer4_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle1_ptr
 mov source, buffer5_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle2_ptr
 mov source, buffer6_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle3_ptr
 mov source, buffer7_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle4_ptr
 mov source, buffer8_ptr
 call #scanline

 ' Continue on to next group of 8 lines
 djnz numline, #:loop

 ' Generate additional bottom border lines if vertical scroll enabled
 test control, #%00000010 wz
if_nz call #scroll_border

screen_area_ret ret

95

routines are used to help with some of the above.
When drawing the line, some checks are also made for
situations where the display is disabled or horizontal
scrolling is enabled. If these conditions exist,
adjustments are made to the output.

scanline ' Start signal with horizontal sync and NTSC back porch
 call #horizontal_sync
 call #back_porch

 ' Test hires or lowres mode based on bit in control register
 test control, #%00100000 wz
if_nz jmp #:hires

:lores ' By default we have 40 waitvids (160 pixels / 4 pixels per waitvid)
 mov count, #40
 mov VSCL, vsclactv

 ' If horizontal scrolling, draw fewer pixels and a bigger border
 test control, #%00000100 wz
if_nz waitvid border, #0
if_nz sub count, #2

 ' Adjust pointer for offscreen scratch area in scanline buffer
 add source, #12

:lores_loop ' Read the next four pixels from the scanline buffer
 rdlong colors, source

 ' If the display is enabled, draw the pixels from the buffer
 ' If the display is shut off, draw the border color instead
 test control, #%00000001 wz
if_z waitvid colors, lores_pixels
if_nz waitvid border, #0

 ' Go on to the next four pixels
 add source, #4
 djnz count, #:lores_loop

 ' If horizontal scrolling, draw a bigger border
 test control, #%00000100 wz
if_nz waitvid border, #0

 ' Done generating NTSC video for the multicolor mode
 jmp #:done

:hires ' We always have 40 waitvids (320 pixels / 8 pixels per waitvid)
 mov count, #40
 mov VSCL, vsclactvhi

:hires_loop ' Read the next eight pixels from the scanline buffer
 rdword hires_pixels, source
 add source, #2

 ' Read the colors for the 8x8 tile from the scanline buffer
 rdword colors, source
 add source, #2

 ' If the display is enabled, draw the pixels from the buffer
 ' If the display is shut off, draw the border color instead
 test control, #%00000001 wz
if_z waitvid colors, hires_pixels
if_nz waitvid border, #0

 ' Go on to the next eight pixels
 djnz count, #:hires_loop

 ' Generate the NTSC front porch before completing
:done call #front_porch

96

PASM routine for generating a single NTSC scanline.

CODY_LINE.SPIN

The last component of the Cody Computer's video
firmware are the scanline renderers. Rendering the
contents of a single 160 pixel line, both background
tiles and sprites, takes quite a bit of time (from the
standpoint of a video signal). In fact, it takes longer
than a single scanline just to generate its contents. The
320 pixel lines in the high-resolution mode don't have
the overhead of rendering sprites, but they do have
more pixels they have to generate because of the
higher resolution.

To work around this problem we set up other cogs as
renderers that store pixels to a buffer in memory.
When it's time to generate the signal containing the
line, the video cog reads the pre-rendered pixels and
generates the corresponding signal.

The video generator cog launches a total of four
scanline renderer cogs, each running the code from
cody_line.spin. The video generator calls a short SPIN
method, start, passing the pointer to the start of the
mailbox used to communicate with the renderer. The
renderer, in turn, starts running PASM code starting at
cogmain. Some initial setup code runs to get data from
the mailbox and calculate some pointer addresses.

scanline_ret ret

cogmain
 ' Load parameters and calculate pointers from the scanline structure
 ' using the calculated offsets within the mailbox memory area
 add renderer_index, PAR
 add memory_ptr, PAR
 add lookup_ptr, PAR
 add toggle_ptr, PAR
 add buffer1_ptr, PAR

97

The cogmain PASM code called when starting a
scanline renderer.

From there the scanline renderer enters the
:frame_loop for the start of a new frame. It waits until
the mailbox shows a new frame has started (because
the video cog has toggled it), then does some initial
setup for the new frame. The video registers are read
from shared memory.

The code then waits for another toggle to render a
line, running the :line_loop for a total of 50 times.
Because the drawable screen has 200 lines and there
are four cogs rendering the screen contents, each cog
is responsible for 50 lines.

For each line, any row effects are applied first via
apply_row_effects, followed by decoding the video
register values in decode_registers. Finally the
scanline's contents are rendered by calling other
routines. In the low-resolution multicolor mode the
render_chars_lo and render_sprites routines are
responsible for rendering the scanline. In the high-
resolution mode the render_chars_hi mode is called
instead. The :line_loop repeats until no more lines
remain on the current frame, each time waiting for a
toggle from the main video cog.

 add buffer2_ptr, PAR

 rdlong renderer_index, renderer_index
 rdlong memory_ptr, memory_ptr
 rdlong lookup_ptr, lookup_ptr

 ' Adjust our offsets into shared memory now that we know where it is
 add VIDCTL_REGS_OFFSET, memory_ptr
 add SPRITE_REGS_OFFSET, memory_ptr

 add ROWEFF_CNTL_OFFSET, memory_ptr
 add ROWEFF_DATA_OFFSET, memory_ptr

:frame_loop
 ' Wait for the TOGGLE_FRAME value to begin the next frame
 rdlong toggle, toggle_ptr
 cmp toggle, TOGGLE_FRAME wz

98

if_nz jmp #:frame_loop
 wrlong TOGGLE_EMPTY, toggle_ptr

 ' Read in the video registers at the start of a new frame
 mov video_register_ptr, VIDCTL_REGS_OFFSET

 rdbyte blankreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte controlreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte colorreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte basereg, video_register_ptr
 add video_register_ptr, #1

 rdbyte scrollreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte screenreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte spritereg, video_register_ptr
 add video_register_ptr, #1

 ' Reset row effects at the beginning of each frame
 mov roweff_remaining, #32
 mov roweff_cntl_ptr, ROWEFF_CNTL_OFFSET
 mov roweff_data_ptr, ROWEFF_DATA_OFFSET

 ' Render each line
 mov lines_remaining, #50
 mov curr_scanline, renderer_index

:line_loop
 ' Wait for a TOGGLE_LINE1 or TOGGLE_LINE2 value to begin the next line
 rdlong toggle, toggle_ptr

 cmp toggle, TOGGLE_EMPTY wz
if_z jmp #:line_loop

 cmp toggle, TOGGLE_FRAME wz
if_z jmp #:frame_loop

 ' Clear toggle value once we begin a new line
 wrlong TOGGLE_EMPTY, toggle_ptr

 ' Select the destination buffer for this scanline
 cmp toggle, TOGGLE_LINE1 wz
if_z mov buffer_ptr, buffer1_ptr

 cmp toggle, TOGGLE_LINE2 wz
if_z mov buffer_ptr, buffer2_ptr

 ' Read any row effects that may be pending for this scanline
 call #apply_row_effects

 ' Decode the video registers (including any raster changes)
 call #decode_registers

 ' Render the scanline to the buffer
 test controlreg, #%00100000 wz
if_z call #render_chars_lo

 test controlreg, #%00100000 wz
if_nz call #render_chars_hi

 test controlreg, #%00100000 wz
if_z call #render_sprites

 ' Go to the next line
 add curr_scanline, #4
 djnz lines_remaining, #:line_loop

 ' Begin a new frame

99

Code executed in the frame and line loops.

The render_chars_lo and render_chars_hi routines
are responsible for rendering the characters on the
screen. These two routines have some similarities but
also have differences resulting from the different
behavior in the multicolor and high-resolution
graphics modes. The multicolor mode is intended for
general purpose programming including games, so
additional features like scrolling are supported. The
high-resolution mode is intended for more serious
uses and focuses on rendering a larger number of
pixels without other complications.

First let's discuss the more common (and default)
low-resolution multicolor mode that begins with the
render_chars_lo routine. It makes some adjustments
for vertical and horizontal scrolling, if enabled, and
then proceeds to render the current scanline.
Calculations use the SCREEN_OFFSET_TABLE to
determine the screen and color memory locations
corresponding to the current scanline.

Looping over each of the 40 columns in the scanline
in the :char_loop, the screen and color information are
read from shared memory. The colors for that screen
location are converted from Cody Computer color
codes to Propeller NTSC color codes using the
previously-mentioned COLOR_TABLE and merged
with the current global colors for the screen. If in
character graphics mode, the matching character line
for the character in screen memory is also read and
the byte pattern returned. In bitmap graphics mode,
the corresponding four-pixel byte within screen

 jmp #:frame_loop

100

memory is returned instead, but the operation is very
similar otherwise. From there the :pixel_loop renders
the actual pixels into the scanline buffer before
continuing on to the next character.

render_chars_lo
 ' Set up the output pointer taking into account the left "margin" for sprites
 mov dest_ptr, buffer_ptr
 add dest_ptr, #12

 ' Update the output start position to account for horizontal scrolling
 test controlreg, #%00000100 wz
if_nz sub dest_ptr, scrollh

 ' Update the source line position to account for vertical scrolling
 mov adjustv, #0
 test controlreg, #%00000010 wz
if_nz mov adjustv, scrollv

 ' Precalculate the current offset for each character based on the scanline
 mov char_offset_y, curr_scanline
 add char_offset_y, adjustv
 and char_offset_y, #%0111

 ' Determine offset in the screen and color memory based on the current row
 mov screen_memory_offset, curr_scanline
 add screen_memory_offset, adjustv
 shr screen_memory_offset, #3
 add screen_memory_offset, #SCREEN_OFFSET_TABLE
 movs :load_offset, screen_memory_offset
 nop

:load_offset mov screen_memory_offset, 0_0

 ' Calculate the locations in color and screen memory using the offset above
 mov curr_colors_ptr, colmem_ptr
 add curr_colors_ptr, screen_memory_offset

 test controlreg, #%00010000 wz
if_z mov curr_screen_adv, #1
if_nz mov curr_screen_adv, #8
if_nz shl screen_memory_offset, #3

 mov curr_screen_ptr, scrmem_ptr
 add curr_screen_ptr, screen_memory_offset

 mov chars_remaining, #40

:char_loop rdbyte color_data, curr_colors_ptr

 shl color_data, #1
 add color_data, lookup_ptr

 rdword color_data, color_data
 or color_data, common_screen_colors

 add curr_colors_ptr, #1

 test controlreg, #%00010000 wz
if_nz mov source_ptr, curr_screen_ptr
if_z rdbyte source_ptr, curr_screen_ptr
if_z shl source_ptr, #3
if_z add source_ptr, chrset_ptr
 add source_ptr, char_offset_y
 add dest_ptr, #3
 rdbyte pixel_data, source_ptr

 mov pixels_remaining, #4

:pixel_loop mov temp, pixel_data

101

The render_chars_lo routine renders a line's
background characters in the low-resolution
multicolor mode.

The render_sprites routine is largely the same,
except that it renders the sprites over the now-drawn
background characters. It begins by determining the
sprite register bank to read from based on the current
value in a shared memory register, positioning a
pointer at the start of the appropriate bank. The sprite
bank registers have the needed coordinates, color, and
sprite pointer information, so it's important to start in
the right place.

Once prepared, it loops over each of the eight
possible sprites in the :sprite_loop, verifying that
they're actually on screen and adjusting for scrolling if
necessary. It also looks up the sprite's unique colors
and finds their Propeller equivalents in the same way
used for the character colors. When it's ready to draw
the sprite, it goes into the :byte_loop to draw each of
the sprite's three data bytes, with the individual pixels
being drawn in the :pixel_loop.

Some key differences exist between these loops and
the corresponding loops for drawing character pixels,

 and temp, #%11

 shl temp, #3
 ror color_data, temp

 wrbyte color_data, dest_ptr

 sub dest_ptr, #1
 rol color_data, temp

 shr pixel_data, #2
 djnz pixels_remaining, #:pixel_loop

 add dest_ptr, #5
 add curr_screen_ptr, curr_screen_adv

 djnz chars_remaining, #:char_loop

render_chars_lo_ret ret

102

with one of the main differences being that sprites can
have transparent pixels.

render_sprites

 ' Start sprite pointer at the beginning of the current bank
 mov curr_sprite_ptr, spritereg
 and curr_sprite_ptr, #$70
 shl curr_sprite_ptr, #1
 add curr_sprite_ptr, SPRITE_REGS_OFFSET

 ' Draw the 8 sprites we have in this bank
 mov sprites_remaining, #8
:sprite_loop
 ' Read in and check the sprite x coordinate is within bounds
 rdbyte sprite_x, curr_sprite_ptr
 add curr_sprite_ptr, #1

 cmp sprite_x, #0 wz
if_z jmp #:next_sprite

 cmp sprite_x, #172 wc
if_nc jmp #:next_sprite

 ' Read in and check the sprite y coordinate is within bounds
 rdbyte sprite_y, curr_sprite_ptr
 add curr_sprite_ptr, #1

 ' Adjust sprite y position by subtracting top margin amount
 sub sprite_y, #21
 sub sprite_y, curr_scanline
 neg sprite_y, sprite_y

 cmp sprite_y, #0 wc
if_c jmp #:next_sprite

 cmp sprite_y, #21 wc
if_nc jmp #:next_sprite

 ' Read in the sprite colors and combine them with the common sprite color
 rdbyte sprite_colors, curr_sprite_ptr
 shl sprite_colors, #1
 add sprite_colors, lookup_ptr
 rdword sprite_colors, sprite_colors
 shl sprite_colors, #8
 or sprite_colors, common_sprite_colors
 add curr_sprite_ptr, #1

 ' Read in the sprite pointer and adjust for the current scanline
 rdbyte sprite_ptr, curr_sprite_ptr
 add sprite_y, #SPRITE_OFFSET_TABLE
 movs :load_offset, sprite_y
 shl sprite_ptr, #6
:load_offset add sprite_ptr, 0_0
 add sprite_ptr, memory_ptr

 ' Set up our destination buffer
 mov dest_ptr, buffer_ptr
 add dest_ptr, sprite_x

 ' Draw each byte remaining in this scanline
 mov chars_remaining, #3
:byte_loop
 ' Read in the sprite data
 rdbyte pixel_data, sprite_ptr
 add sprite_ptr, #1

 ' Draw each pixel in this byte (in reverse order)
 add dest_ptr, #3
 mov pixels_remaining, #4
:pixel_loop
 ' Move the current color into position for drawing
 mov temp, pixel_data

103

The render_sprites routine handles eight sprites per
line.

When the high-resolution mode is enabled, the
render_chars_hi routine is called instead of
render_chars_lo and render_sprites. This routine is
similar but not exactly the same as render_chars_lo.
It calculates certain offsets and locations in memory,
but doesn't support scrolling so those additional
calculations are not performed. Additionally, it also
switches between reading the pixel data from
characters or more sequentally for a bitmap.

However, the actual data rendered into the scanline
buffer is quite different. Instead of rendering four
different Propeller color values, this mode renders
eight pixels and their colors. Because the Propeller will
be running in its four-color output mode, we also
expand the single-bit pixel values into two-bit values
for the Propeller hardware. Because we have eight
pixels and each pixel is expanded to two bits, this
means a total of two bytes is required. This pixel data

 and temp, #%11
 shl temp, #3
 ror sprite_colors, temp

 ' Draw the pixel if non-transparent
 cmp temp, #0 wz
if_nz wrbyte sprite_colors, dest_ptr
 sub dest_ptr, #1

 ' Prepare for the next pixel
 rol sprite_colors, temp
 shr pixel_data, #2

 djnz pixels_remaining, #:pixel_loop

 add dest_ptr, #5
 djnz chars_remaining, #:byte_loop

:next_sprite
 ' Increment the sprite register pointer to the start of the next sprite
 andn curr_sprite_ptr, #3
 add curr_sprite_ptr, #4

 ' Loop if we have more sprites remaining
 djnz sprites_remaining, #:sprite_loop

render_sprites_ret ret

104

is followed by two bytes containing the Propeller
colors for that group of eight pixels.

render_chars_hi
 ' Set up the output pointer
 mov dest_ptr, buffer_ptr

 ' Precalculate the current offset for each character based on the scanline
 mov char_offset_y, curr_scanline
 add char_offset_y, adjustv
 and char_offset_y, #%0111

 ' Determine offset in the screen and color memory based on the current row
 mov screen_memory_offset, curr_scanline
 shr screen_memory_offset, #3
 add screen_memory_offset, #SCREEN_OFFSET_TABLE
 movs :load_offset, screen_memory_offset
 nop

:load_offset mov screen_memory_offset, 0_0

 ' Calculate the locations in color and screen memory using the offset above
 mov curr_colors_ptr, colmem_ptr
 add curr_colors_ptr, screen_memory_offset

 test controlreg, #%00010000 wz
if_z mov curr_screen_adv, #1
if_nz mov curr_screen_adv, #8
if_nz shl screen_memory_offset, #3

 mov curr_screen_ptr, scrmem_ptr
 add curr_screen_ptr, screen_memory_offset

 mov chars_remaining, #40

 ' Read the per-character color information and look up the Propeller colors
:char_loop rdbyte color_data, curr_colors_ptr

 shl color_data, #1
 add color_data, lookup_ptr

 rdword color_data, color_data
 add curr_colors_ptr, #1

 ' Fetch the character bits
 test controlreg, #%00010000 wz
if_nz mov source_ptr, curr_screen_ptr
if_z rdbyte source_ptr, curr_screen_ptr
if_z shl source_ptr, #3
if_z add source_ptr, chrset_ptr
 add source_ptr, char_offset_y
 rdbyte temp, source_ptr

 mov pixel_data, #0
 mov pixels_remaining, #8

:pixel_loop ' Shift out the character data bit at a time
 shr temp, #1 wc
if_c or pixel_data, #%01

 ' Next output bit
 shl pixel_data, #2
 djnz pixels_remaining, #:pixel_loop

 ' Compensate for last shift right inside the loop
 shr pixel_data, #2

 ' Write the pixel and color information to the buffer
 wrword pixel_data, dest_ptr
 add dest_ptr, #2

 wrword color_data, dest_ptr
 add dest_ptr, #2

105

The render_chars_hi routine renders a high-
resolution scanline.

The decode_registers routine is a helper called
during the main loop to decode the video register
values from local variables. These contain some
information, including Cody Computer color codes,
that need translated to their Propeller NTSC
equivalents. Others contain data that's packed into a
single register, such as nibble values that map to
memory locations within the shared memory. This
routine helps with unpacking and keeps the related
logic in one place.

 ' Move to the next character
 add curr_screen_ptr, curr_screen_adv
 djnz chars_remaining, #:char_loop

render_chars_hi_ret ret

decode_registers

 ' Calculate color memory position
 mov colmem_ptr, colorreg
 shr colmem_ptr, #4
 shl colmem_ptr, #10
 add colmem_ptr, memory_ptr

 ' Calculate screen memory position
 mov scrmem_ptr, basereg
 shr scrmem_ptr, #4
 shl scrmem_ptr, #10
 add scrmem_ptr, memory_ptr

 ' Calculate character set position
 mov chrset_ptr, basereg
 and chrset_ptr, #$7
 shl chrset_ptr, #11
 add chrset_ptr, memory_ptr

 ' Calculate scroll values
 mov scrollv, scrollreg
 and scrollv, #%00000111

 mov scrollh, scrollreg
 shr scrollh, #4
 and scrollh, #%00000011

 ' Calculate shared screen colors
 mov common_screen_colors, screenreg
 shl common_screen_colors, #1
 add common_screen_colors, lookup_ptr
 rdword common_screen_colors, common_screen_colors
 shl common_screen_colors, #16

 ' Calculate shared sprite colors
 mov common_sprite_colors, spritereg
 shl common_sprite_colors, #1

106

The decode_registers routine that unpacks register
values.

The apply_row_effects routine is related. On old
computers, it was common to use special tricks, such as
switching out video data, on certain lines to extend the
hardware's graphics abilities. The Cody Computer has
a similar feature where data can be overridden on each
of the 25 rows on the screen. Rather than setting
interrupts and changing register data, additional
registers let you specify override values and where to
apply them.

This routine handles those situations by checking to
see if the row effects are enabled, and if so, whether
they need to be applied based on the current scanline.
The scanline is divided by 8 to determine what row on
the screen is being drawn, and then any of the video
data that has been overridden is updated in the local
variables. By doing this in the main loop prior to
decoding the registers, any overridden values are
automatically used when rendering the scanline. The
code also remembers the last row effect processed and
begins from there on the next scanline. This
optimization exists to reserve more cycles for actually
rendering the scanline's contents.

 add common_sprite_colors, lookup_ptr
 rdword common_sprite_colors, common_sprite_colors
 shl common_sprite_colors, #24

decode_registers_ret ret

apply_row_effects

 ' Quick check to ensure that row effects are enabled
 test controlreg, #%00001000 wz
if_z jmp #apply_row_effects_ret

 ' Calculate what row we're currently on for row effects
 mov roweff_row, curr_scanline
 shr roweff_row, #3

 ' Check if we have more row effects to look at

107

The apply_row_effects routine replaces old-school
raster interrupts.

:loop cmp roweff_remaining, #0 wz
if_z jmp #apply_row_effects_ret

 ' Read the control/data bytes and extract the row number
:cont rdbyte roweff_cntl_byte, roweff_cntl_ptr

 mov temp, roweff_cntl_byte
 and temp, #%00011111

 rdbyte roweff_data_byte, roweff_data_ptr

 ' Test that this line is applicable for this row
 cmp temp, roweff_row wz, wc
if_nz_and_nc jmp #apply_row_effects_ret

 ' Apply the replacement for the selected register
 mov temp, roweff_cntl_byte
 and temp, #%11100000

 cmp temp, #%10000000 wz
if_z mov basereg, roweff_data_byte

 cmp temp, #%10100000 wz
if_z mov scrollreg, roweff_data_byte

 cmp temp, #%11000000 wz
if_z mov screenreg, roweff_data_byte

 cmp temp, #%11100000 wz
if_z mov spritereg, roweff_data_byte

 ' Move on to the next entry
 add roweff_cntl_ptr, #1
 add roweff_data_ptr, #1
 sub roweff_remaining, #1

 ' Next row effect
 jmp #:loop

apply_row_effects_ret ret

108

Software Design

3

INTRODUCTION

On startup, the Cody Computer boots into Cody
BASIC, a BASIC interpreter written from scratch just for
the Cody Computer. It allows you to write moderately-
complex programs and perform file operations from
the BASIC prompt. The BASIC dialect is inspired by
Tiny BASIC, a small open-source BASIC dating to the
1970s.

While largely a dialect of Tiny BASIC, Cody BASIC
has some additional features typically not present in
most Tiny BASIC environments. These include
(limited) arrays, strings, and DATA statements. Cody
BASIC also uses messages and commands inspired by
Commodore BASIC instead of the Tiny BASIC
equivalents. Also unlike many Tiny BASIC dialects but
similar to the Commodore, the program is not directly
interpreted. Rather, the BASIC program is tokenized
into small pieces that are executed more quickly at
runtime.

We'll cover how to program in Cody BASIC later in
the book, but here we'll talk a bit about how it's
implemented in 65C02 assembly. The code itself is
open source and heavily commented, so we won't go
over every single line here. We're more focused on a
high-level view of the code, with some detailed
analysis of particular subroutines.

Keep in mind that while the actual source file is
somewhat long, it produces a mere 6 kilobytes of
machine code for the 65C02 (an additional 2 kilobytes
contain the character set). The Cody BASIC ROM itself
is embedded as data within the Propeller program

110

mentioned in the previous section, mapped to the very
top of the 65C02's memory area.

STARTUP AND INITIALIZATION

When the 65C02 starts, it loads a two-byte address
from memory location $FFFC, lowest byte first (this is
always the case for the 65C02, as it's a little-endian
processor). Here we put the address for our MAIN
routine, responsible for the initial startup. It sets the
boundary page of BASIC program memory into
PROGEND so that it can be overridden by any
memory-resident programs later on. After that, it calls
INIT to initialize most of the hardware and software
from the 65C02's side. Finally it performs a check to
see if a cartridge is inserted in the expansion slot. If so,
it boots from the cartridge. If not, it drops through to
the BASIC routine we'll discuss in a moment.

The Cody BASIC interpreter's MAIN routine.

The MAIN routine calls INIT to initialize most of the
hardware and software from the 65C02's side,
including copying the character set into video memory,
setting up video registers, and preparing a timer
interrupt for timekeeping and keyboard scanning. It
also sets up a simple error handling system that
allows BASIC interpreter routines to easily signal an

MAIN LDA #>PROGMAX ; Set the top of program memory to the default page
 STA PROGEND

 JSR INIT ; Run initialization on startup

 JSR CARTCHECK ; Check for cartridge plugged in
 BEQ BASIC

 STZ IOMODE ; Cartridge found, load and run binary instead of BASIC
 STZ IOBAUD
 JMP LOADBIN

111

error. Because INIT is also used to partially reset the
interpreter after running a binary program, some
things aren't reset by this routine. In particular, the
PROGEND zero-page variable is untouched by this
routine so that memory-resident programs can adjust
it.

A small excerpt from the INIT routine.

Different parts of the initialization process run
depending on whether a cartridge is connected to the
computer or not. If a cartridge is present, most of the
initialization process is skipped or not enabled, instead
loading and running a binary program from the
cartridge. In other situations the Cody BASIC
interpreter is launched.

TIMER INTERRUPT

Cody BASIC relies on a timer interrupt to handle
keyboard scanning, simple timekeeping, and other
periodic tasks. This timer interrupt is generated by the
65C22 VIA chip that also handles most of the
computer's I/O operations. The interrupt is configured
to run 60 times per second. Most of the setup occurs in
the MAIN routine, but the interrupt isn't actually
started until the BASIC interpreter itself takes control.

 STZ VID_SCRL ; Clear out scroll registers

 STZ VID_CNTL ; Clear out control register

 LDA #$E7 ; Point the video hardware to default color memory, border color yellow
 STA VID_COLR

 LDA #$95 ; Point the video hardware to the default screen and character set
 STA VID_BPTR

 STZ KEYLAST ; Clear out the major keyboard-related zero page variables
 STZ KEYLOCK
 STZ KEYMODS
 STZ KEYCODE

112

Setting up the timer interrupt in MAIN.

One level of indirection exists for the timer
interrupt's handler. Because the 65C02's interrupt
handler is fixed at address $FFFE in memory, code in
ROM would make it impossible for other programs
(such as those written in assembly language) to
change the interrupt handler to something different.

To avoid that problem, we put a simple stub,
ISRSTUB, at the 65C02's interrupt handler address.
This jumps to a different address, ISRPTR, stored in the
zero page and pointing to the actual location of the
interrupt service routine. If other code wants to change
the interrupt behavior, it needs only change the value
of ISRPTR to point to its own routine.

The ISRSTUB that jumps to the actual interrupt
handler.

Cody BASIC's interrupt handler or service routine,
TIMERISR, is responsible for several important
functions. First it calls KEYSCAN to scan the keyboard
matrix. Next it updates the jiffies count stored in
JIFFIES, a two-byte variable. A jiffy is the time for a

 LDA #<TIMERISR ; Set up ISR routine address
 STA ISRPTR+0
 LDA #>TIMERISR
 STA ISRPTR+1

 LDA #<JIF_T1C ; Set up VIA timer 1 to emit ticks (60 per second)
 STA VIA_T1CL
 LDA #>JIF_T1C
 STA VIA_T1CH

 LDA #$40 ; Set up VIA timer 1 continuous interrupts, no outputs
 STA VIA_ACR

 LDA #$C0 ; Set up VIA timer 1 interrupt
 STA VIA_IER

ISRSTUB JMP (ISRPTR)

113

single timer tick, and we keep a count to provide a
simple mechanism for determining elapsed time
without a full real time clock (this technique was very
common in the 8-bit era).

The interrupt handler also provides an important
safety function for BASIC programs. When a BASIC
program is running, it checks to see if the Cody and
Arrow keys are both held down on the keyboard. If
both are pressed, the keypresses are interpreted as a
break request by the user. Without this functionality, it
would be possible to get into a nonterminating BASIC
program and be unable to exit without turning the
Cody Computer on and off.

The TIMERISR routine runs for each interrupt.

KEYBOARD SCANNING

The Cody Computer has a 30-key keyboard set up
in a matrix of five columns and six rows. In addition,

TIMERISR PHA ; Preserve accumulator

 BIT VIA_T1CL ; Read the 6522 to clear the interrupt

 JSR KEYSCAN ; Scan keyboard

 INC JIFFIES ; Increment jiffy count lower byte (after scanning!)
 BNE _TEST

 INC JIFFIES+1 ; Increment jiffy count upper byte on overflow

_TEST LDA RUNMODE ; Only allow breaks if we're running a program
 BEQ _DONE

 LDA KEYROW2 ; Check for Cody key on row 2 (and ONLY the Cody key)
 CMP #$1E
 BNE _DONE

 LDA KEYROW3 ; Check for arrow key on row 3 (and ONLY the arrow key)
 CMP #$0F
 BNE _DONE

 JMP RAISE_BRK ; Break

_DONE PLA ; Restore accumulator

 RTI ; Return from interrupt routine

114

two Atari-style joystick ports with five buttons each
are mapped as keyboard rows. Cody BASIC scans the
keyboard as part of the timer interrupt routine,
updating eight bytes in zero page memory
(KEYROW0 through KEYROW7) with the current
values of the keyboard rows. These values are
subsequently used by other routines to handle
keyboard or joystick input.

Scanning is handled by the KEYSCAN routine. It
uses port A on the 65C22 VIA to iterate over the
keyboard matrix, with a one-of-eight analog switch
used to convert a three-bit number into the current
keyboard row to scan. Once a row is selected, the
remainder of port A is read, containing the five bits for
the columns, and stored in the appropriate KEYROW
variable. The timer interrupt calls this routine on a
regular basis to update the data.

The KEYSCAN routine that scans the keyboard matrix.

Converting the raw bits from the matrix into a
keyboard code is the responsibility of the KEYDECODE
routine. There the KEYROW values are examined and

KEYSCAN PHA ; Preserve registers
 PHX

 STZ VIA_IORA ; Start at the first row and first key of the keyboard
 LDX #0

_LOOP LDA VIA_IORA ; Get the keys for the current row from the VIA port
 LSR A
 LSR A
 LSR A
 STA KEYROW0,X

 INC VIA_IORA ; Move on to the next keyboard row
 INX

 CPX #8 ; Do we have any rows remaining to scan?
 BNE _LOOP

 PLX ; Restore registers
 PLA

 RTS

115

converted to a scan code and stored in KEYCODE. It
also performs a special check to see if the Cody key is
pressed, and if so, updates the state of the keyboard
modifiers in KEYMODS.

KEYDECODE PHX ; Preserve registers
 PHY

 STZ KEYMODS ; Reset scan codes and modifiers at start of new scan
 STZ KEYCODE

 LDX #0 ; Start at the first row and first key scan code
 LDY #0

_ROW LDA KEYROW0,X ; Load the current row's column bits from zero page
 INX

 PHX ; Preserve row index

 LDX #5 ; Loop over current row's columns

_COL INY ; Increment the current key number at the start of each new key

 LSR A ; Shift to get the next column bit

 BCS _NEXT ; If the current column wasn't pressed, just skip to the next column

 CPY #KEY_META ; Is this the META special key?
 BNE _CODY

 PHA ; META key is pressed, update current key modifiers
 LDA KEYMODS
 ORA #$20
 STA KEYMODS
 PLA

 BRA _NEXT ; Continue on to the next column

_CODY CPY #KEY_CODY ; Is this the CODY special key?
 BNE _NORM

 PHA ; CODY key is pressed, update current key modifiers
 LDA KEYMODS
 ORA #$40
 STA KEYMODS
 PLA

 BRA _NEXT ; Continue on to the next column

_NORM PHA ; Not a special key so just store it as the current scan code
 TYA
 STA KEYCODE
 PLA

_NEXT DEX ; Move on to the next keyboard column
 BNE _COL

 PLX ; Restore current row index

 CPX #6 ; Continue while we have more rows to process
 BNE _ROW

 LDA KEYCODE ; Update the current key scan code with the modifiers
 ORA KEYMODS
 STA KEYCODE

 PLY ; Restore registers
 PLX

116

The KEYDECODE routine produces a key code from the
matrix.

Key scan codes represent an actual button on the
keyboard, not a character. The Cody Computer uses
CODSCII, a special character set that's just traditional
ASCII with the PETSCII graphics symbols appended to
it. As a result, character handling is greatly simplified
compared to the actual Commodore computers.
Unfortunately, we still have to convert scan codes to
their ASCII (or more accurately CODSCII) values.

This is handled by the KEYTOCHR routine, which
accepts a scan code for the keyboard and converts it to
an ASCII code. The routine's implementation relies on
a lookup table containing the ASCII codes for each
scan code. The ASCII codes correspond to the
arrangement of keys in the keyboard matrix so that
once we have a scan code we can look up the
appropriate value. The lookup table also takes into
account whether the Cody or Meta keys have been
pressed on the keyboard. (Shift status and conversion
to lowercase, however, happens elsewhere.)

 RTS

KEYTOCHR PHX
 DEC A
 TAX
 LDA _LOOKUP,X
 PLX
 RTS

_LOOKUP

.BYTE 'Q', 'E', 'T', 'U', 'O' ; Key scan code mappings without any modifiers

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $00

.BYTE 'Z', 'C', 'B', 'M', $0A

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE 'W', 'R', 'Y', 'I', 'P'

.BYTE $00, $00

.BYTE '!', '#', '%', '&', '(' ; Key scan code mappings with META modifier

.BYTE '@', '-', ':', $27, ']'

.BYTE $00, '<', ',', '?', $00

.BYTE '\', '>', '.', '/', $08

.BYTE '=', '+', ';', '[', ' '

117

The KEYTOCHR routine and its lookup table.

The KEYDECODE and KEYTOCHR routines are never
called as part of the keyboard scanning done in the
timer interrupt. Instead, they're called from the
READKBD routine, which is completely separate. This
routine is called when the Cody BASIC interpreter
expects line-based input, such as during the REPL loop
or in an INPUT statement. Each character entered is
also echoed to the screen. We'll discuss those routines
in detail when we talk about input and output
handling.

ERROR HANDLING

As part of the initialization process a simple form of
error handling is set up for the BASIC interpreter and
its related code. Error handling in Cody BASIC works
like a very simple exception handler. On startup the
current location in the 65C02's own stack is stored in
the STACKREG variable for later use.

At runtime, whenever the interpreter encounters an
error, one of several error routines are called. The
error routine then calls ERROR to handle the error,
print an error message, and unwind the 65C02 stack.
After unrolling the error, it jumps back into the BASIC
interpreter's REPL loop.

.BYTE '"', '$', '^', '*', ')'

.BYTE $00, $00

.BYTE '1', '3', '5', '7', '9' ; Key scan code mappings with CODY modifier

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $1B

.BYTE 'Z', 'C', 'B', 'M', $18

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE '2', '4', '6', '8', '0'

.BYTE $00, $00

118

Preserving the stack position to unwind in the event of
an error.

Four helper routines exist to save code and provide
a consistent interface to raise an error condition. The
RAISE_BRK routine corresponds to the ERR_BREAK
error code, RAISE_SYN to ERR_SYNTAX, RAISE_LOG
to ERR_LOGIC, and RAISE_SYS to ERR_SYSTEM.

Entry points to the error-handling system in Cody
BASIC.

The first error type, ERR_BREAK isn't an error in the
strictest sense. An error of this type only indicates that
the user is attempting to break from the current
program by pressing the Cody and Arrow keys
simultaneously. In this situation, the error handling
process is somewhat abbreviated instead of displaying
a full error message.

The other error types largely match the error
conditions from the original Tiny BASIC in the 1970s.
ERR_SYNTAX indicates that a syntax error was
encountered in the current program, similar to Tiny
BASIC's WHAT?. ERR_LOGIC indicates that the
program was running but didn't make logical sense,
similar to Tiny Basic's HOW?. The last error,

BASIC TSX ; Preserve the stack register for unwinding on error conditions
 STX STACKREG

RAISE_BRK LDA #ERR_BREAK
 BRA ERROR

RAISE_SYN LDA #ERR_SYNTAX
 BRA ERROR

RAISE_LOG LDA #ERR_LOGIC
 BRA ERROR

RAISE_SYS LDA #ERR_SYSTEM
 BRA ERROR

119

ERR_SYSTEM, indicates a system problem such as
running out of memory caused an error, similar to Tiny
BASIC's SORRY.

Using the error routines is straightforward. When
code determines that an error exists in the program, it
performs an unconditional jump to the corresponding
routine to raise that particular error. Detecting the
error itself (for example, a missing keyword in a
statement) is the responsibility of the calling routine.
However, once an error routine is called, further error
handling will be taken care of automatically.

Example from MOD16 of raising an error on division
by zero.

Once another part of the program has called into
the error handlers, control eventually passes to the
ERROR routine. It unwinds the stack, restores any I/O
settings to their screen and keyboard defaults, and
finally prints an error message indicating the type of
error that occurred. If the error occurred while the
program was running, the current line number is
appended as in Commodore BASIC. Once completed,
the routine jumps to the REPL loop, allowing the user
to continue to work with the computer.

MOD16 LDA NUMTWO ; See if the low byte of the second argument is nonzero
 BNE _OK

 LDA NUMTWO+1 ; See if the high byte of the second argument is nonzero
 BNE _OK

 JMP RAISE_LOG ; Raise a logic error for divide by zero

ERROR LDX STACKREG ; Unwind the stack
 TXS

 JSR SERIALOFF ; Turn off serial mode (just in case it was on)

 STZ IOMODE ; Reset IO mode for all future output
 STZ IOBAUD

120

The ERROR routine recovers from errors and prints
messages.

STARTING BASIC

Once the required setup is out of the way, it's time
to start up BASIC itself. If no cartridge is connected to
the computer, the program continues on to boot up
BASIC. While the BASIC interpreter is somewhat

 STZ OBUFLEN ; Reset output buffer position

 PHA ; Preserve the provided error code in the accumulator

 LDA #CHR_NL ; Ensure error messages begin on a new line
 JSR PUTOUT

 PLA ; Restore the error code into the accumulator

 CLC ; Calculate the message table index for the provided error
 ADC #MSG_ERRORS

 JSR PUTMSG ; Print the error

 CMP #MSG_ERRORS ; "Break" errors don't have the word "error" (just BREAK IN ...)
 BEQ _BREAK

 LDA #MSG_ERROR ; Print the word "ERROR" for all other errors
 JSR PUTMSG

_BREAK LDA RUNMODE ; Are we running a program right now? (otherwise hide line numbers)
 CMP #RM_PROGRAM
 BNE _NOLINE

 LDA #MSG_IN ; Append "IN" to our error message
 JSR PUTMSG

 LDY #1 ; Start at line number position in current line

 LDA (PROGPTR),Y ; Copy line number low byte
 STA NUMONE

 INY ; Next byte

 LDA (PROGPTR),Y ; Copy line number high byte
 STA NUMONE+1

 JSR TOSTRING ; Write the line number into the buffer

_NOLINE LDA #CHR_NL ; New line after the error message
 JSR PUTOUT

 LDA #CHR_NL ; Blank line
 JSR PUTOUT

 LDA #MSG_READY ; Ready message
 JSR PUTMSG

 JSR FLUSH ; Print the error message

 STZ RUNMODE ; Reset run mode (REPL mode after errors or breaks)

 CLI ; Enable interrupts (in case we came from the interrupt routine)

 JMP REPL ; Return to the REPL loop

121

complex, the main loop for it isn't that difficult to
follow. As mentioned in our discussion of error
handling, we keep a copy of the current 65C02 stack
position for our error handler when we enter BASIC.
Then a short startup message is printed. Finally,
interrupts are enabled so that the timer interrupt and
keyboard scanning routine will run.

Final steps before entering BASIC.

We then enter a read-eval-print loop (REPL) that
lets the user enter text into Cody BASIC. All input is
tokenized by the TOKENIZE routine and then
examined. If a line begins with a number, we insert or
delete the line from the program with a call to
ENTERLINE. If it doesn't begin with a number, we call
EXSTMT to execute the line as a BASIC statement.

BASIC JSR INIT ; Re-run BASIC initialization just to be safe

 TSX ; Preserve the stack register for unwinding on error conditions
 STX STACKREG

 STZ OBUFLEN ; Move to beginning of the output buffer

 LDA #MSG_GREET ; Print the welcome message
 JSR PUTMSG
 JSR FLUSH

 LDA #MSG_READY ; Print the ready message
 JSR PUTMSG
 JSR FLUSH

 CLI ; Enable interrupts and drop through to the REPL loop

122

The implementation of Cody BASIC's read-eval-print
loop.

STARTING A CARTRIDGE PROGRAM

The only exception to the above sequence occurs
when a cartridge is plugged into the computer. In the
event a cartridge is plugged in, we skip starting up
BASIC and instead read in a binary program from the
cartridge. During startup we rely on the CARTCHECK
routine to see if a cartridge is plugged in the
expansion port.

REPL STZ RUNMODE ; Clear out RUNMODE

 STZ IOMODE ; Direct all IO to screen and keyboard

 JSR READKBD ; Read a line of input and advance the screen
 JSR SCREENADV

 JSR TOKENIZE ; Tokenize the input

 LDA TBUF ; Line number to add or execute the line immediately?
 CMP #$FF
 BNE _EXEC

 JSR ENTERLINE ; Enter the line into the program

 BRA REPL ; Next read-eval-print loop

_EXEC STZ PROGOFF ; Start at the beginning of the line

 LDA #>TBUF ; Use the token buffer as the line we're going to run
 STA PROGPTR
 LDA #>TBUF
 STA PROGPTR+1

 JSR EXSTMT ; Execute the statement in the token buffer

 STZ OBUFLEN ; Move to beginning of output buffer

 LDA #MSG_READY ; Print the ready message after each REPL operation
 JSR PUTMSG
 JSR FLUSH

 BRA REPL ; Next read-eval-print loop

123

The section in MAIN that checks for a cartridge.

CARTCHECK toggles some lines on the expansion
port to determine if a cartridge is plugged in. If a
cartridge is present, the CA1 and CA2 lines on the
65C22 VIA will be connected by a trace on the
cartridge's printed circuit board. If not, the CA1 line will
be pulled low by a pulldown resistor built into the
Cody Computer itself. We set up the 65C22 so that the
CA1 line is positive-edge triggered, then bring CA2
high. If CA1 detected a positive edge, we know a
cartridge is connected. If not, then no cartridge is
present.

The CARTCHECK routine for cartridge detection.

If a cartridge is detected, the LOADBIN routine is
called to load binary code from the cartridge's SPI
EEPROM. This routine actually handles loading of
binary code from both serial and SPI sources to save

 JSR CARTCHECK ; Check for cartridge plugged in
 BEQ BASIC

 STZ IOMODE ; Cartridge found, load and run binary instead of BASIC
 STZ IOBAUD
 JMP LOADBIN

CARTCHECK LDA #$0D ; Set CA2 to LOW output, CA1 to positive edge trigger
 STA VIA_PCR

 LDA VIA_IORA ; Clear the existing CA1 flag value in the VIA_IFR register

 LDA #$0F ; Toggle CA2 HIGH
 STA VIA_PCR

 LDA VIA_IFR ; Push the CA1 flag value in the VIA_IFR register for later
 PHA

 LDA #$0D ; Set CA2 to LOW output, CA1 to positive edge trigger
 STA VIA_PCR

 LDA VIA_IORA ; Clear the existing CA1 flag value in the VIA_IFR register

 PLA ; Pop the stored CA1 flag value and test if bit was set
 AND #$02

 RTS

124

space, but different underlying routines are called
depending on the use case. For loading from SPI, three
helper routines exist to handle SPI communications.
The CARTON routine starts an SPI transaction, the
CARTOFF routine ends an SPI transaction, and the
CARTXFER routine simultaneously sends and receives
a byte over SPI.

The CARTXFER routine transfers a single byte over SPI.

An additional complication exists for cartridges as
they have two possible address sizes: 16 bits (for
cartridges up to 64 kilobytes) and 24 bits (for larger
SPI memories). The LOADBIN routine takes this into

CARTXFER PHX

 STA SPIOUT

 STZ SPIINP

 LDX #8 ; 8 bits to read

_LOOP STZ VIA_IORB ; Bring the clock low

 LDA #0 ; Start with no data

 ROL SPIOUT ; Get output bit

 BCC _SEND

 ORA #CART_MOSI ; Output bit was a 1

_SEND STA VIA_IORB ; Put the bit on MOSI

 ORA #CART_CLK ; Bring the SPI clock high
 STA VIA_IORB

 ROL SPIINP ; Rotate SPI input for next bit

 LDA VIA_IORB ; Read the incoming MISO
 AND #CART_MISO

 BEQ _NEXT

 LDA SPIINP
 ORA #1
 STA SPIINP

_NEXT DEX ; Next loop (if any remain)
 BNE _LOOP

 PLX

 LDA SPIINP

 RTS

125

account, something we'll talk about when we discuss
loading and saving of programs later on.

Portion of LOADBIN that checks for the cartridge's size.

TOKENIZATION AND
INTERPRETATION

Running programs in Cody BASIC is a two-step
process. The first step is tokenization, where a
program's contents are translated to a special internal
representation of the program. The second step is
interpretation, where the tokenized program is
executed line by line and its statements processed.
Both steps occur regardless of the nature of the
program, whether it's a single line entered in REPL
mode, an entire program that's been typed in by the
user, or a program loaded in over a serial port.

TOKENIZATION

Certain keywords or symbols in Cody BASIC are
converted into tokens. This approach, common to many
1980s BASIC implementations, serves two purposes.
The first is that by reducing an entire word, such as
RETURN, to a one-byte token like $8A, we save
considerable space in BASIC program memory. The
second is that the program can be interpreted far more
quickly.

 LDX #2 ; Assume a cartridge with a two-byte address

 LDA VIA_IORB ; If cart size bit is high, we have a three-byte address
 BIT #CART_SIZE
 BEQ _ADDR
 INX

126

Instead of having to process each letter and
determine what to do at the end of the keyword, we
can just test if a byte falls within a certain range
reserved for tokens. If so, we know we have a keyword
or other special value. In some cases, the tokens can be
used as indexes into a jump table, making our
interpreter code even faster.

The tokenization occurs in the TOKENIZE routine. It
takes the contents of a line in the input buffer IBUF
and converts it to a tokenized line in the token buffer
TBUF. A tokenized line at this point consists of the
same text contents as its original, except that certain
keywords, symbols, and literals are replaced by their
token equivalents. Constants beginning with the TOK_
prefix define the numeric values of the tokens.

Main loop of the TOKENIZE routine.

Tokens always begin with a single byte that has its
highest bit set to 1. As a practical matter, this means
that BASIC tokens begin at $80 in hex or 128 in
decimal. Tokens for keywords are only a single byte in
size. Numbers are the only exception and begin with a

_LOOP LDA IBUF,X ; Load the next character

 CMP #CHR_NL ; End of line?
 BEQ _END

 CMP #CHR_QUOTE ; String?
 BEQ _STR

 JSR ISALPHA ; Letter?
 BCS _LET

 JSR ISDIGIT ; Digit?
 BCS _NUM

 CMP #CHR_LESS ; Rule out relational operator ranges
 BCC _CHR

 CMP #CHR_QUEST
 BCS _CHR

 JMP _OPR ; Relational operators handled as special case

127

sentinel value of $FF followed by a 16-bit unsigned
number in little-endian format (lowest byte stored
first). Strings are not tokenized and are delimited by
ASCII double-quote characters. Contents within the
strings are not tokenized.

Part of the TOKENIZE routine that handles numbers.

The actual text of the tokens is kept in a page-
aligned table of string literals. To save space, instead
of terminating each literal in the table with a null
character, the high bit on the final character is set. This
saves many bytes of space but makes reading from
the table more complicated. Tokens are mapped to
message constants starting at MSG_TOKENS from the
start of the message number table. Because both the
token string and message string tables are page-
aligned only the low byte of the address is kept in
some of the message lookup tables.

_NUM LDA #<IBUF ; Input buffer lower byte
 STA MEMSPTR

 LDA #>BUF ; Input buffer high byte
 STA MEMSPTR+1

 PHY ; Preserve current token buffer position

 TXA ; Move the current input buffer position into the y-register
 TAY

 JSR TONUMBER ; Parse the number

 TYA ; Move the updated input buffer position back into the x-register
 TAX

 PLY ; Restore the token buffer position off the stack

 LDA #$FF ; Write the sentinel value for a number token
 JSR _PUT

 LDA NUMANS ; Store number low byte
 JSR _PUT

 LDA NUMANS+1 ; Store number high byte
 JSR _PUT

 JMP _LOOP

128

To match a substring to its token value we use a
binary search algorithm. The _TOKTABLE in the
TOKENIZE routine stores token values in their
alphabetical order to assist with the binary search
process. This table is used by the routine to more
quickly match incoming text to tokens.

 STZ TOKENIZEL ; Prepare for binary search
 LDA #(_TOKTABLEEND - _TOKTABLE)
 STA TOKENIZER

_TOKNEXT LDA TOKENIZEL ; Are we done yet? (L <= R)
 CMP TOKENIZER

 BCC _TOKCOMP
 BEQ _TOKCOMP

 PLY ; Restore token buffer (Y) and input buffer (X) positions
 PLX

 JMP _CHR ; Process as normal character

_TOKCOMP CLC ; Calculate our position in the token lookup table
 LDA TOKENIZEL
 ADC TOKENIZER
 LSR A
 TAX

 PHX

 LDA _TOKTABLE,X ; Get the token's matching index in the string table
 TAX

 LDA TOKTABLE_L,X ; Put the token's address in the memory destination pointer
 STA MEMDPTR
 LDA #TOKTABLE_H
 STA MEMDPTR+1

 PLX

 LDY #$00 ; Use the y register for our position in the strings

_TOKCHAR LDA (MEMDPTR),Y ; Get the destination char and test the high bit for the end of string
 BIT #$80
 PHP

 AND #$7F ; Mask out the valid portion of the char for later comparision
 STA SYS_A

 LDA (MEMSPTR),Y ; Get the next character from the input string and UPPERCASE it
 JSR TOUPPER

 CMP SYS_A ; Compare it to the token string and see if we still match
 BEQ _TOKOK
 BCC _TOKLO
 BCS _TOKHI

_TOKOK INY ; Move to next char

 PLP ; If we've reached the end of the token we're testing against, we have a match
 BNE _TOKYES
 BRA _TOKCHAR

_TOKHI PLP
 TXA ; Input token was greater, move to top partition
 INC A
 STA TOKENIZEL

129

Binary search as implemented in the TOKENIZE
routine.

The performance of the tokenization process is very
important to the overall usability of the Cody
Computer. Unlike most tokenized BASICs, Cody BASIC
does not use its tokenized form when a copy is saved
via SAVE or loaded via LOAD. Instead, all tokens are
converted back to their plain text to make the content
readable in just about any text editor. This means that
when a program is loaded over a serial connection, it
must also be tokenized. This also means that the
loading speed of a BASIC program is largely limited
by how fast the incoming text can be tokenized.

A TOKENIZE optimization that skips over REM
comments.

LINE INSERTION AND DELETION

Once a line is tokenized it's either evaluated
immediately or added to the program. The REPL loop
examines the contents of the token buffer TBUF and
checks if the line begins with a number. If it does, it

 BRA _TOKNEXT

_TOKLO PLP
 TXA ; Input token was less, move to bottom partition
 DEC A
 STA TOKENIZER
 BRA _TOKNEXT

_REM LDA IBUF,X ; Skip tokenizing after a REMARK to save time

 CMP #CHR_NL ; End of line?
 BEQ _REMEND

 JSR _PUT ; Copy the character

 INX ; Next character
 BRA _REM

_REMEND JMP _END

130

means the line is either being added, replaced, or
deleted from the program, which is handled by the
ENTERLINE routine.

It extracts the line number from the token buffer
and calls FINDLINE to determine the line's starting
location within program memory. If the line exists, the
contents of program memory are shifted downward to
delete the existing line. Unless the line is empty
(containing only the line number), program memory is
then shifted upward to make room for the new line.
INSLINE is called to handle the actual insertion.

ENTERLINE PHA ; Preserve registers

 LDA TBUF+1 ; Get the line number we're looking for
 STA LINENUM+0
 LDA TBUF+2
 STA LINENUM+1

 JSR FINDLINE ; See if the line number entered already exists
 BCC _NEW

_DEL LDA LINEPTR+0 ; Use matching line as destination (deleting line by copying over it)
 STA MEMDPTR+0
 LDA LINEPTR+1
 STA MEMDPTR+1

 CLC ; Calculate end of matching line as the source pointer
 LDA MEMDPTR+0
 ADC (LINEPTR)
 STA MEMSPTR+0
 LDA MEMDPTR+1
 ADC #0
 STA MEMSPTR+1

 SEC ; Calculate number of bytes to move down from the top
 LDA PROGTOP+0
 SBC MEMSPTR+0
 STA MEMSIZE+0
 LDA PROGTOP+1
 SBC MEMSPTR+1
 STA MEMSIZE+1

 SEC ; Adjust the top address in program memory because we deleted a line
 LDA PROGTOP+0
 SBC (LINEPTR)
 STA PROGTOP+0
 LDA PROGTOP+1
 SBC #0
 STA PROGTOP+1

 JSR MEMCOPYDN ; Delete the current line by moving memory down

_NEW LDA TBUFLEN ; If nothing on the new line, don't insert anything (just a deletion?)
 CMP #4
 BEQ _END

 LDA LINEPTR+0 ; Is our insertion position the same as the top of program memory?
 CMP PROGTOP+0
 BNE _MOV

131

The ENTERLINE routine handles lines entered into the
REPL.

The FINDLINE routine determines the insert location
for a new line. If a line already exists with the same
number, it will return that location instead. The routine
works by starting at PROGMEM, the base of program
memory, and continuing until either a matching line
number is found (indicating the line is present) or a
line number that is larger is found (indicating the line
does not exist).

To compare line numbers it examines the second
and third bytes in each line, which contain the low and
high bytes of the line number. If it needs to move to
the following line, the first byte of the line, containing
the line length, is added to the current pointer in

 LDA LINEPTR+1
 CMP PROGTOP+1
 BNE _MOV

 BRA _INS ; If so, we can just insert without copying memory to make space

_MOV LDA LINEPTR+1 ; If we're on the last page of program memory just say we're out
 CMP PROGEND
 BEQ _SYS

 LDA LINEPTR+0 ; Use the insertion position as source pointer to move memory
 STA MEMSPTR+0
 LDA LINEPTR+1
 STA MEMSPTR+1

 CLC ; Calculate the destination pointer for copying memory
 LDA MEMSPTR+0
 ADC TBUFLEN
 STA MEMDPTR+0
 LDA MEMSPTR+1
 ADC #0
 STA MEMDPTR+1

 SEC ; Calculate the amount of memory to copy to make room for the new line
 LDA PROGTOP+0
 SBC MEMSPTR+0
 STA MEMSIZE+0
 LDA PROGTOP+1
 SBC MEMSPTR+1
 STA MEMSIZE+1

 JSR MEMCOPYUP ; Copy the memory up to make room for the new line

_INS JSR INSLINE ; Insert the line

_END PLA ; Restore registers

 RTS

_SYS JMP RAISE_SYS ; Indicate we're out of BASIC program memory

132

LINEPTR to move forward. If LINEPTR is ever equal to
PROGTOP, the top of program memory, it means the
line does not exist and should be appended to the end
of the program.

FINDLINE is also used by the BASIC interpreter to
find destination line numbers in GOTO and GOSUB
statements.

Finding a line's insert position is handled by FINDLINE.

FINDLINE PHA ; Preserve registers
 PHY

 LDA #<PROGMEM ; Start at the beginning of program memory
 STA LINEPTR+0
 LDA #>PROGMEM
 STA LINEPTR+1

_LOOP LDA LINEPTR+0 ; Ensure that we're not at the top of program memory already
 CMP PROGTOP+0
 BNE _COMP

 LDA LINEPTR+1
 CMP PROGTOP+1
 BNE _COMP

 BRA _NO

_COMP LDY #2 ; Skip leading line size byte when doing line number comparison

 LDA (LINEPTR),Y ; Compare current and desired line number high bytes
 CMP LINENUM+1
 BNE _TEST

 DEY ; Compare current and desired line number low bytes
 LDA (LINEPTR),Y
 CMP LINENUM

_TEST BEQ _YES ; Found a match

 BCS _NO ; Current line greater than desired line number, doesn't exist

 CLC ; Current line less than desired line number, move to next line

 LDA LINEPTR+0 ; Add current line size to low address byte
 ADC (LINEPTR)
 STA LINEPTR+0

 LDA LINEPTR+1 ; Propagate carry to high address byte
 ADC #0
 STA LINEPTR+1

 BRA _LOOP

_NO CLC ; No match found, clear carry
 BRA _END

_YES SEC ; Match found, set carry

_END PLY ; Restore registers
 PLA

 RTS

133

Insertion of a line is handled by INSLINE. It assumes
that appropriate space has already been allocated for
the new line (by ENTERLINE) and doesn't move any
contents within program memory. Instead, it copies the
contents of the token buffer TBUF into a specified
address in program memory. It also somewhat
modifies the line contents, changing the first byte from
$FF (representing the start of a number token) to the
line's length in bytes. When done, the value of
PROGTOP is incremented by the line's length to
reflect the increased size of the program.

The INSLINE routine is also used by the LOADBAS
routine when a BASIC program is being loaded from
storage over the serial port. In this case lines are being
appended to the top of the program as they come in
and get tokenized. This allows us to skip over some
unrelated code not needed for this special case of line
insertion.

INSLINE LDA LINEPTR+1 ; If we're on the last page of program memory just say we're out
 CMP PROGEND
 BEQ _SYS

 LDA TBUFLEN ; Store token buffer length as first byte in line
 STA TBUF

 STA MEMSIZE+0 ; Set size of memory to copy into program buffer
 STZ MEMSIZE+1

 LDA #<TBUF ; Use token buffer as source pointer
 STA MEMSPTR+0
 LDA #>TBUF
 STA MEMSPTR+1

 LDA LINEPTR+0 ; Use line pointer found for line number as destination pointer
 STA MEMDPTR+0
 LDA LINEPTR+1
 STA MEMDPTR+1

 JSR MEMCOPYDN ; Copy the memory

 CLC ; Update the top of memory to the new location
 LDA PROGTOP+0
 ADC TBUFLEN
 STA PROGTOP+0
 LDA PROGTOP+1
 ADC #0
 STA PROGTOP+1

 RTS

134

INSLINE routine for inserting a line into the program.

INTERPRETATION

Once Cody BASIC code is tokenized, it can be
executed via interpretation. The core of the interpreter
is a recursive-descent parser that goes through each
tokenized line looking for tokens and calling the
appropriate routines to handle them. The PROGPTR
zero-page variable points to the start of the current
line while another zero-page variable, PROGOFF,
stores the current position within the line. For
evaluating mathematical expressions or passing
values between interpreter routines, a dedicated
expression stack exists in zero page (EXPRS_L for low
bytes, EXPRS_H for high bytes).

The starting point for interpretation is the EXSTMT
routine that interprets a single statement. It examines
the first token in the current line, converts it to an
index into a jump table, and jumps to the appropriate
routine to handle the statement type. When the called
routine returns, because we did a jump rather than a
subroutine call, control will return back to the routine
that called EXSTMT. While somewhat hackish, this
works around the 65C02's inability to perform an
indirect subroutine call. (A more generic way around
the same problem is to perform a subroutine call to
the code that does the jump, but for our specific
purpose, what we have works quite well.)

Note that the routines that are part of the recursive-
descent interpreter are usually prefixed with EX to
indicate they're used to execute the program. You can

_SYS JMP RAISE_SYS ; Indicate we're out of BASIC program memory

135

see many of these routines in the jump table included
below.

EXSTMT is the highest-level routine in the interpreter.

The REPL loop relies on EXSTMT to run the lines of
BASIC code the user enters. In this mode, each entered
line that is not an edit is executed immediately. To

EXSTMT STZ EXPRSNUM ; Start at the bottom of the expression stack

 JSR EXSKIP ; Skip any whitespace before we run into a token

 LDY PROGOFF ; Get the current offset in the current line

 LDA (PROGPTR),Y ; Get the current byte

 CMP #CHR_NL ; Was it a newline? If so the entire line was blank
 BEQ _END

 CMP #TOK_SYS+1 ; Check that the byte isn't too big to be a valid token
 BCS _SYN

 SEC ; Subtract from the first statement token to get the index
 SBC #TOK_NEW

 BCC _ASN ; If the result was less than that, assume it was an assignment

 ASL A ; Multiply by two to convert the number into a jump table index
 TAX

 INC PROGOFF ; Increment the current offset since we consumed the token

 JMP (_JMP,X) ; Jump to the code for the statement we have

_END RTS

_ASN JMP EXASSIGN ; Jump to the assignment

_SYN JMP RAISE_SYN ; Raise syntax error

_JMP .WORD EXNEW
 .WORD EXLIST
 .WORD EXLOAD
 .WORD EXSAVE
 .WORD EXRUN
 .WORD EXNOP
 .WORD EXIF
 .WORD _SYN
 .WORD EXGOTO
 .WORD EXGOSUB
 .WORD EXRETURN
 .WORD EXFOR
 .WORD _SYN
 .WORD EXNEXT
 .WORD EXPOKE
 .WORD EXINPUT
 .WORD EXPRINT
 .WORD EXOPEN
 .WORD EXCLOSE
 .WORD EXREAD
 .WORD EXRESTORE
 .WORD EXNOP
 .WORD EXEND
 .WORD EXSYS

136

make this happen, PROGOFF is set to zero, PROGPTR
is pointed to the token buffer, and EXSTMT is called to
execute the line. Once the line has been executed
control returns to the REPL loop for further input.

The _EXEC portion of the REPL code.

Running an entire program using the RUN command
is very similar, except that lines are interpreted in
succession until the program comes to a stop.
Interestingly, it's the responsibility of the interpreter
itself to begin interpreting a full program, as the RUN
statement is actually implemented within the
interpreter itself. When a user enters the RUN
statement in the REPL loop, the interpreter calls the
EXRUN routine to execute it, running the program.

EXRUN starts out by clearing the current interpreter
state back to some sane default values. It also has to
set the RUNMODE so other code, particularly the error
handler, knows that we're running a program. It
positions the PROGPTR to the start of the program,
then begins evaluating each line one at a time by
calling EXSTMT.

As an additional complication, some statements can
change the interpreter's current position in the

_EXEC STZ PROGOFF ; Start at the beginning of the line

 LDA #<TBUF ; Use the token buffer as the line we're going to run
 STA PROGPTR
 LDA #>TBUF
 STA PROGPTR+1

 JSR EXSTMT ; Execute the statement in the token buffer

 STZ OBUFLEN ; Move to beginning of output buffer

 LDA #MSG_READY ; Print the ready message after each REPL operation
 JSR PUTMSG
 JSR FLUSH

 BRA REPL ; Next read-eval-print loop

137

program. For example, a GOTO statement could move
the current position far away from the current line, and
other statements related to control flow have similar
effects.

To handle these situations, EXRUN also calculates a
PROGNXT pointer to the next line to execute before
executing the current line. Once the current line is
executed, it goes to the line pointed to by PROGNXT.
Under normal circumstances this will be the line after
the current one, but for statements that modify the
control flow, the value can be replaced with a different
one when the control statement runs.

EXRUN JSR ONLYREPL ; Only valid in REPL mode

 JSR NEWVARS ; Reset variable memory

 JSR RESTORE ; Reset data buffer for DATA/READ statements

 LDA #RM_PROGRAM ; Set RUNMODE to running
 STA RUNMODE

 STZ GOSUBSNUM ; Start out with empty GOSUB/RETURN and FOR/NEXT stacks
 STZ FORSNUM

 LDA #<PROGMEM ; Use the start of program memory as our starting position
 STA PROGPTR
 LDA #>PROGMEM
 STA PROGPTR+1

_LOOP LDA RUNMODE ; Check that we're still running (e.g. no END statement was executed)
 BEQ _DONE

 JSR ISEND ; Make sure that this line isn't actually the end of the program
 BEQ _DONE

_CONT CLC ; Prepare to calculate the NEXT line we'll be running

 LDA PROGPTR ; Calculate the low byte by adding our pointer to the line's size
 ADC (PROGPTR)
 STA PROGNXT

 LDA PROGPTR+1 ; Propagate the carry
 ADC #0
 STA PROGNXT+1

 LDA #4 ; Start at the first non-line-number position in the current line
 STA PROGOFF

 JSR EXSTMT ; Execute the statement on this line

 LDA PROGNXT ; Copy the NEXT line's pointer over to use as the current line
 STA PROGPTR
 LDA PROGNXT+1
 STA PROGPTR+1

 BRA _LOOP ; Repeat, run the next statement

_DONE STZ RUNMODE ; Clear run mode

138

EXRUN runs an entire program from within the
interpreter.

The interpreter supports 26 numeric arrays, A
through Z, each capable of holding up to 128 numbers.
An additional 26 string variables, A$ through Z$, also
exist with a maximum length of 255 characters plus a
terminating NUL char. These reside in the DATAMEM
portion of the interpreter's memory, with each array or
string aligned to a single 256-byte page in the
65C02's memory. Numeric variables start at ARRA
through ARRZ while string variables start at STRA
through STRZ. The interpreter's EXVAR routine parses
variables and calculates the actual memory address
associated with them, including any array indexes for
number variables.

 STZ IOMODE ; Clear IO mode

 RTS ; Done

EXVAR JSR EXSKIP ; Consume leading space

 LDY PROGOFF ; Load the next character from the current line
 LDA (PROGPTR),Y

 INC PROGOFF ; Consume the character

 JSR ISALPHA ; If not a letter, it's a syntax error
 BCC _SYN

 SEC ; Calculate the page number assuming we have an array variable
 SBC #CHR_AUPPER

 CLC ; Determine the actual page location based on the start of vars
 ADC #>ARRA

 STZ NUMANS ; Assume by default we DO NOT have an index into an array
 STA NUMANS+1

 LDY PROGOFF ; Load another character
 LDA (PROGPTR),Y

 CMP #CHR_DOLLAR ; String variable so we need to adjust our pointer into string memory
 BEQ _STR

 CMP #CHR_LPAREN ; Array index so we need to adjust our pointer within array memory
 BNE _NUM

 JSR EXLPAREN ; Consume left parenthesis

 LDA NUMANS+1 ; Preserve high byte of variable address (will be clobbered by expr eval)
 PHA

139

The EXVAR routine calculates a variable's memory
address.

In addition to the many interpreter routines that
execute specific statements or functions in Cody
BASIC, there are helper routines used by the
interpreter. Some are part of the BASIC interpreter
itself, such as EXSKIP (used for skipping whitespace),
EXLPAREN and EXRPAREN (used for parsing
parentheses), and EXCHARACT (used for requiring
that the next character in a line is a certain value).
Routines such as EXONEARG and EXTWOARG
consolidate code for parsing one-argument and two-

 JSR EXEXPR ; Evaluate expression for array index

 PLA ; Restore the high byte of the variable address (just got clobbered)
 STA NUMANS+1

 JSR EXRPAREN ; Consume right parenthesis

 JSR POPONE ; Pop the array index off the stack

 LDA NUMONE+1 ; High byte should be zero (or will be out of range)
 BNE _LOG

 LDA NUMONE ; Low byte should be less than 128 (or will be out of range)
 BIT #$80
 BNE _LOG

 ASL A ; Shift low byte by one (multiply by two because numbers are two bytes wide)

 STA NUMANS ; Store the index as the low byte

_NUM JSR PUSHANS ; Store the address of the variable

 CLC ; Clear carry to indicate it's a number variable

 RTS ; All done

_STR CLC ; Adjust pointer from array memory to string memory
 LDA #26
 ADC NUMANS+1
 STA NUMANS+1

 INC PROGOFF ; Consume dollar sign

 JSR PUSHANS ; Store the address of the variable

 SEC ; Set carry to indicate it's a string variable

 RTS ; All done

_SYN JMP RAISE_SYN ; Raise a syntax error

_LOG JMP RAISE_LOG ; Raise a logic error (array index out of bounds)

140

argument mathematical functions, while EXSTRARG
does something similar for string functions.

EXTWOARG combines helper routines into another
helper routine.

Other helper routines also exist outside the
interpreter core. Math routines such as MUL16, DIV16,
RND16, and SQR16 perform 16-bit math calculations
needed to implement some of Cody BASIC's
mathematical functions. Other routines such as
POPONE, POPBOTH, and PUSHANS, assist in moving
values back and forth between the expression stack
and the NUMONE, NUMTWO, and NUMANS zero-
page variables used by many interpreter and helper
routines.

POPONE removes the top value from the expression
stack.

EXTWOARG JSR EXLPAREN
 JSR EXEXPR
 JSR EXCOMMA
 JSR EXEXPR
 JSR EXRPAREN
 RTS

POPONE PHA ; Preserve registers
 PHX

 LDX EXPRSNUM ; Fetch the current size of the expression stack

 LDA EXPRS_L-1,X ; Store the low byte into NUMONE
 STA NUMONE

 LDA EXPRS_H-1,X ; Store the high byte into NUMONE
 STA NUMONE+1

 DEC EXPRSNUM ; Decrement the count by one

 PLX ; Restore registers
 PLA

 RTS ; All done

141

NUMERIC AND STRING
EXPRESSIONS

Cody BASIC supports numeric and string
expressions. It's not possible to go over the
implementation of every single command in Cody
BASIC (though the code is heavily documented), but
by studying how some of the math and string
operations are implemented, it's possible to develop a
greater understanding of how the BASIC interpreter's
recursive-descent parser works in practice.

Numeric expressions, like everything in Cody BASIC,
follow the language's grammar. A numeric EXPR
contains a TERM followed by zero or more addition or
subtraction operators and TERMs. In turn, the TERM is
defined much the same, except that it begins with a
single FACTOR followed by zero or more
multiplication or division operators and FACTORs.
Lastly, a FACTOR can be any of a variety of numeric
types, including number literals, numeric functions,
variables, or even a nested expression in parentheses.
Note that this approach also preserves operator
precedence, as individual numbers or nested
expressions end up evaluated first, followed by
multiplication and division, and only last are addition
and subtraction performed.

An EXPR is implemented in the interpreter by the
EXEXPR routine. It calls another routine, EXTERM, to
handle the initial term, then loops as long as an
addition or subtraction operator is present. If one is
present, it parses the operator, calls EXTERM to get the
other operand, and then performs the calculation.

142

Because the operands are pushed on the expression
stack, the values are obtained from there and the
result stored there as well.

EXEXPR executes the code for a numeric expression.

The EXTERM routine implements the same but for
TERMs. In this case, EXFACTOR is called to put the first
operand on the expression stack. Then the code

EXEXPR JSR EXTERM ; Evaluate the left side of the (possible) operator

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_PLUS ; Addition operation
 BEQ _ADD

 CMP #CHR_MINUS ; Subtraction operation
 BEQ _SUB

 RTS ; All done

_ADD INC PROGOFF ; Consume plus character

 JSR EXTERM ; Evaluate the right side of the plus sign

 LDX EXPRSNUM ; Find how many items we have on the expression stack

 CLC ; Prepare for addition

 LDA EXPRS_L-2,X ; Add number low bytes together and put back on stack
 ADC EXPRS_L-1,X
 STA EXPRS_L-2,X

 LDA EXPRS_H-2,X ; Add number high bytes together and put back on stack
 ADC EXPRS_H-1,X
 STA EXPRS_H-2,X

 DEC EXPRSNUM ; Decrement stack by one (took two values off, put result back on)

 BRA _LOOP ; Next

_SUB INC PROGOFF ; Consume minus character

 JSR EXTERM ; Evaluate the right side of the minus sign

 LDX EXPRSNUM ; Find how many items we have on the expression stack

 SEC ; Prepare for subtraction

 LDA EXPRS_L-2,X ; Subtract number low bytes and put back on stack
 SBC EXPRS_L-1,X
 STA EXPRS_L-2,X

 LDA EXPRS_H-2,X ; Subtract number high bytes and put back on stack
 SBC EXPRS_H-1,X
 STA EXPRS_H-2,X

 DEC EXPRSNUM ; Decrement stack by one (took two values off, put result back on)

 BRA _LOOP ; Next

143

continues to loop as long as a multiplication or
division operator is present, calling EXFACTOR for the
other operand if so.

In this case the actual calculation is less
straightforward as the 65C02 does not support any
hardware multiplication or division. Instead, we
perform the calculation in software, calling POPBOTH
to get the top values of the expression stack into
NUMONE and NUMTWO. We then call MUL16 or
DIV16 to perform the calculation. Lastly, we push the
single result in NUMANS on the stack by calling
PUSHANS.

EXTERM JSR EXFACTOR ; Evaluate the left side of the (possible) operator

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_ASTERISK ; Multiplication operation
 BEQ _MUL

 CMP #CHR_SLASH ; Division operation
 BEQ _DIV

 RTS ; All done

_MUL INC PROGOFF ; Consume multiply operator

 JSR EXFACTOR ; Evaluate the right side of the multiply sign

 JSR POPBOTH ; Pop both values off the expression stack

 JSR PRE16

 PHA

 JSR MUL16 ; Multiply the numbers together

 PLA

 JSR ADJ16

 JSR PUSHANS ; Push the result back on the stack

 BRA _LOOP ; Next

_DIV INC PROGOFF ; Consume divide operator

 JSR EXFACTOR ; Evaluate the right side of the division sign

 JSR POPBOTH ; Pop both values off the expression stack

 JSR PRE16

 PHA

 JSR MOD16 ; Divide using the modulus operation (division result is also calculated)

144

Numeric terms are executed by the EXTERM routine.

The EXFACTOR has to handle the many possiblities
of a FACTOR in the grammar. Negative numbers
beginning with a unary minus, expressions in
parentheses, numeric variables, functions, and number
literals all need to be handled. To decide what to do, it
begins by examining the next token and branching to
an appropriate part of its code.

For number literals, it simply pushes the value of
the number on the stack. For minus signs, it attempts
to interpret the next value as a number by calling
EXFACTOR itself, then flips its sign via subtraction. For
nested expressions, it parses a left parenthesis via
EXLPAREN, an EXPR by calling EXEXPR, and a right
parenthesis via EXRPAREN. For variables, it calls
EXVAR to obtain the variable's memory address then
loads the value from there. And for functions, it
converts the token's value into an index into a local
jump table, jumping to the appropriate routine to
handle the function.

 LDA NUMONE ; Copy division result low byte (from the modulus) to the answer
 STA NUMANS

 LDA NUMONE+1 ; Copy division result high byte (from the modulus) to the answer
 STA NUMANS+1

 PLA

 JSR ADJ16

 JSR PUSHANS ; Push the result back on the stack

 BRA _LOOP ; Next

EXFACTOR JSR EXSKIP ; Skip any leading spaces

 LDY PROGOFF ; Get the offset in the current line

 LDA (PROGPTR),Y ; Read the character there

 CMP #CHR_MINUS ; Is it a negative number?
 BEQ _NEG

 CMP #TOK_NUM ; Is it a number literal?
 BEQ _NUM

145

 CMP #CHR_LPAREN ; Is it a nested expression?
 BEQ _EXP

 JSR ISALPHA ; Is it a letter for a variable name?
 BCS _VAR

 CMP #TOK_ASC+1 ; Check that the byte isn't too big to be a valid token
 BCS _SYN

 INC PROGOFF ; Consume the token

 SEC ; Subtract the start of the function tokens to get our index
 SBC #TOK_TIME

 BCC _SYN ; If the result was less than that the token value was too low

 ASL A ; Multiply by two to convert the number into a jump table index
 TAX

 JMP (_JMP,X) ; Jump to the code for the function we have

_NUM INY ; Skip the leading $FF tag at the start of the number

 LDA (PROGPTR),Y ; Fetch number literal low byte
 STA NUMANS
 INY

 LDA (PROGPTR),Y ; Fetch number literal high byte
 STA NUMANS+1
 INY

 STY PROGOFF ; Update the offset in the current line

 JSR PUSHANS ; Push the number onto the expression stack

 RTS ; All done

_EXP JSR EXLPAREN ; Grab the left parenthesis

 JSR EXEXPR ; Process the nested expression

 JSR EXRPAREN ; Grab the right parenthesis

 RTS ; All done

_VAR JSR EXVAR ; Evaluate variable to get its address in memory

 BCS _SYN ; If we read a string variable, it's a syntax error here

 JSR POPONE ; Pop the variable's address off the stack

 LDA (NUMONE) ; Read and store the low byte of the variable
 STA NUMANS

 INC NUMONE ; Increment address by one (safe because of page alignment)

 LDA (NUMONE) ; Read and store the high byte of the variable
 STA NUMANS+1

 JSR PUSHANS ; Push the number (not its address) on the stack

 RTS

_NEG INC PROGOFF ; Consume the unary minus

 JSR EXFACTOR ; Process the rest of the factor

 LDX EXPRSNUM ; Get the current expression stack size

 SEC ; Prepare to subtract

 LDA #0 ; Subtract low byte from zero in place on stack
 SBC EXPRS_L-1,X
 STA EXPRS_L-1,X

 LDA #0 ; Subtract high byte from zero in place on stack

146

EXFACTOR handles a variety of numeric literals and
values.

String expressions are handled in a similar way. In
some ways string expressions are more complex, while
in others they're significantly simpler. Instead of
storing values on the expression stack, string
expressions are evaluated by copying their contents
into the output buffer OBUF.

This is possible because string expressions have a
significantly reduced grammar, being limited only to
concatenation operations, string variables, string
literals, and string functions that produce no
intermediate values. In other words, a string
expression (or STREXPR) consists of one or more string
terms, and string terms (STRTERMs) themselves aren't
particularly complicated.

 SBC EXPRS_H-1,X
 STA EXPRS_H-1,X

_END RTS

_SYN JMP RAISE_SYN ; Raise a syntax error

_JMP
 .WORD EXTIME
 .WORD EXPEEK
 .WORD EXRND
 .WORD EXNOT
 .WORD EXABS
 .WORD EXSQR
 .WORD EXAND
 .WORD EXOR
 .WORD EXXOR
 .WORD EXMOD
 .WORD EXINT
 .WORD EXLEN
 .WORD EXASC

147

EXSTREXPR handles a string expression.

The EXSTRTERM routine is a bit more complicated,
but not much so. The STRTERM can only be a string
literal, a string variable, or one of a small number of
functions that return a string value. String literals and
string variables can be handled by copying their
contents into the output buffer.

Only three string functions exist, CHR$, STR$, and
SUB$. These are handled by checking for their token
and jumping to EXCHR, EXSTR, or EXSUB directly.
Given the small number of possibilities, a jump table
probably isn't worth the overhead.

EXSTREXPR JSR EXSKIP

 JSR EXSTRTERM ; Evaluate the string term we started with

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_PLUS ; Concatenation operator is the only one supported
 BEQ _CAT

 RTS ; All done

_CAT INC PROGOFF ; Consume operator

 JSR EXSTRTERM ; Evaluate the next string term to concatenate

 BRA _LOOP ; Next

 RTS

EXSTRTERM LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_QUOTE ; String literal
 BEQ _LIT

 CMP #TOK_CHR ; CHR$ function (char code to string)
 BEQ EXCHR

 CMP #TOK_STR ; STR$ function (number to string)
 BEQ EXSTR

 CMP #TOK_SUB ; SUB$ function (substring to string)
 BEQ EXSUB

 JSR EXVAR ; String variable is all we have left
 BCS _VAR

 JMP RAISE_SYN ; Otherwise it's a syntax error, nothing we can do

148

EXSTRTERM handles the few possibilities for a term in
a string expression.

The general approach shown for expression
evaluation is also the core of the recursive descent
mechanism. A more general routine handles a more
complicated part of the BASIC language, then calls
down into more specific subroutines to handle more
specific parts.

For example, printing a numeric calculation's result
on the screen would involve EXSTMT determining that
a PRINT statement was to be executed, then jumping
to EXPRINT to print it. EXPRINT would look ahead and
see that a numeric expression was in play and call
EXEXPR to evaluate it. EXEXPR would call EXTERM,
which in turn calls EXFACTOR.

_LIT INY ; Skip the leading quote

_LITLOOP LDA (PROGPTR),Y ; Read the next character

 CMP #CHR_NL ; Newlines shouldn't happen, but if they do, stop immediately
 BEQ _LITDONE

 INY ; Consume whatever character we read

 CMP #CHR_QUOTE ; End quote means we're done with the string literal
 BEQ _LITDONE

 JSR PUTOUT ; Otherwise just copy the character to the output buffer

 BRA _LITLOOP ; Repeat

_LITDONE STY PROGOFF ; Update the offset in the current line

 RTS ; All done

_VAR JSR POPONE ; Pop the variable address off the stack

 LDY #0 ; Start at the beginning

_VARLOOP LDA (NUMONE),Y ; Read the character from the string (zero/NUL indicates end of string)
 BEQ _VARDONE

 JSR PUTOUT ; Put the character from the string into the output buffer

 INY ; Consume the character

 BEQ _SYS ; If we wrapped around then we never found a terminating NUL

 BRA _VARLOOP

_VARDONE RTS ; All done

_SYS JMP RAISE_SYS ; Raise system error indicating we didn't find a NUL

149

CONTROL AND DATA STATEMENTS

Cody BASIC has some special statements that
handle control flow and data literals in BASIC
programs. While implemented using the same
interpreter logic as the rest of Cody BASIC, they have
additional effects that set them apart from more
straightforward operations such as math calculations
or updating variables. These statements also often
maintain information outside of the core BASIC
interpreter, such as line pointers, and take actions that
in some ways override the normal interpreter
behavior.

One set of such statements are the control flow
statements that change the course of a running
program. Cody BASIC supports the typical BASIC
commands for such operations: IF, GOTO, GOSUB/
RETURN, and FOR/NEXT statements are all
implemented.

Many of these statements rely on a similar
underlying implementation. Under normal conditions
the interpreter sets the value of PROGNXT to the start
of the next line after PROGPTR, but individual
statements can overwrite the value to change the path
through the program. Different types of control flow
statements also have to maintain additional
information unique to their own special situations,
such as pointers to return lines or terminating loop
values.

Another set of statements are those that handle
reading of data literals within a program. Many BASIC
dialects supported the use of DATA statements. A user

150

could enter raw data separated by commas into these
statements, which would be ignored under normal
operation of the interpreter. However, when a READ
statement was executed, values from the DATA
statements scattered through the program would be
stored in variables.

Cody BASIC supports a limited form of this
mechanism inspired by Commodore BASIC. To do so, it
maintains some external information regarding the
current data pointer position and the contents of
previous DATA statements.

IF STATEMENTS

The IF statement is one of the most simple control
flow statements. It evaluates a relational expression
(an expression that compares two terms). If the
expression evaluates to true, it runs the remainder of
the statement after the THEN keyword. If the
expression is false then it skips over the rest of the
statement and proceeds to the next line.

The implementation is somewhat complicated
because there are two kinds of relational expressions.
One is for numbers and compares the results of two
numeric expressions. The other is for strings and
compares a string variable's contents to a string
expression. The typical equal, not-equal, greater-than,
less-than, greater-than-or-equal, and less-than-or-
equal are all available for both kinds of expressions.

Because there are different kinds of comparisons
that must be performed, the comparison testing logic
is also somewhat complicated. Once the appropriate
comparison has been performed, the code loads a

151

constant indicating what relational operators would be
true given the inputs. This value is ANDed with a
constant for the relational operator to determine if the
result is true or false.

EXIF JSR EXSKIP ; Skip any leading space after the "IF"

 LDY PROGOFF ; Read the first character to see if it could be a string var
 LDA (PROGPTR),Y

 JSR ISALPHA ; If we have a string var it has to start with a letter
 BCC _NUM

 INY ; Read the next character to see if it's a dollar sign
 LDA (PROGPTR),Y

 CMP #CHR_DOLLAR ; If we have a string var it ends with a dollar sign
 BNE _NUM

_STR JSR EXVAR ; Parse a string variable (syntax error if not a string)
 BCC _SYN

 JSR _RELOP ; Evaluate the relational operator and store the index temporarily
 PHA

 STZ OBUFLEN ; Evaluate the right hand side as a string into the output buffer
 JSR EXSTREXPR

 LDX OBUFLEN ; Append a NUL to the end of the buffer to make the comparison easier
 LDA #0
 STA OBUF,X

 JSR POPONE ; Pop the string variable address off the stack

 LDY #0 ; Loop over the string in the buffer

_STRLOOP LDA (NUMONE),Y ; Compare the characters in the string and the output buffer
 CMP OBUF,Y

 BEQ _STRNEXT ; Branch depending on the result of the comparison
 BCC _LT
 BRA _GT

_STRNEXT CMP #0 ; If we have a null char for both, the strings are equal
 BEQ _EQ

 INY ; Increment the position in the output buffer to compare to

 BRA _STRLOOP ; Next character

_SYN JMP RAISE_SYN ; Raise a syntax error (needs to be here for branch distance purposes)

_NUM JSR EXEXPR ; Evaluate left hand side of the relational operator

 JSR _RELOP ; Evaluate the relational operator and store the index temporarily
 PHA

 JSR EXEXPR ; Evaluate the right hand side of the relational operator

 JSR POPBOTH ; Pop both numbers off the stack

 LDA NUMONE+1 ; Compare high bytes using a signed comparison
 CMP NUMTWO+1

 BEQ _LO
 BMI _LT
 BPL _GT

_LO LDA NUMONE ; Compare low bytes using an unsigned comparison
 CMP NUMTWO

152

EXIF processes IF statements and their THEN clauses.

GOTO STATEMENTS

Another simple control flow statement, the GOTO
statement, simply looks up the line number to go to,
then sets the PROGNXT pointer to that line's pointer.
On the next iteration the interpreter will run the
destination line.

 BEQ _EQ
 BCC _LT
 BRA _GT

_EQ LDA #(REL_LE | REL_GE | REL_EQ) ; Equals is true for "<=", ">=", or "="
 BRA _THEN

_LT LDA #(REL_LE | REL_LT | REL_NE) ; Less than is true for "<=", ">" or "<>"
 BRA _THEN

_GT LDA #(REL_GE | REL_GT | REL_NE) ; Greater than is true for ">=", ">" or "<>"
 BRA _THEN

_THEN PLX ; Get the index in our table for the relational operator

 AND _BITS,X ; AND the table entry with the possible matches we have

 BEQ _DONE ; If nothing matches, then the result of the comparison was false

 LDA #TOK_THEN ; We expect a "THEN" token after the string
 JSR EXCHARACT

 JMP EXSTMT ; Then evaluate the rest of the line as its own statement

_DONE RTS ; Nothing to do since condition was false

_BITS .BYTE REL_LE ; Lookup table that matches valid relop results with relops
 .BYTE REL_GE
 .BYTE REL_NE
 .BYTE REL_LT
 .BYTE REL_GT
 .BYTE REL_EQ

_RELOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character from the line (should be a relop token)
 LDA (PROGPTR),Y

 INC PROGOFF ; Consume the token

 CMP #(TOK_EQ+1) ; Was the token out of the expected range (too high)?
 BCS _SYN

 SEC ; Adjust token into lookup table value (and check if too low)
 SBC #TOK_LE
 BCC _SYN

 RTS ; All done, leave index in accumulator

153

The EXGOTO routine handles GOTO statements.

GOSUB AND RETURN STATEMENTS

GOSUB and RETURN statements are somewhat
more complicated as the line to return to must be
stored somewhere. In Cody BASIC this information is
stored in a gosub-return stack using zero-page
variables GOSUBS_L (for low bytes) and GOSUBS_H
(for high bytes) containing the return line's address.
When a GOSUB is executed, the current PROGNXT
pointer is stored on the stack before jumping to the
destination line by delegating to the EXGOTO routine.
A check is performed to ensure that sufficient space
exists in the gosub-return stack.

EXGOTO JSR ONLYRUN ; Only valid in RUN mode

 JSR EXEXPR ; Evaluate the line number to jump to

 JSR POPONE ; Pop the number off the stack

 LDA NUMONE ; Copy line number to LINENUM before we search
 STA LINENUM
 LDA NUMONE+1
 STA LINENUM+1

 JSR FINDLINE ; Try to find a matching line (control flow error if none)
 BCC _LOG

 LDA LINEPTR ; Use the pointer we found as the next line to execute
 STA PROGNXT
 LDA LINEPTR+1
 STA PROGNXT+1

 RTS ; All done

_LOG JMP RAISE_LOG ; Indicate the line number was invalid

154

EXGOSUB preserves the next line pointer before
branching.

When a RETURN statement is executed, the top
value on the gosub-return stack is popped and used as
the new value for PROGNXT. This returns control to
the line after the GOSUB that pushed the value on the
stack, working just as we'd expect. We also have to do
a check to ensure there's a value on the stack at all,
otherwise we have a RETURN without a matching
GOSUB.

EXRETURN pops the line pointer and returns control to
that location.

EXGOSUB JSR ONLYRUN ; Only valid in RUN mode

 LDX GOSUBSNUM ; Do we have room on the GOSUB/RETURN stack?
 CPX #MAXSTACK
 BCS _SYS

 LDA PROGNXT ; Store the NEXT line pointer to execute as our return position
 STA GOSUBS_L,X
 LDA PROGNXT+1
 STA GOSUBS_H,X

 INC GOSUBSNUM ; Increment stack count (we just pushed an item on it)

 JMP EXGOTO ; The rest of our statement is just like a GOTO, so go there

_SYS JMP RAISE_SYS ; Indicate the GOSUB-RETURN stack is out of memory

EXRETURN JSR ONLYRUN ; Only valid in RUN mode

 LDX GOSUBSNUM ; Load the number of GOSUB/RETURN entries (control flow error if none)
 BEQ _LOG

 LDA GOSUBS_L-1,X ; Copy the top item on the GOSUB/RETURN stack as our next line to run
 STA PROGNXT
 LDA GOSUBS_H-1,X
 STA PROGNXT+1

 DEC GOSUBSNUM ; Decrement count (we just removed an item from the stack)

 RTS ; All done

_LOG JMP RAISE_LOG ; Indicate we have a RETURN without a GOSUB

155

FOR AND NEXT STATEMENTS

Implementing FOR and NEXT statements is
somewhat more complex. The line to return to in the
FOR loop must be preserved similar to the return line
in a GOSUB. However, we also have to keep a pointer
to the FOR loop's variable so we can update it on each
loop. We also have to keep the stop value so we know
when the end of the loop has been reached. Cody
BASIC's solution is to use a stack that is similar to the
gosub-return loop, but with extra values for a variable
pointer and a stop value. This information is kept in the
FORLINE_L/FORLINE_H, FORVARS_L/FORVARS_H,
and FORSTOP_L/FORSTOP_H zero-page variables.

EXFOR JSR ONLYRUN ; Only valid in RUN mode

 JSR EXVAR ; Evaluate the loop variable as an lvalue (only number vars)
 BCS _SYN

 JSR EXEQUALS ; Consume equals

 JSR EXEXPR ; Evaluate starting expression

 LDA #TOK_TO ; Consume "TO"
 JSR EXCHARACT

 JSR EXEXPR ; Evaluate ending expression

 LDX FORSNUM ; Do we have room on the FOR/NEXT stack?
 CPX #MAXSTACK
 BCS _SYS

 LDA PROGNXT ; Store the line pointer to execute as our return position
 STA FORLINE_L,X
 LDA PROGNXT+1
 STA FORLINE_H,X

 JSR POPONE ; Pop the ending value for the FOR loop off the stack

 LDA NUMONE ; Store the ending value into the FORSTOPs
 STA FORSTOP_L,X
 LDA NUMONE+1
 STA FORSTOP_H,X

 JSR POPBOTH ; Pop the variable address and the initial value off the stack

 LDA NUMONE ; Store the variable address into the FORVARS
 STA FORVARS_L,X
 LDA NUMONE+1
 STA FORVARS_H,X

 LDA NUMTWO ; Store the low byte of the initial loop value
 STA (NUMONE)

156

EXFOR handles the beginning of a FOR-NEXT loop.

Surprisingly, much of the FOR loop is actually
handled by the NEXT statement. When a NEXT
statement is executed, it checks to see if the value in
the loop's variable is equal to the stop value. If so, the
loop is done and popped from the for-next stack, while
control proceeds to the next line. If it's not equal, the
variable is incremented by one and PROGNXT
updated with the first line in the loop's body, similar to
how a RETURN statement works. A sanity check also
ensures that a matching FOR exists.

 INC NUMONE ; Move to the high byte (relies on page alignment to be safe)

 LDA NUMTWO+1 ; Store the high byte of the initial loop value
 STA (NUMONE)

 INC FORSNUM ; Increment stack count (we just pushed an item on it)

 RTS ; All done

_SYN JMP RAISE_SYN ; Raise syntax error

_SYS JMP RAISE_SYS ; Indicate the FOR-NEXT stack is out of memory

EXNEXT JSR ONLYRUN ; Only valid in RUN mode

 LDX FORSNUM ; Load the number of FOR/NEXT entries (logic error if none)
 BEQ _LOG

 LDA FORVARS_L-1,X ; Assemble the variable address from the low and high bytes
 STA MEMSPTR
 LDA FORVARS_H-1,X
 STA MEMSPTR+1

 LDY #0 ; Compare low bytes
 LDA (MEMSPTR),Y
 CMP FORSTOP_L-1,X
 BNE _LOOP

 INY ; Compare high bytes
 LDA (MEMSPTR),Y
 CMP FORSTOP_H-1,X
 BNE _LOOP

 DEC FORSNUM ; This loop is done, remove it from the stack

 BRA _DONE ; All done here

_LOOP CLC ; Prepare to increment the variable by one

 LDY #0 ; Increment low byte
 LDA (MEMSPTR),Y
 ADC #1
 STA (MEMSPTR),Y

 INY ; Increment high byte (with carry)
 LDA (MEMSPTR),Y
 ADC #0

157

Much of the loop is actually implemented by EXNEXT.

DATA AND READ STATEMENTS

Cody BASIC supports a form of the RESTORE, DATA,
and READ statements common to many 8-bit BASIC
dialects. A DATA statement specifies comma-delimited
number literals that can be read into variables using
the READ statement. When data is to be read, the
interpreter starts at the top of the program, going
through each line until a new DATA statement is
found.

To repeat the process from the beginning, the
RESTORE statement can be called to move the current
data pointer back to the beginning of the program. In
many respects the behavior is a number-only subset
of the DATA statements in Commodore BASIC.

Some zero-page variables and memory locations
are very important to the processing of DATA
statements. The DATAPTR variable points to the next
line to search for data. Because the content read from
DATA statements is stored in a buffer until it is read,
DBUFL and DBUFH point to the start of storage for the
data's low and high bytes respectively. DBUFLEN
stores the number of items held in the current data
buffer, while DBUFPOS stores the current index within
the buffer for READ statements.

 STA (MEMSPTR),Y

 LDA FORLINE_L-1,X ; Copy the top item on the FOR/NEXT stack as our next line to run
 STA PROGNXT
 LDA FORLINE_H-1,X
 STA PROGNXT+1

_DONE RTS ; All done

_LOG JMP RAISE_LOG ; Indicate a NEXT-without-FOR error

158

Loading data begins with the MOREDATA routine,
which is called whenever a READ statement needs data
and the buffer is empty. MOREDATA starts at the
current DATAPTR and continues until a line with a
DATA statement is found. If a matching DATA
statement is found, the numbers in that statement are
parsed and stored in DBUFL and DBUFH.

Because parsing a DATA statement is in some ways
similar to the parsing of any other statement, the
routine temporarily replaces PROGPTR with the
current value of DATAPTR to reuse some of the
existing routines. When a DATA statement is
encountered during the normal interpretation of a
program, it's skipped over entirely. DATA statements
only get processed when a call to READ needs more
data and reading has advanced to a given line.

MOREDATA LDA PROGPTR ; Preserve the current program pointer
 PHA
 LDA PROGPTR+1
 PHA

 LDA PROGOFF ; Preserve the current program line offset
 PHA

 LDA DATAPTR ; Temporarily use the line pointer as the data pointer
 STA PROGPTR
 LDA DATAPTR+1
 STA PROGPTR+1

_LINE JSR ISEND ; Are we at the end of the program?
 BNE _LINEOK

 JMP _DONE ; End of program (need JMP because of distance)

_LINEOK LDA #4 ; Start after line number in the current line
 STA PROGOFF

 JSR EXSKIP ; Skip whitespace

 LDY PROGOFF ; Read the next token
 LDA (PROGPTR),Y
 INC PROGOFF

 CMP #TOK_DATA ; If a DATA statement, process the line
 BEQ _LOOP

 JSR _NXTLINE ; Otherwise go to the next line

 BRA _LINE

_LOOP JSR EXSKIP ; Skip whitespace

 LDY PROGOFF ; Load the next character from the current line

159

 LDA (PROGPTR),Y

 INY ; Consume number token symbol

 CMP #CHR_NL ; Newline means we're done
 BEQ _EOL

 CMP #CHR_MINUS ; Minus means a negative number
 BEQ _NEG

 CMP #TOK_NUM ; Otherwise just a number (or a syntax error)
 BNE _SYN

_POS LDX DBUFLEN ; Load the current data buffer length

 LDA (PROGPTR),Y ; Store data low byte
 STA DBUFL,X
 INY

 LDA (PROGPTR),Y ; Store data high byte
 STA DBUFH,X
 INY

 BRA _NXT ; Next number in list

_NEG STY PROGOFF ; Update program offset

 JSR EXSKIP ; Skip any trailing space after the minus sign

 LDY PROGOFF ; Load the next character from the current line
 LDA (PROGPTR),Y

 CMP #TOK_NUM ; Must be a number
 BNE _SYN
 INY

 LDX DBUFLEN ; Load the current data buffer length

 SEC ; Prepare to subtract

 LDA #0 ; Subtract low byte from zero and store in buffer
 SBC (PROGPTR),Y
 STA DBUFL,X
 INY

 LDA #0 ; Subtract high byte from zero and store in buffer
 SBC (PROGPTR),Y
 STA DBUFH,X
 INY

_NXT STY PROGOFF ; Update program offset

 INC DBUFLEN ; Update data buffer length (overflow shouldn't happen)

 JSR EXSKIP ; Skip any trailing space after the number

 LDY PROGOFF ; Read and consume the next character in the line
 LDA (PROGPTR),Y
 INC PROGOFF

 CMP #CHR_NL ; Newline means we're done
 BEQ _EOL

 CMP #CHR_COMMA ; Otherwise it needs to be a comma
 BNE _SYN

 BRA _LOOP ; Next data value in list

_EOL JSR _NXTLINE

_DONE PLA ; Restore the program line offset
 STA PROGOFF

 PLA ; Restore the program pointer
 STA PROGPTR+1
 PLA
 STA PROGPTR+0

160

MOREDATA fills the data buffer with more data when
called.

The EXREAD routine implements the read
functionality. It loops over one or more variables,
attempting to populate each of the variables with data.
When the data buffer is empty (DBUFLEN is zero), it
calls MOREDATA to read more data. If nothing is
found, an out of data error condition exists. On the
other hand, if data was found and stored in the buffer,
it begins copying data out of the buffer and into the
variable list.

 RTS

_SYN JMP RAISE_SYN

_NXTLINE CLC ; Move to the next line by adding the line length

 LDA PROGPTR
 ADC (PROGPTR)
 STA PROGPTR
 STA DATAPTR

 LDA PROGPTR+1
 ADC #0
 STA PROGPTR+1
 STA DATAPTR+1

 RTS

EXREAD

_LOOP JSR EXVAR ; Read the variable to read into, it has to be a number variable
 BCS _SYN

 LDA DBUFLEN ; Verify that we still have data in the buffer to read
 BNE _READ

 STZ DBUFPOS ; Out of data, need to read more in from the program
 JSR MOREDATA

 LDA DBUFLEN ; Did we find any more data in the program?
 BEQ _LOG

_READ JSR POPONE ; Pop the variable address into NUMONE

 LDX DBUFPOS ; Read current index in the data buffer

 LDA DBUFL,X ; Copy low byte
 STA (NUMONE)

 INC NUMONE ; Move on to high byte (relies on page alignment)

 LDA DBUFH,X ; Store high byte
 STA (NUMONE)

 DEC DBUFLEN ; Decrement data buffer size and increment buffer position
 INC DBUFPOS

161

EXREAD implements the READ statement.

For the last statement in this group, the RESTORE
statement, the EXRESTORE routine is called. However,
EXRESTORE only calls the RESTORE routine already
used when a program is being run. It resets the
DBUFLEN and DBUFPOS to zero, then moves the
DATAPTR to the start of program memory.

RESTORE resets the handling of DATA statements.

INPUT AND OUTPUT STATEMENTS

Cody BASIC supports input and output similar to
many other BASIC dialects. INPUT and PRINT
statements handle generic input and output. OPEN
and CLOSE statements select either the keyboard and
screen or a serial port as the current I/O device.
Within the BASIC interpreter there are several

 JSR EXSKIP ; Skip any whitespace

 LDY PROGOFF ; Load the next character from the current line
 LDA (PROGPTR),Y

 CMP #CHR_NL ; Newline means we're done with this statement
 BEQ _DONE

 CMP #CHR_COMMA ; If it's not a comma then it's a syntax error
 BNE _SYN

 INC PROGOFF ; Consume the comma

 BRA _LOOP ; Next variable

_DONE RTS

_SYN JMP RAISE_SYN
_LOG JMP RAISE_LOG

RESTORE STZ DBUFLEN ; Reset data buffer positions
 STZ DBUFPOS

 LDA #<PROGMEM ; Move data line pointer to start of program
 STA DATAPTR+0
 LDA #>PROGMEM
 STA DATAPTR+1

 RTS

162

routines that work together to implement input and
output.

Input and output in Cody BASIC, much like Tiny
BASIC, is line-based, with two buffers set up to store
input data and output data. IBUF is an input buffer that
stores up to 255 characters read from the keyboard or
a serial port. OBUF is an output buffer that also stores
255 characters to be printed to the screen or sent to a
serial port. The length of the contents of each buffer
are stored in IBUFLEN and OBUFLEN.

The I/O routines support a combined keyboard-
screen device and the Cody Computer's two serial
ports. Two zero page variables, IOMODE and IOBAUD,
contain the current I/O mode (the device) and a value
representing the baud rate (only used for serial ports).
These are set either by code internal to the interpreter
(such as when loading or saving programs) or by user
code in the BASIC program.

OPEN AND CLOSE STATEMENTS

The OPEN and CLOSE statements are used to
redirect input and output to specific devices, either the
screen/keyboard combination (in the default case) or
one of the Cody Computer's two serial ports.

The OPEN statement is implemented by the
EXOPEN routine. It sets the IOMODE and IOBAUD
values to configure the input and output. If a serial
port is selected, it also calls the SERIALON routine to
set up the UART for the selected serial device.

163

The EXOPEN routine configures input and output.

The CLOSE statement is implemented by the
EXCLOSE routine. It calls SERIALOFF to disable the
UART for the selected serial port (for keyboard/screen
operation this reduces to a no-op). Once the UART is
shut down, it clears out the IOMODE and IOBAUD
variables to return input and output to the keyboard
and screen.

The EXCLOSE routine restores I/O to the screen and
keyboard.

PRINT STATEMENTS

The EXPRINT routine handles a PRINT statement to
write text to the screen. It accepts string expressions
that are stored in the output buffer and later written to

EXOPEN JSR ONLYRUN ; Only valid in RUN mode

 JSR EXEXPR ; Read device number

 JSR EXCOMMA ; Comma separator

 JSR EXEXPR ; Baud rate (1 through 15)

 JSR POPBOTH ; Get both values off the stack

 LDA NUMTWO ; Baud rate (1 through 15)
 STA IOBAUD

 LDA NUMONE ; Device number
 STA IOMODE

 BEQ _DONE ; If a UART was selected turn serial on
 JSR SERIALON

_DONE RTS

EXCLOSE JSR ONLYRUN ; Only valid in RUN mode

 JSR SERIALOFF ; Turn serial off (routine should check if IOMODE is actually set)

 STZ IOMODE ; Clear IO mode and IO baud settings (defaults back to screen/keyboard)
 STZ IOBAUD

 RTS

164

the current I/O device's output via FLUSH. It also
supports some control codes and format specifiers to
handle clearing the screen, changing text colors,
aligning text, and moving the cursor, though these are
only relevant when the screen is the output device.
Some of the functionality for these features is actually
implemented in the screen routines rather than in
EXPRINT itself.

Excerpt from EXPRINT showing possible arguments.

When the statement is done, it sends its output via
the FLUSH routine. FLUSH goes over the contents in
the output buffer OBUF and sends them to the current
IO device. It checks the current value of IOMODE and
calls either SCREENPUT or SERIALPUT to print out the

EXPRINT STZ OBUFLEN ; Start at beginning of output buffer

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character in the current line
 LDA (PROGPTR),Y

 CMP #TOK_AT ; "AT()" format specifier to change screen location
 BEQ _AT

 CMP #TOK_TAB ; "TAB() format specifier to advance position in line
 BEQ _TAB

 CMP #CHR_QUOTE ; Quote means a string expression
 BEQ _STR

 CMP #TOK_STR ; "STR$" function means a string expression
 BEQ _STR

 CMP #TOK_CHR ; "CHR$" function means a string expression
 BEQ _STR

 CMP #TOK_SUB ; "SUB$" function means a string expression
 BEQ _STR

 CMP #CHR_NL ; Newline means the end of the line
 BEQ _ADV

 CMP #CHR_SEMICOLON ; Semicolon means the end of the line without advancing
 BEQ _END

 JSR ISALPHA ; At this point, the only possibility left is a string variable
 BEQ _NUM

 INY ; Look ahead one character
 LDA (PROGPTR),Y

 CMP #CHR_DOLLAR ; String variables end with a dollar sign ("$")
 BEQ _STR

165

individual characters in the buffer. Other routines that
populate the output buffer also call FLUSH to print out
the contents.

The FLUSH routine writes the output buffer to the
current output.

INPUT STATEMENTS

The EXINPUT routine implements the internals for
Cody BASIC's INPUT statement. It reads a line of input
from the current I/O device into the input buffer and
then attempts to parse it into the variable list passed
to the statement. Both numbers and strings are
supported. As part of its operations, the routine has to
check the current I/O mode and call either READKBD
or READSER depending on the mode.

FLUSH PHA ; Preserve registers
 PHX
 PHY

 LDY IOMODE ; We'll be checking the IO mode a lot

 LDX #0 ; Start at the beginning

_LOOP CPX OBUFLEN ; Check that we have more characters to print
 BEQ _END

 LDA OBUF,X ; Load the next character from the output buffer
 INX

 CPY #0 ; Determine whether to use screen or serial output
 BEQ _SCREEN

_SERIAL JSR SERIALPUT ; Print it to the serial port (current UART)
 BRA _LOOP

_SCREEN JSR SCREENPUT ; Print it on the screen
 BRA _LOOP

_END STZ OBUFLEN ; Clear the length of the output buffer (we're empty now)

_NOOFF PLY ; Restore registers
 PLX
 PLA

 RTS ; All done

166

Portion of EXINPUT selecting the input source.

Unlike the common FLUSH routine for sending out
printed output, no similar single routine for reading
input exists. Instead, the READKBD routine populates
the input buffer IBUF from keyboard input, updating
the screen contents as the user types. This routine
relies on a variety of other routines related to screen
output and keyboard scanning covered elsewhere in
this chapter.

_READ LDA IOMODE ; Determine where to read from
 BEQ _KBD

_SER JSR READSER ; Read our input line from the UART
 BRA _INP

_KBD JSR READKBD ; Read out input line from the keyboard

READKBD PHA ; Preserve registers
 PHX

 LDX #0 ; Start at beginning of input buffer

_NEXT LDA JIFFIES

_WAIT JSR BLINK ; Wait for jiffies to change to know we got a new keyboard scan
 CMP JIFFIES
 BEQ _WAIT

 JSR KEYDECODE ; Decode whatever key was pressed (if anything)

 LDA KEYCODE ; Debounce keys by making sure we read the same code twice in a row
 CMP KEYDEBO
 STA KEYDEBO
 BNE _NEXT

 LDA KEYCODE ; Suppress repeated key presses by comparing to last key read
 CMP KEYLAST
 STA KEYLAST
 BEQ _NEXT

 CMP #$60 ; Check for CODY + META (shift lock) toggle
 BEQ _TOG

 BIT #$1F ; Suppress key codes when no keys (aside from modifiers) were pressed
 BEQ _NEXT

 JSR KEYTOCHR ; Convert key code to CODSCII code and preserve on stack
 PHA

 LDA KEYLOCK ; Check if the shift lock is set
 BEQ _KEY

 PLA ; Convert CODSCII code to lowercase
 JSR TOLOWER
 PHA

_KEY PLA ; Restore keyboard CODSCII code from stack

167

The READKBD routine reads a line from the keyboard.

For serial operations, the READSER routine will
populate IBUF with the contents read from the serial
port's UART. The routine stops when a carriage return
or newline character are read from the serial input.
This is essentially the serial equivalent of the
READKBD routine. It relies on the serial routines
covered later in the chapter.

 CMP #CHR_CAN ; Skip cancel character
 BEQ _NEXT

 CMP #CHR_BS ; Check for backspace character
 BEQ _DEL

 CPX #$FE ; Check for space to store character
 BEQ _NEXT

 STA IBUF,X ; Put the character in the buffer
 INX

 CMP #CHR_NL ; Check for newline character (end of line)
 BEQ _DONE

 JSR SCREENPUT ; Echo to the screen

 BRA _NEXT

_DEL CPX #0 ; Check that we have something in the buffer to delete
 BEQ _NEXT

 DEX ; Back up one position the buffer and remove the char from the screen
 JSR SCREENDEL

 BRA _NEXT

_TOG LDA KEYLOCK ; Toggle shift lock
 EOR #$01
 STA KEYLOCK

 BRA _NEXT

_DONE STX IBUFLEN ; Update input buffer length

 LDA #20 ; TODO: CLEAR BLINKING CURSOR (MAKE THIS BETTER, ALSO SEE ABOVE)
 STA (CURSCRPTR)

 PLX ; Restore registers
 PLA

 RTS

READSER PHA
 PHX

 LDX #0 ; Start at beginning of buffer

_READ JSR SERIALGET ; Poll for next character
 BCC _READ

 STA IBUF,X ; Store the character and increment the buffer position
 INX

168

READSER uses serial routines to read a line of text
from a UART.

LOADING AND SAVING
PROGRAMS

Cody BASIC supports the LOAD and SAVE
commands for loading and saving programs. With the
exception of loading binary programs over the serial
port or from a cartridge, load and save operations rely
almost entirely on other functionality in Cody BASIC.

When loading a BASIC program, input is redirected
from the serial port, and each incoming line is
tokenized as though the user had typed the program
in. When saving a program, output is redirected to the
serial port, and the program is listed as though a LIST
command had been executed.

LOAD STATEMENTS

The EXLOAD routine implements the BASIC portion
of LOAD statements. It parses parameters containing
the device number and mode before calling the
appropriate routine to do the operation. In the event

 CPX #$FE ; Do we still have space in the buffer?
 BCS _SYS

 CMP #CHR_NL ; Newline characters can be an end of line
 BEQ _DONE

 CMP #CHR_CR ; Carriage return characters can be an end of line
 BEQ _DONE

 BRA _READ ; Continue

_DONE STX IBUFLEN ; Store the input line length

 PLX
 PLA

 RTS

_SYS JMP RAISE_SYS ; Indicate we're out of space in the input buffer

169

that the program to be loaded is a BASIC program, it
calls LOADBAS, and for binary programs, it calls
LOADBIN instead.

EXLOAD implements the LOAD statement in Cody
BASIC.

LOADBAS loads BASIC programs over the serial
port. Each line is read into the input buffer IBUF just as
a user would enter the code line by line, with each line
being tokenized and appended at the end of the
program. When the routine encounters a line with no
characters, it considers the load completed and returns
to the REPL loop.

Unlike many other 8-bit systems, Cody BASIC
doesn't save its BASIC programs in their tokenized
format. This makes it easier to exchange BASIC files
with other computers, but it also makes it slower to
load because of the retokenization. As the speed of
tokenization is the main limit to loading programs
quickly, optimization of the tokenizer is very

EXLOAD JSR ONLYREPL ; Only valid in REPL mode

 LDA #RM_COMMAND ; Running without a line number so we can break
 STA RUNMODE

 JSR EXEXPR ; Device argument

 JSR EXCOMMA ; Comma separator

 JSR EXEXPR ; Mode argument (0 for BASIC, 1 for binary)

 JSR POPBOTH ; Pop results

 LDA #$F ; Read at 19200 baud
 STA IOBAUD

 LDA NUMONE ; Use device number as UART number
 STA IOMODE

 LDA NUMTWO ; Read BASIC or binary file as appropriate
 BNE _BIN

_BAS JSR LOADBAS ; Load the BASIC program

 STZ RUNMODE ; Reset run mode and return
 RTS

_BIN JMP LOADBIN

170

important. This also means that terminal programs
talking to the Cody Computer usually need to insert a
delay after each line so that the tokenizer can keep up.

Some simple optimizations and sanity checks are
added to this code path to speed up loading and guard
against obvious errors (such as out-of-order line
numbers). Much like what happens when input
statements are redirected to serial, LOADBAS sends a
question-mark character before waiting for each
incoming line. If the device sending the program
recognizes this, it can immediately skip to the
program's next line rather than waiting for a fixed
period for each line.

LOADBAS JSR NEWPROG ; Clear out the current program

 STZ LINENUM ; Start at "line zero" as the first line
 STZ LINENUM+1

 JSR SERIALON ; Turn serial port on

_LOOP LDA #CHR_QUEST ; Send question mark prompt (for more advanced loaders)
 JSR SERIALPUT

 JSR READSER ; Read a line of input

 LDX IBUFLEN ; Make sure we actually read a full line
 CPX #2
 BCC _DONE

 DEX ; Replace trailing character with a newline (could be a carriage return!)
 LDA #CHR_NL
 STA IBUF,X

 JSR TOKENIZE ; Tokenize the line

 LDA TBUF ; Basic validity check (must start with line number)
 CMP #$FF
 BNE _SYS

 LDA TBUF+2 ; Another validity check (ensure line numbers ascending)
 CMP LINENUM+1
 BNE _LINE

 LDA TBUF+1
 CMP LINENUM
 BEQ _SYS
_LINE BCC _SYS

 LDA PROGTOP ; Set destination as the top of the program
 STA LINEPTR
 LDA PROGTOP+1
 STA LINEPTR+1

 JSR INSLINE ; Insert the line into the program

 LDA TBUF+1 ; Update last line number for future tests
 STA LINENUM

171

The LOADBAS routine loads a BASIC program into
memory.

For loading binary files, the LOADBIN routine is
used instead. Loading a binary file is somewhat easier
as it's essentially a direct read of bytes into the Cody
Computer's memory, followed by a jump to the
loading address. Because binary programs can be
loaded from the serial ports (in BASIC) or from a
cartridge (on system startup), LOADBIN has to take
into account both possibilities. It also supports
returning to BASIC at the end of a binary program, but
the results may vary depending on the state the
computer was left in. However, this permits carefully-
written binary programs to remain resident in memory
to extend the system or for later use in BASIC code.

The Cody Computer's binary format is simple. Two
bytes contain the start address, two bytes contain the
end address, and the remainder consists of raw bytes
for the program. To load the program the computer
needs only to point a destination pointer at the start
address, read and store a byte, and continue reading
until the destination pointer equals the end address.

 LDA TBUF+2
 STA LINENUM+1

 BRA _LOOP ; Read the next line

_DONE JSR SERIALOFF ; Turn off serial port

 STZ IOMODE ; Clear I/O settings back to screen/keyboard
 STZ IOBAUD

 STZ RUNMODE ; Not "running" any more

 RTS

_SYS JMP RAISE_SYS ; Indicate IO error during read

LOADBIN LDA IOMODE
 BEQ _INITSPI

_INITSER JSR SERIALON ; Start running serial port

 BRA _LOAD

172

_INITSPI JSR CARTON ; Begin SPI transaction

 LDA #$03 ; Command 3 to begin reading
 JSR CARTXFER

 LDX #2 ; Assume a cartridge with a two-byte address

 LDA VIA_IORB ; If cart size bit is high, we have a three-byte address
 BIT #CART_SIZE
 BEQ _ADDR
 INX

_ADDR LDA #$00 ; Send the appropriate number of zeroed address bytes
 JSR CARTXFER
 DEX
 BNE _ADDR

_LOAD JSR _READ ; Read starting address (low and high bytes)
 STA MEMSPTR
 STA PROGPTR

 JSR _READ
 STA MEMSPTR+1
 STA PROGPTR+1

 JSR _READ ; Read ending address (low and high bytes)
 STA MEMDPTR

 JSR _READ
 STA MEMDPTR+1

_LOOP JSR _READ ; Read and store another byte
 STA (MEMSPTR) ; Store it in memory

 LDA MEMSPTR ; If not at the destination address, read another byte
 CMP MEMDPTR
 BNE _INCR

 LDA MEMSPTR+1
 CMP MEMDPTR+1
 BNE _INCR

 LDA IOMODE ; Finished loading, shutdown for SPI vs serial is different
 BEQ _DONESPI
 BNE _DONESER

_INCR INC MEMSPTR ; Increment source pointer by one
 BNE _LOOP
 INC MEMSPTR+1
 BRA _LOOP

_DONESER JSR SERIALOFF ; Stop running serial port

 STZ IOMODE ; Clear I/O settings back to screen/keyboard
 STZ IOBAUD

 BRA _DONE

_DONESPI JSR CARTOFF

_DONE STZ RUNMODE ; Ensure run mode is zero before jumping to loaded binary

 SEI ; Disable interrupts for BASIC (keyboard scan and clock)

 LDX STACKREG ; Roll back the BASIC stack
 TXS

 JSR _JUMP

 JMP BASIC ; If it returns for some reason, restart BASIC and hope

_JUMP JMP (PROGPTR) ; Jump to the load address (indirect JSR workaround)

_READ LDA IOMODE ; Determine what mode we're running in
 BNE _READSER

173

READBIN loads binary programs from serial ports or
cartridges.

SAVE STATEMENTS

Saving programs is somewhat more straightforward
because Cody BASIC only supports saving the current
BASIC program in memory as text. No provision is
mode for dumping an arbitrary region of memory to
serial output as raw bytes, and BASIC programs can
only be saved to serial ports, not cartridges.

To save a program, output is redirected to one of the
serial ports, the entire program is listed by calling
LISTPROG, and a blank line is written to mark the end
of the program. Because of its overall simplicity this is
entirely implemented in the EXSAVE routine used by
the interpreter.

_READSPI LDA #$00 ; Read value and return as accumulator
 JSR CARTXFER
 RTS

_READSER JSR SERIALGET ; Busy-wait for another byte
 BCC _READSER
 RTS

EXSAVE JSR ONLYREPL ; Only valid in REPL mode

 LDA #RM_COMMAND ; Running without a line number so we can break
 STA RUNMODE

 JSR EXEXPR ; Read the device number for the UART
 JSR POPONE

 LDA NUMONE ; Use it as the UART number
 STA IOMODE

 LDA #$F ; Save at 19200 baud
 STA IOBAUD

 LDA #<PROGMEM ; Start at the beginning of program memory
 STA LINEPTR
 LDA #>PROGMEM
 STA LINEPTR+1

 LDA PROGTOP ; Stop at the top of program memory
 STA STOPPTR
 LDA PROGTOP+1
 STA STOPPTR+1

 JSR SERIALON ; Start the serial port

174

EXSAVE is a short routine that implements the SAVE
command.

Most of the actual work in saving a program is done
by the LISTPROG routine. This same routine is also
called when a user enters the LIST statement at the
BASIC prompt, except that in this case we're listing the
program to a serial port instead. LISTPROG works
opposite to a tokenizer, starting at the beginning of the
BASIC program, going through each tokenized line,
and looking up the actual values of each token to put
them into the output buffer. Once an entire line is
decoded, it's flushed to the current output device.

 JSR LISTPROG ; List the program out the serial port to "save" it

 STZ OBUFLEN ; Write an empty line to mark the end (the loader expects this!)
 LDA #CHR_NL
 JSR PUTOUT
 JSR FLUSH

 JSR SERIALOFF ; Stop the serial port

 STZ RUNMODE ; Reset run mode

 STZ IOBAUD ; Go back to screen/keyboard IO when we're done
 STZ IOMODE

 RTS

LISTPROG PHA ; Preserve registers
 PHX
 PHY

_LOOP LDA LINEPTR+0 ; Always do a sanity check (data can come from LIST)
 CMP PROGTOP+0
 BNE _SANE

 LDA LINEPTR+1
 CMP PROGTOP+1
 BNE _SANE

 BRA _DONE

_SANE LDA LINEPTR+0 ; Are we at the line we're supposed to stop at?
 CMP STOPPTR+0
 BNE _LINE

 LDA LINEPTR+1
 CMP STOPPTR+1
 BNE _LINE

_DONE PLY ; No more lines in program, restore registers
 PLX
 PLA

 RTS ; All done

_LINE STZ OBUFLEN ; Start at the beginning of the output buffer

175

LISTPROG is used internally to both list and save
programs.

 LDY #1 ; Start at beginning of line (skipping line length byte)

 LDA (LINEPTR),Y ; Copy line number low byte
 STA NUMONE+0
 INY

 LDA (LINEPTR),Y ; Copy line number high byte
 STA NUMONE+1
 INY

 JSR TOSTRING ; Write the number's digits to the output buffer

_PART LDA (LINEPTR),Y ; Load the next byte in the line

 CMP #$FF ; Do we have a number token?
 BEQ _NUM

 BIT #$80 ; Do we have a token to decode?
 BNE _TOK

 JSR PUTOUT ; Normal character, put it into the output buffer
 INY

 CMP #CHR_NL ; If it was a newline, move on to the next source line
 BEQ _NEXT

 BRA _PART ; Next part of the current line

_TOK AND #$7F ; Mask out the number of the actual token

 CLC ; Adjust the token number into the message table
 ADC #MSG_TOKENS

 JSR PUTMSG ; Put the token's text into the output buffer

 INY ; Consume the token

 BRA _PART ; Next part of the current line

_NUM INY ; Skip leading number token tag

 LDA (LINEPTR),Y ; Copy integer low byte
 STA NUMONE+0
 INY

 LDA (LINEPTR),Y ; Copy integer high byte
 STA NUMONE+1
 INY

 JSR TOSTRING ; Print integer

 BRA _PART ; Next part of the current line

_NEXT JSR FLUSH ; Flush the output buffer

 CLC ; Move the pointer to the next line
 LDA LINEPTR+0
 ADC (LINEPTR)
 STA LINEPTR+0
 LDA LINEPTR+1
 ADC #0
 STA LINEPTR+1

 BRA _LOOP ; Next line

176

SERIAL ROUTINES

When input and output have been redirected to one
of the serial ports (IOMODE of 1 or 2), serial routines
are called to configure the appropriate UART and
perform reads and writes. The SERIALON routine
starts up the serial UART, SERIALPUT places a byte in
its transmit buffer, SERIALGET reads a byte from its
receive buffer, and SERIALOFF turns it off. Together
these provide enough features to support Cody
BASIC's line-based input and output when a serial
port is enabled.

Because the register layout for each UART is
identical, the relevant assembly code uses indirect
addressing to access them. Either UART1_BASE or
UART2_BASE is stored into the UARTPTR zero page
variable when SERIALON is called, and all subsequent
calls to serial routines use the specified pointer to
access the current UART.

SERIALON PHA
 PHY

 LDA IOMODE ; What UART are we using?
 CMP #1
 BEQ _UART1
 BCS _UART2

 JMP RAISE_SYS ; Indicate an IO error (should never happen!)

_UART1 LDA #<UART1_BASE ; Running UART 1
 STA UARTPTR
 LDA #>UART1_BASE
 STA UARTPTR+1

 BRA _INIT

_UART2 LDA #<UART2_BASE ; Running UART 2
 STA UARTPTR
 LDA #>UART2_BASE
 STA UARTPTR+1

_INIT LDA #0

 LDY #UART_RXTL ; Clear out buffer registers
 STA (UARTPTR),Y

 LDY #UART_TXHD

177

SERIALON configures a UART to transmit and receive.

Turning off serial communications is somewhat
simpler, as it only waits for any pending bytes to be
transmitted and then turns off the UART. The check for
transmitting data is a two-step process, ensuring that
the transmit buffer is empty, then checking to ensure
no byte is currently stored and being sent out.

SERIALOFF turns off serial communication.

 STA (UARTPTR),Y

 LDA IOBAUD ; Set baud rate
 AND #$0F
 LDY #UART_CNTL
 STA (UARTPTR),Y

 LDA #01 ; Enable UART
 LDY #UART_CMND
 STA (UARTPTR),Y

 LDY #UART_STAT ; Wait for UART to start up
_WAIT LDA (UARTPTR),Y
 AND #$40
 BEQ _WAIT

 PLY
 PLA

 RTS ; All done

SERIALOFF PHA
 PHY

 LDA IOMODE ; Special check in case this was called incorrectly
 BEQ _DONE

_WAITBUF LDY #UART_TXHD ; Wait for any pending characters to transmit
 LDA (UARTPTR),Y
 LDY #UART_TXTL
 CMP (UARTPTR),Y
 BNE _WAITBUF

 LDY #UART_STAT ; Wait for any pending byte to be sent out
_WAITBIT LDA (UARTPTR),Y
 AND #$10
 BNE _WAITBIT

_SHUTOFF LDA #0
 LDY #UART_CMND
 STA (UARTPTR),Y ; Clear bit to stop UART

 LDY #UART_STAT
_WAITOFF LDA (UARTPTR),Y ; Wait for UART to stop
 AND #$40
 BNE _WAITOFF

_DONE PLY
 PLA

 RTS

178

To transmit data, the SERIALPUT routine is called
with a single byte. The routine checks to see if there's
room in the transmit ring buffer, and if not, blocks until
a space exists in the buffer. Once a space exists, the
byte is added to the buffer and the head position of
the buffer incremented. Calling this routine when a
UART is not running will cause the routine to block
indefinitely once the buffer is full.

The SERIALPUT routine enqueues bytes for
transmission.

Receiving data is handled by the SERIALGET routine.
It checks whether a byte exists in the receive ring
buffer, and if so, copies the byte and increments the
receive buffer's tail position to consume it. If no byte
exists, the routine returns without any action being

SERIALPUT PHA
 PHX
 PHY

 PHA ; Preserve character to store

_WAIT LDY #UART_TXHD ; Get current head position
 LDA (UARTPTR),Y

 INC A ; Increment by one (to test if overflow)
 AND #$07

 LDY #UART_TXTL ; Compare to current tail position (equals means we overflow!)
 CMP (UARTPTR),Y
 BEQ _WAIT

 TAX ; Store new head position (we'll need it really soon)

 LDY #UART_TXHD ; Use current head position to calculate offset
 CLC
 LDA (UARTPTR),Y
 ADC #UART_TXBF
 TAY

 PLA ; Store character in buffer
 STA (UARTPTR),Y

 LDY #UART_TXHD ; Update head position
 TXA
 STA (UARTPTR),Y

 PLY
 PLX
 PLA

 RTS

179

taken. Because a value of zero would be valid, the
65C02's carry flag is used to indicate whether or not a
byte was read. Unlike the SERIALPUT routine, this
routine won't block if the UART wasn't turned on, but
neither will it read any data.

The SERIALGET routine reads a byte from the receive
buffer.

SCREEN OUTPUT

Cody BASIC has a set of routines to handle text
output to the screen. Similar in some ways to a
terminal device, the routines not only display

SERIALGET PHY

 LDY #UART_STAT ; Get current control register
 LDA (UARTPTR),Y

 BIT #$06 ; Test that no error bits are set
 BNE _SYS

 LDY #UART_RXTL ; Get current tail position
 LDA (UARTPTR),Y

 LDY #UART_RXHD ; Compare to head position
 CMP (UARTPTR),Y

 BEQ _EMPTY ; If they match then the buffer is empty

 CLC ; Calculate the buffer position and read the character
 ADC #UART_RXBF
 TAY
 LDA (UARTPTR),Y

 PHA ; Keep the character around for later

 LDY #UART_RXTL ; Update tail position since we read from the buffer
 LDA (UARTPTR),Y
 INC A
 AND #$07
 STA (UARTPTR),Y

 PLA ; Pull the character we read off the stack

 PLY
 SEC ; Set carry to indicate a character was read
 RTS

_EMPTY PLY
 CLC ; Clear carry to indicate no character read
 RTS

_SYS JMP RAISE_SYS ; Indicate we detected an IO error

180

characters but will move the cursor location, clear the
screen, and change the foreground and background
colors of text based on control codes. The SCREENPUT,
SCREENDEL, SCREENCLR, SCREENADV, and
SCREENPOS routines contain the necessary code for
screen output.

Screen display routines share a few zero page
variables that encapsulate the current state of screen
output. The cursor position is actually represented two
different ways. The CURCOL and CURROW zero-page
variables contain the current x and y coordinates of the
cursor, while the CURSCRPTR and CURCOLPTR values
point to the corresponding positions in screen and
color memory. Because the routines also allow
changes to foreground and background colors, another
zero-page variable, CURATTR, contains the current
foreground and background colors to use for new
output.

The SCREENPUT routine displays a single character
on the screen at the current cursor position. It also
takes into account special control codes that change
the foreground and background colors or clear the
screen, and must also account for scrolling the screen
when the cursor reaches the bottom.

181

Excerpt showing control codes handled by
SCREENPUT.

Like other screen routines, it also has to ensure that
certain critical sections of code aren't changed by the
timer interrupt, which could happen if the user
attempts to break out of the program. If this happened
at a particularly bad time, internal variables related to
the cursor position could be corrupted. This would
cause future output to be broken and could potentially
have knock-on effects for the rest of the system,
particularly if the values of the pointers are corrupted.

SCREENPUT CMP #CHR_CLEAR ; Clear screen
 BEQ _CLR

 CMP #CHR_REVERSE ; Reverse field
 BEQ _REV

 CMP #CHR_NL ; Newline (advance screen)
 BEQ _NL

 CMP #$F0 ; Foreground color special character
 BCS _FG

 CMP #$E0 ; Background color special character
 BCS _BG

 PHP ; Store flags and disable interrupts (cursor/pointer updates are critical section)
 SEI

 STA (CURSCRPTR) ; Store the character in the screen buffer

 PHA ; Store the cursor attribute in the color memory buffer
 LDA CURATTR
 STA (CURCOLPTR)
 PLA

 INC CURSCRPTR+0 ; Increment screen memory location
 BNE _ATTR
 INC CURSCRPTR+1

_ATTR INC CURCOLPTR+0 ; Increment color memory location
 BNE _DOIT
 INC CURCOLPTR+1

_DOIT LDA CURCOL ; Increment the cursor x position
 INC A
 STA CURCOL
 CMP #40
 BNE _INT

 STZ CURCOL ; Increment the cursor y position (when needed)
 LDA CURROW
 INC A
 STA CURROW
 CMP #25

182

Critical section in SCREENPUT that writes a character.

When the user is typing and wants to delete a
character, we need to have a way to remove it from the
screen. In this situation SCREENDEL is called, which
clears the screen content for the cursor and the
previous position. To ensure everything matches up, it
also moves the cursor position and memory pointers
back by one, also taking into consideration the
possibility that the cursor went back an entire line. This
routine is needed by READKBD when the user wants to
delete part of their newly-typed input.

 BNE _INT

 STZ CURCOL ; Move the cursor to the start of the last row (0, 24)
 LDA #24
 STA CURROW

 PLP ; Out of critical section, copying memory can take a lot of cycles

 JMP _SCR ; Jump to scroll the memory (moved outside to make branches fit)

_INT PLP ; Pull processor flags to re-enable the previous interrupt status

SCREENDEL PHA

 DEC CURCOL ; decrement column
 BPL _DEL
 LDA #39 ; wrapped to previous column
 STA CURCOL
 DEC CURROW ; decrement row since we wrapped around
 BPL _DEL
 STZ CURCOL ; wrapped off screen, need to correct that
 INC CURROW
 BRA _DONE

_DEL LDA #$20 ; clear current cursor position
 STA (CURSCRPTR)
 SEC ; subtract one from the cursor pointer
 LDA CURSCRPTR+0
 SBC #1
 STA CURSCRPTR+0
 LDA CURSCRPTR+1
 SBC #0
 STA CURSCRPTR+1
 LDA #$20 ; replace the character with the current cursor attributes to clear it
 STA (CURSCRPTR)

 LDA CURATTR ; clear current cursor position
 STA (CURCOLPTR)
 SEC ; subtract one from the cursor pointer
 LDA CURCOLPTR+0
 SBC #1
 STA CURCOLPTR+0
 LDA CURCOLPTR+1
 SBC #0
 STA CURCOLPTR+1
 LDA CURATTR ; replace with the current cursor attributes to clear it
 STA (CURCOLPTR)

183

SCREENDEL deletes a character and handles related
calculations.

Other routines also exist to handle particular
aspects of screen output. The SCREENADV routine
advances the screen by a single line, while
SCREENPOS moves the cursor position and memory
pointers based on new column and row coordinates.
SCREENCLR clears the contents of screen memory and
sets the contents of color memory, also moving the
cursor back to the top of the screen. These routines are
used within the codebase to handle special output
needs.

_DONE PLA

 RTS

SCREENCLR PHA

 PHP ; Disable interrupts (critical section)
 SEI

 STZ CURCOL ; Reset the cursor x and cursor y to (0, 0)
 STZ CURROW

 STZ TABPOS ; Reset tab position

 LDA #<SCRRAM ; Reset the cursor pointer to the start of text memory
 STA CURSCRPTR+0
 LDA #>SCRRAM
 STA CURSCRPTR+1

 LDA #<COLRAM ; Reset the cursor color pointer to the start of color memory
 STA CURCOLPTR+0
 LDA #>COLRAM
 STA CURCOLPTR+1

 PLP ; Restore interrupts (critical section)

 LDA #<SCRRAM ; Fill the contents of text memory with spaces
 STA MEMDPTR+0
 LDA #>SCRRAM
 STA MEMDPTR+1
 LDA #<1000
 STA MEMSIZE+0
 LDA #>1000
 STA MEMSIZE+1
 LDA #$20
 JSR MEMFILL

 LDA #<COLRAM ; Fill the contents of color memory with the current attribute
 STA MEMDPTR+0
 LDA #>COLRAM
 STA MEMDPTR+1
 LDA #<1000
 STA MEMSIZE+0
 LDA #>1000

184

SCREENCLR clears the screen and moves the cursor
back to the top left.

 STA MEMSIZE+1
 LDA CURATTR
 JSR MEMFILL

 PLA

 RTS

185

Assembly Instructions

4

INTRODUCTION

This chapter describes how to build your own Cody
Computer, including the assembly of a small
mechanical keyboard, the main printed circuit board,
and the computer's case. Each part is broken out into
its own section, and inside each section the assembly is
broken into multiple steps. Photos are also provided to
point out aspects of the assembly process. You should
read the chapter in its entirety before beginning the
build.

Just because something worked well for me
doesn't mean it will work as well for you. As you
go through the build, you'll want to consider what
you're doing and evaluate your own results. The
Cody Computer is more like a garage kit,
particularly with the 3D printing side, so you'll
want to build accordingly.

NOTES ON 3D PRINTING

The Cody Computer is heavily dependent on 3D
printing for its construction, so you will need to either
print the parts yourself or find someone who can print
them for you. When developing the Cody Computer
we were able to print all the parts on a more or less
stock Ender 3 Pro, with the only major modifications
being a glass bed and an eventual extruder
replacement.

188

Because of differences between 3D printers, you
may need to make adjustments to obtain suitable
results. It's assumed your printer is dialed in with a
reasonably high level of accuracy. If not you should be
comfortable making your own adjustments to the
printer and ensuring the fit of finished parts as they
come off. The OpenSCAD design files are also
provided if you need to make major adjustments to
some of the dimensions for the build.

It's also worth planning the order in which you print
the parts. One option is to print the parts for each step
as needed, checking for proper fit at that time. Another
option is to print the parts up front, perhaps even
batching some of them together, and perform many of
the basic test-fits up front as well. Whatever approach
you use, make sure that you perform the test fits
mentioned in the various assembly steps. If you decide
to group your prints together by color, see the
following:

Black PLA filament (Hatchbox Black, Inland Black,
or equivalent):

Alphanumeric keycaps (KeycapA.stl
through KeycapZ.stl)
Cody keycap (KeycapCody.stl)
Meta keycap (KeycapMeta.stl)
Arrow keycap (KeycapArrow.stl)
Spacebar (Spacebar.stl)
Keyboard plate (KeyboardPlate.stl)
Case badge (CaseBadge.stl)
LED holder (LEDHolder.stl)
Left mounting bracket
(KeyboardBracketWithoutHoles.stl)

•

◦

◦
◦
◦
◦
◦
◦
◦
◦

189

Right mounting bracket
(KeyboardBracketWithHoles.stl)

Beige PLA filament (Inland Light Brown or
equivalent):

Case top (CaseTop.stl)
Case bottom (CaseBottom.stl)

White PLA (if using paint) or various color PLA:
Case badge inlay, red (CaseBadgeInlay.stl)
Case badge inlay, orange
(CaseBadgeInlay.stl)
Case badge inlay, yellow
(CaseBadgeInlay.stl)
Case badge inlay, green
(CaseBadgeInlay.stl)
Case badge inlay, blue
(CaseBadgeInlay.stl)

When printing consider the orientation of the parts
on the print bed. For large pieces such as the case top
and bottom, we printed them upside down to avoid the
large overhead of supports for such pieces. The
keyboard brackets were printed upright despite a need
for some supports to avoid dimensionality problems
for the magnet and screw pilot holes. Keycaps were
printed face-down on a glass bed with good leveling
to minimize gaps for later application of the air-dry
clay.

◦

•

◦
◦

•

◦
◦

◦

◦

◦

190

A Creality Ender 3 Pro printing the Cody Computer's
case top. Note the upside-down print orientation to
avoid printing supports.

Also consider the infill and resolution settings when
you run the STL files through your slicer. For parts with
very specific dimensional requirements, such as the
keycaps and their stems, use a standard or high
resolution. For larger parts that take a long time and
require significant strength, such as the case top and
bottom, consider a lower resolution or draft print. You
will want to take into account your own printer's
characteristics and your tolerance for long builds when
making such decisions.

KEYBOARD ASSEMBLY

Your first step in building the Cody Computer is to
assemble its keyboard module. It's a good place to
start because it combines all the things you'll need to

191

do in later steps, from 3D printing (with reasonably
tight tolerances) to soldering up a circuit board.

If you have any problems in this step, it may
indicate that you want to work them out before going
on to later steps. For example, if your printer isn't
calibrated enough or you need to make your own
adjustments to the design files, there's a good chance
you'll find that out here. Likewise, if you run into
problems with soldering, it's better to solve those
problems now before you start soldering the main
logic board. In general, the keyboard is going to be a
lot more forgiving of mistakes.

MAKING THE KEYCAPS

In this step we'll print out and make the keycaps for
the keyboard. The keycaps have Cherry MX compatible
stems, but they have a smaller spacing, so you can't
use standard keycaps with the Cody Computer. There
are 30 keycaps including a spacebar key.

Many early computer keycaps were manufactured
using "double-shot" injection moulding. This meant
that one color of plastic was shot into the mould for
the keycap itself, while a second color of plastic was
shot into the mould for the legend on it. You can do
something similar with 3D printing in multiple colors
(and we actually did that as well), but we obtained the
best results using air-dry clay deposited into recessed
legends in the 3D printed keycaps.

192

Before your get too far into the build process,
it's a good idea to print a single keycap and test
the fit against one of the Cherry MX switches if
you haven't done so already. If adjustments are
needed to your printer or to the OpenSCAD
models to work with your printer or keyswitches,
you want to do that before you've made a useless
set of keycaps.

For this step, you'll need the following:

26 alphanumeric keycaps (KeycapA.stl through
KeycapZ.stl)
1 Cody keycap (KeycapCody.stl)
1 Arrow keycap (KeycapArrow.stl)
1 Meta keycap (KeycapMeta.stl)
1 Spacebar keycap (Spacebar.stl)
White air-dry clay (Sculpey Air-Dry or
equivalent)
Wet cloth
Dry cloth

Before beginning the assembly, wash and dry the
keycaps. This will help the air-dry clay adhere to the
plastic. Once the keycaps are dry, do the following for
each keycap except the spacebar:

Take a small amount of air-dry clay and roll it
into the keycap legend.
Wipe away the excess from the keycap using
your finger.

•

•
•
•
•
•

•
•

1.

2.

193

Clean up any remainder from the keycap surface
with the wet cloth. Be careful not to wipe away
much of the clay in the legends.
Dry off the top of the keycap by gently blotting
with the dry cloth. Be careful not to dislodge the
clay in the legends.

A close-up of some keycaps after the air-dry clay has
been applied. From left are the Cody key, the Meta
key, and the Arrow key.

MAKING THE KEYBOARD CABLE

You'll also need to make an 11-pin cable to connect
the keyboard to the Cody Computer's main circuit
board. Rather than making a real cable it's a minimal
approach using some jumper wires and electrical tape
to create a cable by taping the connectors together.
One of the actual connectors the cable will connect to

3.

4.

194

is used as a jig to hold the connectors during the
assembly.

For the jumper wire in this step, use the kind that
comes in a strip and can be peeled apart. You're
basically trying to make a custom cable on the cheap,
so if the wires are connected, you can just tape the
connectors together with electrical tape and end up
with a reasonable substitute. Jumper wire like this is
colloquially referred to as "jumper jerky" and can be
found at many retailers.

For this step you'll require only a few parts:

1 11-pin male .100" header, right angle
11 10cm jumper wire with .100" female connector
(from "jumper jerky")
Electrical tape
Scissors

Once you've collected the above, proceed with the
assembly:

Insert one end of the connected jumper wire onto
the right-angle header.
Wrap electrical tape around the female
connectors on that end to secure them together.
Remove the connected jumper wire from the
right-angle header.
Insert the untaped end of the connected jumper
wire onto the right-angle header.
As before, wrap electrical tape around the female
connectors to secure them together.
Remove the cable from the connector.

•
•

•
•

1.

2.

3.

4.

5.

6.

195

The assembled keyboard cable. Note the electrical
tape holding the connectors on each end together.

ASSEMBLING THE KEYBOARD

Once you have the keycaps it's time to build the
keyboard. You need to be careful and follow the steps
in order. You'll be soldering a connector onto a board
that ends up hidden by a keyboard plate. You'll also be
inserting switches through a keyboard plate into a
printed circuit board and then soldering them. If you
do the steps in the wrong order, you'll end up in a
situation where further assembly may be
mechanically impossible.

This step requires the following:

30 keycaps including spacebar
31 keyswitches, 5 pin, PCB mount (Cherry MX or
equivalent)
1 11-pin male .100" header, right angle

•
•

•

196

Keyboard plate (KeyboardPlate.stl)
Keyboard cable
Solder
Soldering iron

Refer to the above caution about following the
assembly steps. As with anything, it's worth going
through the instructions using the parts as a dry run,
making sure you understand what you're doing. When
adding the spacebar keycap, equal force on both
switches is necessary, and you may need to sand the
interior of the spacebar to avoid jamming. When
you're ready, assemble the keyboard module through
the following steps:

Solder the 11-pin right angle male connector to
J1. Ensure the connector is flat and the solder
joints are good.
Place the keyboard plate over the keyboard
printed circuit board. Ensure the notch in the
keyboard plate aligns with the connector.
Insert the Cherry MX switches into the circuit
board through the keyboard plate. Ensure the
keyswitches are fully seated into the circuit board
and hold the plate securely.
Solder each of the keyswitches to the circuit
board.
Press each of the keycaps onto the appropriate
switch. Use the photo below to determine the
location for each key.
Connect one end of the keyboard cable to
connector J1. The cable should fit through the
notch in the keyboard plate.

•
•
•
•

1.

2.

3.

4.

5.

6.

197

The back of the assembled keyboard. Note the
placement of the printed circuit board inside the
keyboard plate with the keyswitches soldered from the
bottom. Also note connector J1 soldered from the now-
hidden front of the board, now with attached keyboard
cable.

198

The front of the assembled keyboard. Use this photo
as a reference when placing the keycaps.

PRINTED CIRCUIT BOARD
ASSEMBLY

The next step is to assemble the printed circuit
board for the Cody Computer. This board is the
motherboard or logic board for the entire computer,
containing all the chips and discrete components
necessary for the computer to run (with the exception
of the keyboard).

It's important to proceed with the assembly
methodically and use good soldering technique at
each step. Ensure that components are held to the
board by a clamp or piece of tape if needed and check
for cold solder joints or solder bridges.

199

INSTALLING INTEGRATED CIRCUIT SOCKETS

To begin we'll install the sockets for the integrated
circuits. Rather than solder the chips directly to the
board, we install sockets and add them at a later step.
While unlikely to ever happen, this makes it easier to
replace one of them if something goes wrong. It also
makes it less likely to mess one of them up while
soldering, as they're not installed until the end. This
step requires:

3 40-pin wide DIP sockets
1 32-pin wide DIP socket
1 20-pin DIP socket
1 16-pin DIP socket
1 8-pin DIP socket

When installing the sockets, note if your socket
contains a notch, dot, half-circle, or other identifier to
indicate the top of the IC. If so, ensure they are rotated
the same way as the silkscreen on the printed circuit
board. Once the sockets have been collected, proceed
with the assembly:

Solder a 40-pin wide DIP socket into U3 rotated
180 degrees.
Solder a 40-pin wide DIP socket into U5 rotated
180 degrees.
Solder a 40-pin wide DIP socket into U7 rotated
180 degrees.
Solder the 32-pin wide DIP socket into U6.
Solder the 20-pin DIP socket into U1 rotated 180
degrees.

•
•
•
•
•

1.

2.

3.

4.
5.

200

Solder the 16-pin DIP socket into U8 rotated 90
degrees counterclockwise.
Solder the 8-pin DIP socket into U4.

The printed circuit board with the IC sockets soldered
in. Note the varying orientations and corresponding
notches in the IC sockets.

INSTALLING DIODES

In this step we'll install the diodes for the joystick
ports. The Cody Computer uses the same circuit to
read the joystick ports as it does to scan the keyboard.
Without these diodes, the joystick ports could interfere
with each other, causing false reads when both
joysticks are in use. You will need:

10 1N4148 small-signal diodes

Note that diodes have a polarity. This means that if
you solder them in backwards, they won't work as

6.

7.

•

201

expected. Each diode has a stripe on it indicating the
diode's cathode, and this should be aligned to the
corresponding stripe on the silkscreen. Proceed with
the assembly starting in order on the PCB:

Solder 1N4148 diodes into D5, D3, D2, D1, D4, D9,
D6, D7, D8, and D10.

The diodes soldered next to U7 and the future joystick
port connectors. Note the stripes and their orientation.

INSTALLING DECOUPLING CAPACITORS

Next we'll install the decoupling capacitors. These
are small capacitors that help filter out tiny blips in the
Cody Computer's power supply and ensure reliable
operation. They're located next to the power supply
pins for the integrated circuits. (One of these, C6, is
actually part of the audio circuit, but as it has the same

1.

202

capacitance value, we include it in this step.) You'll
need the following:

9 0.1µF ceramic capacitors (KEMET
C315C104K1R5TA or equivalent)

These are ceramic capacitors and have no polarity,
so you don't have to worry about the direction you
solder them in (other than, perhaps, for aesthetic
purposes). Make sure you solder all of the following:

Solder 0.1µF ceramic capacitors into C1, C2, C6,
C3, C4, C8, C9, C10, and C11.

The board with decoupling capacitors (plus C6, part of
the audio circuit) installed.

INSTALLING THE EXPANSION CONNECTOR

The Cody Computer has an expansion port for DIY
experiments, cartridges, or third-party peripherals.

•

1.

203

The mechanical connection is a 20-pin right angle .
100" female connector. For this step you'll need the
following:

1 Raspberry Pi Pico stackable header

Because of their ubiquity, we use one from a set of
stackable Raspberry Pi Pico headers (the kind with the
long pins) and bend it to fit. Note that the port isn't
electrically compatible. We're just using the header,
and any standard right-angle female header cut to
size would also suffice. For this step do the following:

Insert the stackable header into J6 and bend until
aligned with the board edge.
Solder the stackable header to J6.

The board with the Raspberry Pi Pico stackable header
bent into place and soldered.

•

1.

2.

204

INSTALLING PULL-UP RESISTORS

In this step we'll install several pull-up resistors.
Most of these are used by the keyboard matrix, but
there are also others. R2 is used to pull up the
Propeller's RESET pin, R3 is used as a pull-up for I2C
EEPROM communication, and R8 pulls the 65C02's
RDY pin high to protect it in the event of a wait-for-
interrupt instruction. This step requires the following
resistors:

8 10kΩ (brown-black-orange) resistors, 1/4 watt,
5% tolerance
1 3.3kΩ (orange-orange-red) resistors, 1/4 watt,
5% tolerance

Installation should proceed as follows:

Solder 10kΩ resistors to R3, R9, R10, R11, R12, and
R13.
Solder 10kΩ resistors to R2 and R14 in a vertical
orientation (see photo).
Solder the 3.3kΩ resistor to R8.

•

•

1.

2.

3.

205

A close-up of some of the resistors after being
soldered to the board. Note the vertical orientations of
R2 and R14.

INSTALLING POWER SUPPLY COMPONENTS

The Cody Computer's power supply circuit is located
at the top right of the printed circuit board. It consists
of a voltage regulator, a large electrolytic capacitor,
some connectors, and a resistor. This step requires the
following parts:

1 LM2937ET-3.3 voltage regulator IC
1 1000µF electrolytic capacitor (Rubycon
10ZLH1000MEFC8X16 or equivalent)
1 1kΩ (brown-black-red) resistor, 1/4 watt, 5%
tolerance
1 2.0x6.5mm DC barrel jack (CUI PJ-102A or
equivalent)
1 2-pin male .100" vertical header

•
•

•

•

•

206

The voltage regulator needs to be bent at a 90-
degree angle so that the body and heat sink match the
silkscreen on the circuit board. The electrolytic
capacitor is polarized and must be installed according
to the silkscreen. For this assembly step do the
following:

Solder the LM2937ET-3.3 to U2. Ensure the IC is
placed and bent horizontally as shown in the
photo.
Solder the 1000µF capacitor to C5. Verify the
longer lead is on the positive side and the stripe
on the case is on the negative side, following the
silkscreen.
Solder the 1kΩ resistor to R1.
Solder the DC barrel jack to J1.
Solder the male header pins to J2.

1.

2.

3.
4.
5.

207

The power supply circuit including the horizontally-
aligned voltage regulator and properly-oriented
electrolytic capacitor. Also note the DC barrel jack.

INSTALLING PROPELLER COMPONENTS

There are still some discrete components to install
for the Propeller. These include a 5 MHz crystal that
serves as the Propeller's external clock signal as well
as some resistors and capacitors used for audio and
video output. This step uses the following:

1 5Mhz 20pF HC-49/US crystal (ECS
ECS-50-20-4X or equivalent)
1 10µF electrolytic capacitor (KEMET
ESL106M050AC3AA or equivalent)
1 1.1kΩ (brown-brown-red) resistor, 1/4 watt, 1%
tolerance
1 560Ω (green-blue-brown) resistor, 1/4 watt,
1% tolerance

•

•

•

•

208

1 270Ω (red-violet-brown) resistor, 1/4 watt, 1%
tolerance
1 220Ω (red-red-brown) resistor, 1/4 watt, 1%
tolerance

Once you've found all the components solder the
following:

Solder the 20pF crystal to Y1.
Solder the 1.1kΩ resistor to R6.
Solder the 560Ω resistor to R5.
Solder the 270Ω resistor to R4.
Solder the 220Ω resistor to R7.
Solder the 10µF capacitor to C7.

The extra components needed for the Propeller. To the
left of the socket, note from the top the crystal
oscillator, video DAC resistors, and capacitors and
resistor for the audio circuit.

•

•

1.
2.
3.
4.
5.
6.

209

INSTALLING ADDITIONAL REAR
CONNECTORS

In this step we'll finish adding the remaining
connectors along the back of the Cody Computer.
These include the audio and video jacks, a jumper used
for firmware programming, and a four-pin connector
wired into the Propeller as a serial port. The RCA jack
colors are not required but are specified to help tell
the video and audio jacks apart once the Cody
Computer is assembled. You'll need the following
parts for this step:

1 RCA jack, black color (CUI RCJ-011 or
equivalent)
1 RCA jack, yellow color (CUI RCJ-014 or
equivalent)
1 2-pin male .100" header, vertical
1 4-pin male .100" header, right-angle

Add the following connectors:

Solder the 4-pin right-angle male header to J3.
Solder the 2-pin vertical male header to JP1.
Solder the black RCA jack to J5.
Solder the yellow RCA jack to J4.

•

•

•
•

1.
2.
3.
4.

210

Additional connectors on the back of the Cody
Computer. Note from left to right the NTSC video
output jack, audio output jack, jumper pins (without
jumper attached), and Propeller Plug connector.

INSTALLING KEYBOARD AND JOYSTICK
CONNECTORS

In this step we'll add the connectors for the joystick
ports and the keyboard. The DB9 connectors used for
the joystick ports as they must have a very specific
shape to fit in the alloted space on the board. When
ordering you should check the mechanical diagrams to
ensure the parts will actually fit. Collect the following:

2 male DB9 connectors, .318" footprint (NorComp
182-009-113R531 or equivalent)
1 11-pin male .100" header, vertical

•

•

211

Solder the remaining components:

Solder the 11-pin vertical male header to J7.
Solder the two male DB9 connectors to J8 and J9.

The Cody Computer's keyboard connector soldered at
the bottom of the board.

1.
2.

212

The Cody Computer's joystick ports soldered along the
right side of the board.

POWER TEST

Now that the printed circuit board has been
assembled (except for inserting the ICs), we can begin
to test the circuit. We'll start by testing the power
supply to ensure we're getting the expected 3.3 volts.
If we're not, it's likely a sign of a solder bridge, PCB
problem, or an issue with the power supply. It's better
to find that out before we insert any chips into their
sockets. For this step you will need:

5-volt (or similar) DC power supply with 5.5mm
x 2.1mm connector
Voltmeter/multimeter

Any wall-wart transformer or power supply with a
suitable plug and an output voltage of 5V (or slightly

•

•

213

above) should work well for this test. To test the circuit
do the following:

Ensure the printed circuit board is resting on a
nonconductive surface.
Plug the power supply's barrel plug into the DC
power jack on the circuit board.
Connect the power supply into a wall outlet.
Use your voltmeter to measure the voltage
across pins 1 (GND) and 2 (3.3V) on the
expansion port.
Verify the voltage is 3.3V or very close to it.
For advanced builders, find the power supply
pins on some of the IC sockets, and test those
also.
Disconnect the power supply.

If the test fails, check the power supply circuit on the
printed circuit board. Also check the voltage from the
DC power supply is correct. If none of this yields a
result, examine the rest of the printed circuit board for
defective traces or solder bridges.

1.

2.

3.
4.

5.
6.

7.

214

Use a voltmeter to check that the output from the
power supply circuit is correct. You should measure a
steady voltage around 3.3 volts.

FIRMWARE PROGRAMMING

In this step we'll program the Propeller's firmware.
To do so you'll need to insert the first two integrated
circuits, the Propeller and its 32-kilobyte EEPROM,
into the matching sockets on the board. Once you've
done that you'll use Propeller software to write the
program into the EEPROM. Before you begin, you'll
want to download the software (Propeller IDE or
similar) for your computer and familiarize yourself
with it.

Also pay attention to the jumper JP1 during
assembly. When closed, the Propeller's reset pin
connects to the Prop Plug's reset pin, allowing the Prop
Plug to reset the Propeller and enter programming
mode. When open, the two are disconnected and the

215

Propeller's reset pin is held high. The latter
configuration is the normal mode of operation, but
you'll want to remember the jumper exists in case you
ever program your own custom firmware.

You will need the following for this step:

1 Propeller P8X32A integrated circuit (DIP-40)
1 24LC256 32-kilobyte I2C EEPROM or
equivalent (DIP-8)
1 Prop Plug with USB cable
1 2-pin jumper/shunt (Harwin M7583-46 or
equivalent)
Computer running Propeller IDE (or similar
programming software)

When inserting the integrated circuits, ensure that
they're fully seated into their sockets and none of the
pins are bent.

The exact steps for programming the firmware will
differ depending on the IDE you use, so you will need
to refer to the tool's documentation for exact steps.
The overall procedure will be the same:

Ensure power is turned off to the printed circuit
board.
Insert the Propeller IC into U3 rotated 180
degrees.
Insert the 24LC256 I2C EEPROM into U4.
Place the jumper over both pins of JP1.
Plug the Prop Plug into J3. Verify the pinout (the
rightmost pin next to the jumper, pin 4, is GND).
Plug the Prop Plug's USB cable into your
computer.
Connect power to the printed circuit board.

•
•

•
•

•

1.

2.

3.
4.
5.

6.

7.

216

Launch your Propeller software (for example,
Propeller IDE).
Open the main firmware (cody_computer.spin)
and write it.
Verify that the software states the program was
successfully written.
Turn off power to the printed circuit board.
Unplug the Prop Plug from J3.
Remove the jumper. To avoid losing it reattach to
only 1 pin on JP1.

If your programming software doesn't recognize the
Prop Plug, try disconnecting and reconnecting the
cable and/or Prop Plug. If that does not work, ensure
that the programming software has permissions to the
Prop Plug's USB. If programming the Propeller fails,
check the solder connections and ensure the Propeller
and its EEPROM are properly seated in their sockets.
Also ensure the jumper is correctly attached.

8.

9.

10.

11.
12.
13.

217

The Prop Plug connected to the serial port on the
printed circuit board. Note jumper JP1 in the firmware
programming position with both pins covered.

INSTALLING THE INTEGRATED CIRCUITS

In this step we'll insert the remaining ICs into their
sockets. It's very important to make sure that power is
disconnected for this step. You will need:

1 74HC541 octal line driver (DIP-20)
1 W65C02 microprocessor (DIP-40)
1 AS6C1008 128-kilobyte static RAM (DIP-32)
1 W65C22 Versatile Interface Adapter (DIP-40)
1 CD4051 1-of-8 analog multiplexer (DIP-16)

It's also very important to check that the orientation
of the integrated circuits matches the silkscreen. Many
of the ICs are installed rotated by 90 or 180 degrees.

•
•
•
•
•

218

As before, make sure that each IC goes into the socket
fully with no bent pins. Insert the ICs as follows:

Insert the 74HC541 into U1. Note U1 is rotated
180 degrees.
Insert the W65C02 into U5. Note U5 is rotated
180 degrees
Insert the AS6C1008 into U6.
Insert the W65C22 into U7. Note U7 is rotated
180 degrees
Insert the CD4051 into U8. Note U8 is rotated 90
degrees counterclockwise.

Close up of several integrated circuts securely
inserted into their sockets. Note the differing
orientations and how the notches on the ICs match with
the sockets and silkscreen markings.

1.

2.

3.
4.

5.

219

CASE ASSEMBLY

Once the printed circuit board and keyboard have
been assembled, it's time to begin assembling the
Cody Computer's case. We'll start with the top of the
case and its components, including the case badge and
power LED. From there we'll assemble the rest from
the bottom up, installing the printed circuit board and
keyboard brackets into the case bottom. Once the
bottom portion is finished we'll attach the keyboard to
it as well, connecting the keyboard cable to the main
printed circuit board. Lastly, we'll affix magnets to hold
the case together, connect the power LED, and finish
our assembly.

CASE BADGE ASSEMBLY

First we'll assemble the case badge. You should
have already printed the case badge and the case
badge inlays before beginning this step. Note that if
you didn't print the case badge inlays in different
colors, you'll have to paint them as part of this
assembly step. For this step you'll need:

1 case badge (CaseBadge.stl)
5 case badge inlays (CaseBadgeInlays.stl)
White air-dry clay
Cyanoacrylate glue
Optional: Paint (red, orange, yellow, green, and
blue) for inlays

•
•
•
•
•

220

Once you're prepared and have collected the parts,
proceed with the following:

Wash and dry the case badge and case badge
inlays. This will help the air-dry clay (and paint if
needed) adhere to the plastic.
Test-fit the case badge inlays into the slots on
the case badge. Sand if necessary.
Insert air-dry clay into the "CODY" legend on the
case badge. Wipe away excess with a cloth and
water.
If the inlays were not printed using color
filaments, paint the inlays (red, orange, yellow,
green, and blue).
Allow the air-dry clay to dry completely. If you
painted the inlays, allow these to dry then
remove any paint from the gluing surfaces.
Glue the inlays into the case badge slots (top:
red, orange, yellow, green, and blue).

1.

2.

3.

4.

5.

6.

221

An almost-completed Cody Computer case badge.
Air-dry clay was pressed into the legend and all but
the blue inlay have been glued into place.

POWER LED ASSEMBLY

Next we need to assemble the power LED. We're
going to solder some leads to the LED and make some
other adjustments so that it can be inserted into the
Power LED holder. It may be helpful to refer to the
attached photo. This step requires the following parts
and tools:

1 10mm LED (blue)
1 10cm jumper wire with .100" female connector
Electrical tape
Solder
Soldering iron
Scissors
Wire cutters

•
•
•
•
•
•
•

222

Sharpie (or other marker)

The assembly steps are as follows:

Bend the female jumper wire into two equal
lengths and secure the connector end with the
tape.
Cut the jumper wire into two pieces at the bend
and strip two or three millimeters from the cut
ends.
Twist and affix the wire ends onto the LED leads,
marking the wire connected to the cathode
(longer lead).
Solder the wire ends to the LED leads, then trim
the excess from the soldered LED leads.
Wrap some electrical tape around the soldered
portions of the leads to prevent shorts.

The power LED soldered to the jumper wire and female
connector.

•

1.

2.

3.

4.

5.

223

CASE TOP ASSEMBLY

Once the case badge and power LED are ready, we
can attach them to the top of the case. In this step we'll
glue the case badge and power LED holder to the case,
then place the power LED in the holder. You'll need the
following:

1 case top (CaseTop.stl)
1 LED holder (LEDHolder.stl)
1 assembled case badge
1 assembled LED with connector
Cyanoacrylate glue

After collecting the parts proceed with the
assembly:

Test-fit the power LED in the power LED holder. It
should fit without a great deal of force.
Glue the case badge into the rectangular slot on
the case top.
Glue the LED holder (without the LED) into the
round slot on the case top.
Allow the glue to dry.
Place the LED into the LED holder from the front.
Don't worry if the LED is too loose as we'll be
removing it temporarily in a following assembly
step.

•
•
•
•
•

1.

2.

3.

4.
5.

224

The case badge being glued into the case top. The LED
holder is visible in the background.

The power LED being inserted into the LED holder from
the front.

225

CASE BOTTOM ASSEMBLY

In this step we assemble the bottom portion of the
case including the printed circuit board and keyboard
brackets. This step is somewhat trick as it involves
lining up the brackets, board, and case bottom in an
inverted position, then screwing the case bottom to the
brackets. For this portion you will require:

1 case bottom (CaseBottom.stl)
1 left mounting bracket
(KeyboardBracketWithoutHoles.stl)
1 right mounting bracket
(KeyboardBracketWithHoles.stl)
4 M3 x 10mm self-tapping screws, round/pan
head (US #4 x 3/8")
Screwdriver

Once you have the parts collected, assemble the
bottom of the case:

Place the printed circuit board flat on a table (or
other surface) with the components facing up.
Align the right mounting bracket on to the right
side of the printed circuit board. Test the fit for
the joystick and power connectors.
Align the left mounting bracket on to the left
side of the printed circuit board.
Flip the entire assembly upside down so that the
tops of the brackets are on the table and the
bottom of the board is facing up.
Align the case bottom (upside down) to the top
of the brackets. The rear ports should align with

•
•

•

•

•

1.

2.

3.

4.

5.

226

the slots in the back of the case and the screw
holes should align with those in the brackets.
Screw the parts together ensuring that the
alignment is not disturbed. It may help to screw
in from opposite corners to ensure the case and
brackets remain aligned.

Testing the keyboard bracket's fit with the joystick and
power connectors.

6.

227

Assembling the case bottom, printed circuit board, and
keyboard brackets using screws.

INSTALLING THE KEYBOARD

Once the bottom of the Cody Computer is
assembled the keyboard module must be attached.
The keyboard module's cable must be connected to
the keyboard connector on the main printed circuit
board. Once the cable is connected the keyboard
module must be inserted into place. This step requires:

1 assembled case bottom
1 assembled keyboard module

Proceed with installing the keyboard as follows:

Test-fit the keyboard module ends against the
slots in the brackets. This can be done by sliding
from the outside of the brackets.

•
•

1.

228

Ensure that the keyboard cable is snugly
attached to the connector on the keyboard
module.
Note the wire that corresponds to pin 1 on the
keyboard module side of the conector.
Identify the matching pin 1 annotation on the
main printed circuit board.
Attach the keyboard connector to the main
printed circuit board. The cable will need to be
twisted around to line up.
Ensure the keyboard connector is still snugly
attached to both connectors.
Slide the keyboard into the slots in the brackets
from the inside, first one side, then the other.
Line up the sides of the keyboard module with
the sides of the brackets.

Connecting the keyboard to the main printed circuit
board. Note the intentional twist in the cable.

2.

3.

4.

5.

6.

7.

8.

229

Sliding the keyboard module into the mounting slots
on the brackets. Start with one side and then slide in
the other.

INSTALLING MAGNETS

The case is held together with a set of eight rare-
earth magnets to permit easy access. As an
educational computer, the intention is to make it as
open as possible, both metaphorically and literally.
With magnets the case can be opened to show off the
interior. Be careful that your magnets are glued in with
the proper orientation. If you don't the case won't fit
together correctly because the magnets will repel
instead of attract. You'll need the following:

1 assembled case top
1 assembled case bottom
8 8mm x 2mm rare earth disc magnets (US 5/16"
x 5/64")

•
•
•

230

Cyanoacrylate glue

Assembly is rather straightforward except for the
warning about ensuring the magnets are aligned. One
option is to mark each magnet with a Sharpie or other
semi-permanent means. Proceed as follows:

Temporarily remove the power LED from the case
top. Place it in a safe location.
Test-fit the magnets into their holes and the
assembled case with the magnets in place.
Mark one side of each magnet with a marker. Be
sure that you are consistent with the side you are
marking or the case will not attach correctly.
Glue four magnets into the holes in the keyboard
slots with the marked side visible, ensuring that
the magnets are fully inserted. Be careful not to
get glue onto the keyboard by accident.
Glue four magnets into the holes in the case top
with the marked side not visible. Again, ensure
that the magnets are fully inserted.
Allow the glue to dry thoroughly.

•

1.

2.

3.

4.

5.

6.

231

Installing magnets into the case top. Remember that
magnets with opposite orientation need to be installed
into the case bottom as well.

Watch out for the magnets as they're not to be
swallowed by man or beast. If you have issues
with the glue holding them into place, you may
want to try a different adhesive. If this happens,
consider printing an extra part off for testing
purposes.

FINAL ASSEMBLY

Once the keyboard is connected the only remaining
step is to attach the top part of the case to the rest of
the Cody Computer. We'll also have to connect the

232

power LED prior to snapping the case together. You'll
need the two parts of the computer:

1 assembled case top
1 assembled case bottom

The assembly steps are as follows:

Reinsert the power LED into the LED holder on
the case top. If the LED is too loose, the LED leads
can be bent and tape affixed from the bottom to
hold it in place.
Connect the power LED connector to the printed
circuit board. Ensure that the wire you previously
marked as the cathode (the long LED lead) is
aligned to pin 1 on the LED connector.
Align the case top and place it onto the case
bottom and brackets, using the magnets to hold
the case tight. You may need to push on the LED
and/or LED wires to ensure a successful fit
without the LED popping out.

•
•

1.

2.

3.

233

Close-up of the connected power LED and magnets.
Note the magnets on the brackets have their marked
side outward while the magnets on the case have their
marked side inward.

The fully-assembled Cody Computer from the front.
The case is held together with magnets.

234

INITIAL SETUP

Now that the Cody Computer is built, it's time to
plug it in and test it out. You'll need a few last items
that you may have to get from the audiovisual section
of your local store:

RCA video and audio cable (red, white, and
yellow plugs)
RCA audio Y-splitter
DC power supply (from earlier steps)
Inline switch for power supply cable
(recommended)
Television with NTSC composite RCA inputs

You're ready to connect the Cody Computer and
power it up for the first time:

Plug the splitter into the computer's audio port.
Plug the red and white audio cables into the
splitter.
Plug the yellow cable into the computer's video
port.
Plug the red, white, and yellow cables into the TV.
Plug the DC power supply cable into the inline
switch.
Plug the inline switch into the computer's power
jack.
Plug the DC power supply into the wall.
Turn on the television.
Flip the inline switch to turn on the Cody
Computer.

•

•
•
•

•

1.
2.

3.

4.
5.

6.

7.
8.
9.

235

The Cody Computer with audio, video, and power
connected. Note the inline power switch to the right of
the computer.

If all goes well, after a second or two the Cody
Computer will boot into Cody BASIC. You'll see a short
welcome message, the READY prompt, and a blinking
cursor. From here you can learn to program the Cody
Computer as well as load and save programs, all of
which we'll be covering in the next chapters.

236

On startup the Cody Computer boots into Cody BASIC.

237

Using Cody BASIC

5

INTRODUCTION

Now that you have your Cody Computer set up and
running, it's time to learn how to use it. In this chapter
you'll learn the fundamentals of Cody BASIC, the
simple programming language built into the Cody
Computer. Cody BASIC is inspired by Tiny BASIC, a
1970s programming language written for resource-
constrained hobbyist computers. It also has a lot of
influence from Commodore BASIC, a BASIC originally
written by Microsoft and modified by Commodore.
Cody BASIC is a very simple BASIC but it provides a
good starting point for your explorations.

This chapter assumes that you have at least some
programming background. If you don't, you can
probably still follow along, but it won't be as easy. It
doesn't assume any particular familiarity with BASIC
dialects of the 8-bit era, which themselves were quite
different from any modern BASIC you may have
encountered.

USING THE KEYBOARD

You'll be using the keyboard to enter commands in
Cody BASIC, so before we begin, we need to cover a
little bit about how to use the Cody Computer's
keyboard and its special keys. The keyboard is a
simplified QWERTY layout with a total of 26
alphabetic characters. Each key contains a letter of the
alphabet, and most contain special characters on the
top-left and top-right. Pressing the key by itself will

240

give you the letter, but pressing it with other special
keys will give you the special characters instead.

The QWERTY keys as an example of the Cody
Computer's keyboard layout. Note the additional
characters on the top left and top right.

The Cody Computer's keyboard also contains three
additional keys used for special functions: The Cody
key, the Meta key, and the Arrow key. These are
similar to the modifier keys on more modern
computers. On the Cody Computer, they let you type
the other special characters just discussed, but they
also have some other special functions.

The Cody Computer's special keys. From left, the Cody
key (a stylized depiction of Cody's pawprint), the Meta
key (depicted as a hollow square), and the Arrow key
(containing a left-pointed arrow).

The Arrow key is the simplest of the three. When
pressed by itself, it acts as a Return key and enters the
current line of input. In combination with other keys it
can also be used to delete content or break out of
running programs.

The Meta key is used to make existing keys assume
some other function. Pressing it with one of the

241

alphabetic keys generates the punctuation or math
symbol printed on the top right of the key. For
example, if you pressed Meta followed by Q, you
would get an exclamation mark. Holding it down when
pressing Arrow deletes the character previously
typed.

The Cody key is another special key. It can be used
to obtain extra characters or for system-related
functions. When it's pressed with an alphabetic key, it
generates the digit printed on the key's top left. If you
pressed Cody followed by Q, you would actually get
the number 1. When pressed with Arrow it signals
Cody BASIC to break out of the current program.
When pressed with Meta, it toggles the shift mode so
that alphabetic keys will be lowercase instead of
uppercase (or vice-versa).

THE READ-EVAL-PRINT LOOP

Cody BASIC is an interpreted language as opposed
to a compiled one. You can directly interact with Cody
BASIC by typing in statements and getting the results
back. If you do something that doesn't make sense to
it, Cody BASIC will tell you as soon as it finds out
about it. You'll interact with the Cody BASIC interpreter
in what's called a Read-Eval-Print Loop (REPL), where
the Cody Computer reads what you typed, attempts to
evaluate it, and prints out a result of what happened if
relevant.

To see this in action, start up your Cody Computer.
After a moment you should see the welcome message
and READY prompt at the top of the screen. This
indicates the Cody Computer is ready for your

242

commands. At the blinking cursor, type PRINT 3 + 4.
Once it's typed in, press Arrow. Cody BASIC should
print the result, 7, on the screen, followed by another
READY prompt.

Your first statement and its output.

If you encountered a syntax error, carefully review
what you typed in. Remember that when typing a line,
you can use Meta + Arrow to delete characters. Also
remember that you can use the Cody and Meta keys
to enter special characters such as numbers or
punctuation. In the above example, to enter 3 + 4, you
would type Cody + E to get a 3, Meta + F to get a plus
sign, and Cody + R to get a 4.

TYPING AND EDITING PROGRAMS

When you want to run more than one command at a
time, you need to type in a program. Cody BASIC has a
built-in way to enter programs using line numbers.
First you type in the line number followed by the
content for that line, then press Arrow. The line is
entered into the program. The cursor moves on to the
next line.

 **** CODY COMPUTER BASIC V1.0 ****

READY.
PRINT 3+4
7

READY.
■

243

Entering a single line into the current program.

To see the current program in memory, you can use
the LIST command. Entering LIST and pressing Arrow
will show each line in the program.

Listing your simple single-line program.

Because the program is stored in memory, it doesn't
run when you type it in. It's waiting for you to tell Cody
BASIC to run it, which you can do by entering the RUN
command.

Running the single-line example program from above.

If you later want to remove a line, entering the line
number by itself (with no spaces) and pressing Arrow
will delete it.

10 PRINT "HELLO"
■

LIST
10 PRINT "HELLO"

READY.
■

RUN
HELLO

READY.
■

244

Removing line 10 from the program.

If you want to delete the entire program in memory,
you can use the NEW command instead of turning the
Cody Computer off and on. The NEW command
performs a soft reset of Cody BASIC, clearing out
program memory along with associated data and
variables.

Using NEW before each new program is entered.

INPUT AND OUTPUT

An important part of writing computer programs is
making them interact with the user. In Cody BASIC the
PRINT and INPUT statements handle the most
common user interaction. PRINT lets you print out
information to the user, while INPUT lets you get
information from the user.

Both statements can use a variety of different types
of data, but for now, we'll begin with a simple example

10
LIST

READY.
■

NEW

READY.
■

245

you should type in. Remember to run NEW first if you
had already typed other programs in.

A small program demonstrating PRINT and INPUT
statements.

Line 10 prints out a message asking for the user's
name, while line 20 prompts the user and stores the
result as text in a variable called N$. Line 30 prints out
a message asking for the user's age, while line 40
stores the result as a number in a variable called A.
The last line, line 50, prints out the user's name and
age in a message to the user. The semicolons are a
special hint to the PRINT statement to avoid advancing
to another line on the screen, while the commas split
up the arguments to the PRINT statement.

If you run the program you'll get something like the
following:

An example run of the above program.

10 PRINT "WHAT IS YOUR NAME";
20 INPUT N$
30 PRINT "HOW OLD ARE YOU";
40 INPUT A
50 PRINT N$," IS ",A," YEARS OLD."
■

RUN
WHAT IS YOUR NAME? CODY
HOW OLD ARE YOU? 14
CODY IS 14 YEARS OLD.

READY.
■

246

If you encounter any errors, remember that you can
LIST your program and check the offending line for
any typos. If you find any, retype the line correctly and
re-run the program. A more detailed discussion of
error messages is found later in the chapter if you get
stuck, but for this program, you probably won't need it.
Just make sure what you typed in matches the
program, and refer to the earlier section on typing in
programs whenever you need to.

VARIABLES, NUMBERS, AND
STRINGS

Variables are used to store data in your programs. In
the previous input-output example, variables held the
name (in variable N$) and age (in variable A) of the
user. Most programs will use variables for a variety of
purposes, so it's important to understand them and
what they can hold.

Variables can be one of two types, corresponding to
the two data types supported by Cody BASIC. Number
variables contain numbers, while string variables
contain text. The two cannot be directly substituted for
one another in a program, but functions exist to
convert between the two types. Other functions also
exist for special operations that pertain to each type,
such as square roots for numbers or extracting
substrings for strings.

NUMBERS AND NUMBER VARIABLES

Numbers in Cody BASIC are 16 bits and represent
integers between -32768 and 32767, inclusive.

247

Numbers can be used in mathematical expressions,
such as addition, subtraction, multiplication, and
division, as well as in various mathematical functions.
They are also the return type of most Cody BASIC
functions. Most data in a Cody BASIC program is likely
to be numeric in nature.

Number literals are just the number typed in, for
example 10 or 1234. These values can be used just
about anywhere that a number is required.

Number variables are represented by a letter
between A and Z. Number variables are temporary
storage for numeric data in a program, and each can
hold one number in its assigned memory.

Number variables in Cody BASIC are somewhat
unique in that they also act as arrays. There are a total
of 128 indexes into a number array, with each index
itself a number between 0 and 127. The use of a
number variable without an index is actually just a
shorthand for the first element in the array, meaning
that A(0) and A are actually the same variable.

An example type-in program demonstrating numbers,
number variables, and arrays. Note how A is used as
an alias for A(0).

10 A(0)=10
20 A(1)=20
30 PRINT A+A(1)*3
RUN
70

READY.
■

248

STRINGS AND STRING VARIABLES

Strings in Cody BASIC are text information. Each
string can consist of up to 255 characters plus a
terminating NULL character, and internally strings are
represented as C-style byte arrays. Cody BASIC has
somewhat limited support for strings and string
handling, but it does support a minimum set of string
functions suitable for most beginner-to-intermediate
programs. These functions include limited string
concatenation and substring extraction.

String literals consist of characters contained in
double quotes. For example, "HELLO" and "1234" are
both string literals, even though the latter is a string
containing numbers.

Cody BASIC also has 26 string variables A$ through
Z$, each of which contains a single string. Each
variable has its own assigned memory and there is no
overlap with the number variables A through Z. String
arrays are not supported.

An example type-in program demonstrating strings
and string variables.

10 M$ = "HELLO "
20 N$ = "WORLD!"
30 PRINT M$,N$
RUN
HELLO WORLD!

READY.
■

249

CONTROL STATEMENTS

Cody BASIC has several statements that allow you
to change the course of a running program. Most
programs need to be able to do this to respond to
internal or external situations as well as to perform
processing within a running program. The IF statement
allows the program to take different branches based
on conditional expressions. The GOTO statement
allows the program to jump to a different line in a
program. GOSUB and RETURN allow programs to call
subroutines on other lines and return back to the
calling location. FOR and NEXT allow a program to
loop for a defined number of iterations, incrementing a
variable as a side effect.

IF STATEMENTS

The IF statement makes a decision based on the
result of an expression. These statements are the
primary way of controlling the behavior of a program
based on data or user input. When the expression is
true, the portion of the statement after THEN is
evaluated. If not, then the remainder of the statement
is skipped entirely. IF statements are often combined
with GOTO or GOSUB to pass control to other parts of
the program based on the results of decision criteria.

For numeric data, the expression consists of numeric
expressions on the left hand and right hand sides. The
expression also contains a relational operator that acts
as the decision-maker, with the less-than (<), greater-
than (>), less-than-or-equal (<=), greater-than-or-

250

equal (>=), equal-to (=), and not-equal (<>) relations
supported.

Example program using if-statements and relational
operators for numbers.

IF statements can also use strings in their
expressions. The same relational operators are used
and comparisons are performed lexicographically
using the CODSCII value for each character.

Example program using if-statements with strings.

10 INPUT N
20 IF N<0 THEN PRINT "NEGATIVE"
30 IF N=0 THEN PRINT "ZERO"
40 IF N>0 THEN PRINT "POSITIVE"
RUN
? 3
POSITIVE

READY.
■

10 INPUT S$
20 IF S$<"B" THEN PRINT "LESS"
30 IF S$="B" THEN PRINT "EQUAL"
40 IF S$>"B" THEN PRINT "GREATER"
RUN
? BA
GREATER

READY.
■

251

GOTO STATEMENTS

The GOTO statement behaves like a high-level
version of a jump instruction, moving control to
another line in the program without any direct
possibility of returning. GOTO statements are often
frowned upon in modern programming, but they were
a common technique in the early days of BASIC
programming.

A program using GOTO to skip to another line.

GOSUB AND RETURN STATEMENTS

The GOSUB and RETURN statements implement
subroutine calls in Cody BASIC. The GOSUB statement
tells the program to call a subroutine starting at a
specific line number. The RETURN statement tells the
program to go back to the line after the most recent
GOSUB.

Using these together allows Cody BASIC programs
to have a simple form of subroutines similar to those
in early BASIC interpreters. The statements don't

10 PRINT "A"
20 GOTO 40
30 PRINT "B"
40 PRINT "Z"
RUN
A
Z

READY.
■

252

support additional features of more modern
languages, such as parameter passing or return values.
Such features need to be explicitly handled by passing
data in variables.

An example of a subroutine using GOSUB and
RETURN.

FOR AND NEXT STATEMENTS

The FOR and NEXT statements implement a
counting loop in Cody BASIC. Each FOR statement
takes a number variable (which can include an array
index), a starting number or expression, and an ending
number or expression.

The following NEXT statement repeats the body of
the FOR loop until the variable equals the ending
number from the FOR statement. On each loop, the
value of the variable is incremented by one.

10 PRINT "A"
20 GOSUB 50
30 PRINT "C"
40 END
50 PRINT "B"
60 RETURN
RUN
A
B
C

READY.
■

253

A simple for-loop that prints out the loop variable's
value.

LOADING AND SAVING
PROGRAMS

You don't always have to type in programs to load
them. Cody BASIC supports LOAD and SAVE
statements for loading existing programs and saving
the current program. These commands rely on the
existence of another device connected to the Cody
Computer via the Prop Plug, typically a computer or
mobile device running some type of terminal program.
BASIC programs are stored as plain text files that can
be transmitted and received by any terminal software
that has the appropriate features.

To load and save BASIC programs the terminal
software you use will need to support regular serial
communications at 19200 baud, 8-N-1 (eight data bits,
no parity bit, and 1 stop bit), and ASCII linefeeds for
the end-of-line character. When transmitting files, it

10 FOR I=1 TO 5
20 PRINT I
30 NEXT
RUN
1
2
3
4
5

READY.
■

254

should allow for a configurable per-line delay of up to
40 or 50 milliseconds. This final requirement is
necessary so that Cody BASIC can tokenize an
incoming program.

Loading a Cody BASIC program from a Chromebook
Pixel running Ubuntu. The Linux version of CoolTerm is
used as the terminal program.

You should be able to use any terminal
program that meets the above requirements. I
used Roger Meier's cross-platform CoolTerm
during development because it supports all the
necessary features to transmit and receive files
with Cody BASIC. For Android devices, Kai
Morich's Serial USB Terminal is a good choice
once you have the configuration sorted out.

255

SAVING A PROGRAM

To save a program we'll need a program to save in
the first place. Type in the following and verify the
program contents using the LIST command.

A boilerplate program to use for our saving and
loading example.

Once you have the program entered in, go to your
terminal program on the other computer. Using the
software, save a text file from the Prop Plug at 19200
baud, serial setting 8-N-1, and line feeds for the end
of line. The software should be waiting for you to save
the program.

At this time, run the SAVE command on I/O port 1,
the Prop Plug:

Saving the sample program.

Once you see the READY prompt, the program has
been sent. In your terminal software, stop receiving,
then verify the contents of the received file. You should
see a two-line text file, one containing the print
statement, and another completely blank line
indicating the end of the BASIC program. (If you

10 PRINT "SAVED PROGRAM"
■

SAVE 1

READY.
■

256

encounter problems during this step or the next, you
may want to examine the file in more detail using a
hex editor.)

Saved program from the terminal program. Note the
required blank line marking the end of the program in
the saved file.

LOADING A PROGRAM

Now that you've saved a program, it's time to load it
and verify that all is in working order. To begin, clear
out program memory using the NEW command, then
LIST the current program to verify nothing is there. The
LOAD command replaces the current program, but for
testing purposes, we want to be sure before we
proceed.

Once you're sure there's no program in memory,
run the LOAD command, We're loading from I/O port
1, the Prop Plug, in mode 0. Mode 0 indicates we're
loading a Cody BASIC program, while mode 1 indicates
that we're loading a binary program, something we'll
cover later.

Loading the previously-saved program.

Now that the Cody Computer is waiting for the
program, go back to your terminal and send the
program. You'll want to send it as a text file, again at
19200 baud and 8-N-1 with ASCII linefeeds as the

10 PRINT "SAVED PROGRAM"

LOAD 1,0

257

end-of-line character. Also remember to insert a per-
line delay, perhaps starting around 40 or 50
milliseconds to be conservative.

Once the program has been received, the LOAD
command will stop with a READY prompt. List the
program to verify its contents, then run it.

Transcript of loading and verifying the sample
program.

If you encounter any problems, verify the serial
connection and serial software is working correctly.
Also note that the per-line delay can be raised or
lowered on a per-program basis, as the time required
to parse the longest line in the program depends on
the line's complexity.

READY.
LIST
10 PRINT "SAVED PROGRAM"

READY.
RUN
SAVED PROGRAM

READY.
■

258

Cody BASIC actually sends an ASCII question
mark before waiting for the next line of the
incoming program. A dedicated program or
peripheral could also check for this as an
optimization along with the normal line delay.
This would speed up the loading of Cody BASIC
programs without having an effect on anything
else.

UNDERSTANDING ERROR
MESSAGES

Sometimes when entering or running a program,
things can go wrong. Cody BASIC has a small set of
error messages to try and help you diagnose the
underlying problem. Cody BASIC is patterned after
Tiny BASIC and has only three error types, but given
Cody BASIC's relative simplicity, these are sufficient.
The error messages are inspired by the later
Commodore BASIC, and while they may not tell you
everything, they should tell you enough to investigate
what happened.

The three error types represent syntax errors (when
Cody BASIC couldn't parse what you typed in), logic
errors (when your program tried to do something that
made no sense), and system errors (something about
the current computer's state made it impossible to do
what was asked).

Errors can occur when entering lines into the REPL or
when a program is run. If an error occurs while a
program is running the line number in the program

259

will be included in the error message. If the error
occurs in REPL mode, there isn't any associated line
number, and none will be shown.

An example error message that includes a line
number.

SYNTAX ERRORS

Syntax errors occur when something you've typed
in doesn't fit with Cody BASIC's grammar. Cody BASIC,
like any programming language, is defined by a strict
grammar specifying what statements and expressions
are valid. If you type in something that's invalid, Cody
BASIC can't understand what you mean and prints out
a syntax error.

A syntax error in REPL mode resulting from invalid
characters in a PRINT statement.

RUN

LOGIC ERROR IN 10

READY.
■

PRINT !!!

SYNTAX ERROR

READY.
■

260

LOGIC ERRORS

Logic errors result when Cody BASIC is asked to do
something nonsensical. This can be something
obvious, such as attempting to divide by zero or
specifying an invalid value for a character or constant.
It can also be something less obvious, such as
attempting to read data that doesn't exist or trying to
change the current position in the program in a way
that doesn't make sense.

A logic error in REPL mode resulting from a division by
zero.

SYSTEM ERRORS

System errors happen when Cody BASIC isn't able
to perform a requested operation that's otherwise
valid. This can occur if some of Cody BASIC's internal
data areas overflow, making it impossible to run some
of its control structures or evaluate complex
expressions. It can also happen during I/O operations
if errors are detected or if invalid data is passed to
certain functions.

PRINT 1/0

LOGIC ERROR

READY.
■

261

A system error in a program caused by infinite
recursion in a GOSUB.

10 GOSUB 10
RUN

SYSTEM ERROR IN 10

READY.
■

262

Advanced Cody BASIC

6

INTRODUCTION

Now that you're familiar with some of the basics of
Cody BASIC, it's time to learn about its more advanced
features. While "advanced" is relative and Cody BASIC
is intentionally simplified, it has a set of features
consistent with many 8-bit BASIC dialects. It has
support for minimal mathematics and string
operations, literal data, text file input and output,
reading and writing memory, and even the ability to
call into machine code from BASIC programs.

WORKING WITH NUMBERS

Cody BASIC supports many of the more common
mathematical operations, although with some
limitations. Numbers in Cody BASIC are integers
ranging from -32768 to 32767, so many mathematical
operations are limited by necessity. A handful of math
functions are also implemented. More complicated
functions must be implemented by the user either in
BASIC or using machine language and calling it from
your program.

ARITHMETIC OPERATIONS

For arithmetic operations, the standard addition,
subtraction, multiplication, and division are supported.
Cody BASIC obeys the normal order of operations,
with multiplication and division performed first,
followed by addition and subtraction. Expressions that

264

are very complex may cause Cody BASIC's expression
stack to overflow and produce a system error.

Cody BASIC follows the order of operations.

Because all numbers in Cody BASIC are integers,
the result of division will sometimes be different than
you would expect. The result of a division is the integer
portion without any remainder because fractional or
decimal values aren't supported.

Numbers in Cody BASIC are integers, so integer
division is used.

Parentheses are used to group subexpressions.
Expressions in parentheses are evaluated first, starting
with the most nested set of parentheses and working
outward. As with expressions, deeply nested
parentheses can cause problems with the interpreter,
so it's best to keep expressions simple.

PRINT 4+5*6-10
24

READY.
■

PRINT 16/5
3

READY.
■

265

Using nested expressions in Cody BASIC.

Negative numbers are supported by adding a
leading minus sign (known as a unary minus). The
leading minus works like it does in normal arithmetic,
so it can be used in front of variables and expressions
as well as in front of numbers.

An example of a leading minus sign in front of an
expression.

In fact, number variables can be used just about
anywhere that a number would be used in Cody
BASIC. Unlike many BASIC dialects, both numbers and
numeric expressions can be used as the destination for
GOTO and GOSUB statements.

PRINT 3*((8+2)/2)
15

READY.
■

PRINT -(1+2)
-3

READY.
■

266

A program showing the use of variables in an
expression.

MATHEMATICAL FUNCTIONS

Cody BASIC has a limited set of mathematical
functions. The ABS() function returns the absolute
value of a number. Another function, SQR(), returns
the square root of a number with the limitation that
only the integer part is represented. MOD() returns
the modulus (remainder left over after a division) of
two numbers.

10 A=20
20 B=2
30 PRINT -A*B
RUN
-40

READY.
■

267

Examples of the ABS, SQR, and MOD functions.

The RND() function exists to generate random
numbers between 0 and 255. The function has two
forms, one that accepts a number as the random seed
value, and a no-argument form that returns the next
random number in the sequence. For a given seed
value the resulting sequence will always be the same.
A seed value of zero is invalid and will be replaced
with the system's default seed value.

PRINT ABS(-10)
10

READY.
PRINT SQR(10)
3

READY.
PRINT MOD(8,5)
3

READY.
■

268

Using the RND function to generate pseudorandom
numbers.

A common trick is to use the TI time variable to seed
a random number sequence at the start of a program,
discarding the initial result. The TI variable is discussed
later in the section on timekeeping.

Seeding the RND function with the current
timekeeping value.

PRINT RND(10)
0

READY.
PRINT RND()
186

READY.
PRINT RND()
57

READY.
■

PRINT RND(TI)
52

READY.
PRINT RND()
81

READY.
■

269

BITWISE FUNCTIONS

Cody BASIC also has bitwise functions that perform
binary operations on numbers. These work on the raw
bits in each number, which means it's important to
consider how the numbers themselves are stored as
zeroes and ones. NOT() returns the negation of the
bits in the number, AND() returns the bitwise and,
OR() returns the bitwise or, and XOR() returns the
bitwise exclusive-or.

A program that lets you experiment with the output of
bitwise functions.

TEXT MANIPULATION AND
STRINGS

Cody BASIC supports rudimentary string
manipulation. Each of the 26 string variables is a

10 INPUT A
20 INPUT B
30 PRINT "NOT ",NOT(A)
40 PRINT "AND ",AND(A,B)
50 PRINT "OR ",OR(A,B)
60 PRINT "XOR ",XOR(A,B)
RUN
? 1
? 0
-2
0
1
1

READY.
■

270

separate buffer that can store up to 255 characters
plus a terminating null character (similar to a string in
the C programming language). A separate buffer
allows string concatenation in string expressions, and a
handful of functions exist to work with string data.

STRING CONCATENATION

Strings can be concatenated together in string
expressions. Unlike mathematical expressions, string
expressions are very simple and can contain only
strings, string variables, and string functions, and the
only supported operator is the addition sign
(representing string concatenation in this case).

Because Cody BASIC has minimal string support,
string expressions can appear in a limited number of
places. The most common case is in assignment to
string variables where the right hand side of the
assignment is a string expression. String expressions
can also appear as arguments in PRINT statements,
where string functions are often used to print out only
portions of a string.

An example of a string expression in an assignment.

10 A$="HELLO"
20 B$="WORLD"
30 C$=A$+", "+B$+"!"
40 PRINT C$
RUN
HELLO, WORLD!

READY.
■

271

STRING COMPARISONS

As mentioned in the previous chapter, IF statements
in Cody BASIC have a special case that supports string
comparisons. This form is more limited and requires a
string variable as the left hand side of the comparison
and a string expression as the right hand side of the
comparison. Usually the right hand side is just a string
or another string variable, but the right hand side may
be a full string expression if needed.

A contrived example of using string concatenation in
an IF statement.

FUNCTIONS IN STRING EXPRESSIONS

Cody BASIC has three string functions which may
appear in a string expression. The SUB$() function
returns a substring from a string variable. The CHR$()
function, on the other hand, lets you build a string
from one or more numbers representing CODSCII
characters. The last function, STR$(), returns a string
representation of a number. Functions that return

10 INPUT A$
20 INPUT B$
30 IF B$=A$+"!" THEN PRINT "MATCH"
RUN
? HELLO
? HELLO!
MATCH

READY.
■

272

strings are marked by a dollar-sign ($) as their last
character, similar to Commodore BASIC.

The SUB$() function takes three parameters, a
string variable, a starting position within the string,
and the number of characters to extract. The first
argument must always be a string variable because of
Cody BASIC's internal implementation. String literals
are not supported, and string expressions cannot be
nested like mathematical expressions.

Printing out a substring using the STR$ function.

To generate a string from a series of character
values, you use the CHR$() function. Much like a secret
code, strings in Cody BASIC are made up of CODSCII
characters between 0 and 255. (CODSCII is just an
extended ASCII with the Commodore graphical
characters moved into the extended ASCII range.) You
simply pass one or more numbers (or numeric
expressions) to the function and it will return a string
with the equivalent characters. This is typically used
for printing control codes or graphical characters, but
can be used with any valid character code.

10 A$="POMERANIAN"
20 PRINT SUB$(A$,0,3)
RUN
POM

READY.
■

273

Converting numbers to characters using the CHR$
function.

The last string function, STR$(), converts a number
to its string equivalent. For example, the number 10
would be converted to a string equivalent to the literal
"10". Many of these conversions happen automatically
in PRINT statements, but using the STR$() function
directly lets you use the result in string expressions
and assignments.

A silly example of converting a number to a string for
later use.

ADDITIONAL STRING FUNCTIONS

Cody BASIC also has some functions that work with
strings but return numbers. To parse a string variable
containing a number, the VAL() function can be used.

PRINT CHR$(67,111,100,121)
Cody
READY.

■

10 INPUT N
20 S$=STR$(N)
30 PRINT S$
RUN
? 123
123

READY.
■

274

For finding the length of a string, the LEN() function is
available. And for returning the CODSCII value of a
character in a string, the ASC() function exists.

The VAL() function is relatively simple to use. It
takes a string variable and returns the number it was
able to parse from the beginning of the string. Leading
minus signs are supported. In situations where there
were no valid digits to parse, the function returns zero.
In many respects this function can be considered the
inverse of the STR$() function.

Converting a string containing a number into an actual
number.

The LEN() function returns the length of a string
variable, not including the terminating null character. If
a stored string is somehow corrupted or poorly-
formed, LEN() raises a system error when the
terminating null is not found.

10 INPUT S$
20 N=VAL(S$)
30 PRINT N*2
RUN
? 10
20

READY.
■

275

Finding the length of a string.

The ASC() function returns the character code for
the first character in a string variable. If the string is
empty, the null character is returned instead. In many
respects this is the inverse operation of the CHR$()
function, except that the ASC() function only works on
the first character of the string.

Obtaining the character code for the first character in a
string.

To find character codes for other than the first
character, you need to use the STR$() function to
extract a substring into a temporary variable. The
temporary variable can then be used as the input for
ASC(). This has significantly more overhead because

10 INPUT S$
20 PRINT LEN(S$)
RUN
? KODACHROME
10

READY.
■

10 INPUT S$
20 PRINT ASC(S$)
RUN
? CARRABELLE
67

READY.
■

276

of the temporary string, but in situations where it is
needed, this is the typical solution.

Obtaining a different character code using a
temporary string.

PRINT FORMATTING

Cody BASIC's PRINT statement provides ways of
formatting your output. The formatting can be very
simple, such as moving the cursor on the screen or
aligning data in columns. More complicated formatting
can include clearing the screen, changing the
foreground and background colors on a per-character
basis, or using graphical characters alongside the
typical letters, digits, and punctuation marks.

PRINT statements support output formatting in two
ways. One is using the special formatting functions
AT() and TAB(). The other is to print special control
character codes using the CHR$() function which are
later handled by the Cody BASIC interpreter.

10 INPUT S$
20 INPUT N
30 T$=SUB$(S$,N,1)
40 PRINT ASC(T$)
RUN
? FOLKSTON
? 2
76

READY.
■

277

POSITIONING THE CURSOR

The current cursor position can be updated within
PRINT statements using the AT() function. The AT
function takes two numbers as arguments, one for the
new cursor column and the other for the new cursor
row. When called the current output buffer (anything
before this that hasn't been printed yet) will be
printed to the screen and the cursor moved to the new
position.

Moving the cursor using the AT() function. When the
program is actually run the output will start at the top
left corner of the screen.

Note that the AT() function only works when the
output is going to the screen. If you are writing to a file
over a serial device (discussed below), cursor
positioning makes no sense.

10 FOR I=0 TO 9
20 PRINT AT(I,I),"HELLO, WORLD!"
30 NEXT
RUN
HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!

READY.
■

278

ALIGNING OUTPUT WITH TABS

In many programs, particularly those concerned
with displaying calculations, summaries, or reports, it
helps to be able to align output into columns. Cody
BASIC doesn't handle every possible case, but the
TAB() output function does allow you to align output
to specific columns on the screen.

The function takes only one argument, the column
number from 0 to 39. When it runs, it generates
spaces in the output buffer until the next output
position matches the desired position. This means that
on a line-by-line basis you can ensure the same
information will be printed on the same columns, so
long as the data isn't so big that it overflows the
available space.

279

Aligning output to specific columns using the TAB()
function.

This function is also useful when writing to output
files. As you'll learn in the upcoming section on
reading and writing to files, it's usually easier to store
one piece of information on each line when writing to a
file. However, if you decide to store multiple pieces of
information on the same line, aligning each piece to
known columns will make it easier to split apart when
you read it back in later.

CLEARING THE SCREEN

The simplest control code clears the screen.
Character code 222 will clear the screen and move the
cursor back to the very top. This can be useful to start
from a known position in your Cody BASIC programs.
It's also a good way to focus the user on what you want

10 FOR I=1 TO 10
20 PRINT I,TAB(5),I*I,TAB(20),"MESSAGE"
30 NEXT
RUN
1 1 MESSAGE
2 4 MESSAGE
3 9 MESSAGE
4 16 MESSAGE
5 25 MESSAGE
6 36 MESSAGE
7 49 MESSAGE
8 64 MESSAGE
9 81 MESSAGE
10 100 MESSAGE

READY.
■

280

them to see by clearing out any leftover input or
output from earlier.

Clearing the screen using the clear control code. When
run in Cody BASIC the last READY statement will
appear at the top of a new, blank screen.

SETTING THE FOREGROUND COLOR

The foreground color can be changed using
character codes between 240 and 255. Each code maps
to one of the Cody Computer's 16 colors, each of which
can be found in the reference in the back of the
manual. To choose a specific foreground color, just take
the color's number and add it to 240.

Printing out each foreground color using control codes.

10 PRINT CHR$(222)
RUN

READY.
■

10 FOR I=0 TO 15
20 PRINT CHR$(240+I),240+I
30 NEXT
40 PRINT CHR$(241)

RUN

281

The Cody Computer's foreground colors displayed
using control codes.

SETTING THE BACKGROUND COLOR

The background color can be changed using
character codes between 224 and 239. This works in a
very similar way to setting the foreground color except
that the background is changed instead. Just add the
color code to 224 to calculate the appropriate
character code for the new background color.

282

Printing out each background color using control
codes.

The Cody Computer's background colors displayed
using control codes.

REVERSING FOREGROUND AND
BACKGROUND

It'a also possible to reverse the current foreground
and background colors. Character code 223 reverses
the foreground and background colors. The current
foreground color will be replaced with the current

10 FOR I=0 TO 15
20 PRINT CHR$(224+I),224+I
30 NEXT
40 PRINT CHR$(230)

RUN

283

background color, while the current background color
is replaced with the current foreground color.

This is the Cody Computer's equivalent of the
"reverse field" mode on Commodore computers. The
Cody Computer has unique foreground and
background attributes for each screen location and its
character set doesn't contain inverted versions of each
character. Instead it just swaps the attributes
themselves.

Swapping foreground and background colors using the
reverse control code.

PRINTING GRAPHICAL CHARACTERS

As mentioned elsewhere, the Cody Computer's
CODSCII character set is just a customized, extended
ASCII. The normal control codes, letters, digits, and
punctuations are all the same as any other ASCII or
ASCII-derived character set. As you've just learned, at
the high end of the CODSCII range are control codes
that can control various output attributes on the
screen. However, there's one part of the CODSCII
character set we haven't discussed yet.

Commodore computers used their own character set
called PETSCII, named after the Commodore PET

10 INPUT S$
20 PRINT CHR$(223),S$,CHR$(223)
RUN
? HELLO, WORLD!
HELLO, WORLD!

READY.
■

284

computer it first appeared in. Because the Commodore
PET had no graphics functionality of its own, the
designers included graphical characters that could be
used to make pictures and even games. This character
set continued on for the rest of the Commodore 8-bit
computer line.

The Cody Computer includes the graphical PETSCII
subset in its own character set starting at character 128.
You can use these characters in your own programs
and games just like people did in the Commodore
days, and all you need to do is include the appropriate
character code for each one.

Program that prints a table of the Cody Computer's
PETSCII subset. In the actual output the ellipsis will be
replaced by a table.

10 FOR I=0 TO 66
20 IF MOD(I,6)=0 THEN PRINT
30 PRINT 128+I," ",CHR$(128+I)," ";
40 NEXT
50 PRINT

285

The program output showing the PETSCII subset in the
Cody Computer's CODSCII character set.

FILE INPUT AND OUTPUT

Cody BASIC has the ability to read and write text
files from within BASIC programs. Within a program,
the OPEN and CLOSE statements can be used to
redirect the program's input and output to one of the
Cody Computer's two serial ports. From that point on,
PRINT statements write to the serial port, while INPUT
statements read from it. A CLOSE statement returns
back to the screen and keyboard.

Note that this approach, while simple, also has its
own challenges. Much like loading programs, the user
must be careful that data lines aren't sent to the Cody
Computer faster than the BASIC program can process
them. Large per-line delays may be necessary. It also
makes no provision for reading or writing binary data

286

as only text is supported. For binary data, dropping
into machine language is recommended, and it may be
advisable to write your entire program in assembly or
another compiled language if speed is that critical.

A similar strategy of reading and writing data
files by input and output redirection was used in
the OSI Challenger's version of Microsoft BASIC.
In that system, LOAD and SAVE commands within
a program directed output to the cassette,
allowing INPUT and PRINT statements to read and
write from the cassette port.

Note that when running programs that read and
write files to the serial ports, the other device must be
configured appropriately. The steps required are the
same as those discussed in the previous chapter. The
baud rate specified in Cody BASIC must match that
configured for the external device, the external device
must be configured for 8-N-1 (8 data bits, no parity
bit, 1 stop bit), and a single ASCII linefeed should be
set as the newline character. When reading from the
device, line delays will be required on a per-program
basis depending on the processing required.

WRITING TO A FILE

Writing to a file from within a Cody BASIC program
requires you to open the correct I/O device, write your
data to it, and then close the I/O device. For most
purposes your I/O device will be device 1, the serial
port wired to the Prop Plug connector at the back of

287

the computer. A second serial port is wired to pins on
the expansion slot and can be used to interact with
your own projects and custom peripherals.

Opening the I/O device is performed by the OPEN
statement, which takes two arguments. The first is the
I/O device number (1 or 2) and the second is a
constant representing one of 15 different baud rates.
This constant is the same as the value passed directly
to the UART in the Propeller and can be any number
between 1 (50 baud) and 15 (19200 baud). Once the
port is opened, PRINT statements will print to the
serial port until a CLOSE statement is encountered.

A program that writes the names of the space shuttles
and number of flights to a text file.

10 OPEN 1,15
20 PRINT "ENTERPRISE"
30 PRINT 5
40 PRINT "COLUMBIA"
50 PRINT 28
60 PRINT "CHALLENGER"
70 PRINT 10
80 PRINT "DISCOVERY"
90 PRINT 39
100 PRINT "ATLANTIS"
110 PRINT 33
120 PRINT "ENDEAVOUR"
130 PRINT 25
140 PRINT "EOF"
150 CLOSE
160 PRINT "DONE"
RUN
DONE

READY.
■

288

Because the INPUT statement in Cody BASIC works
on a per-line basis, it's important that the data you
write also be readable on a per-line basis. One option,
such as in this example, is to put each unique piece of
data on its own line. The other option is to split up a
line of data when read using the STR$() function,
though this brings other complications with it.

The data file generated by the above sample program.
Note how each piece of data is on its own line.

READING FROM A FILE

Reading from a file is very similar to writing to one.
The device must be opened using OPEN and closed
using CLOSE. All the same caveats about baud rates
and serial modes also apply. The main difference is
that instead of writing data using PRINT you read data
line by line using INPUT. Another difference is that, as
your program is reading data, you may need to
configure a line delay on the device sending you data
so that your program can keep up.

As mentioned above, the INPUT statement in Cody
BASIC works a little differently than in Commodore
BASIC or similar. Each input variable reads an entire
line, so each piece of data should also be on its own

ENTERPRISE
5
COLUMBIA
28
CHALLENGER
10
DISCOVERY
39
ATLANTIS
33
ENDEAVOUR
25
EOF

289

line in the data file. The only way around this would be
to read the line, then split out each part of it into its
own substring, something we won't tackle here.

Remember that while a device is open, both input
and output are redirected to it. That means that while
you're reading from the external device, whatever you
print will be sent to it, not to the screen. You will need a
temporary storage area to keep whatever counts or
tallies are needed until reading is done. In some cases
this can be easy, while in other cases, designing your
temporary storage can be difficult given the
constraints of Cody BASIC.

290

A program that reads the space shuttle data file from
the previous example. As a simple example, a string is
used to collect the output until processing is complete.
Note the check for a special end token to determine
the end of the file. (A blank line is another good
option.)

10 OPEN 1,15
20 INPUT S$
30 IF S$="EOF" THEN GOTO 70
40 INPUT N
50 O$=O$+S$+" ("+STR$(N)+")"+CHR$(10)
60 GOTO 20
70 CLOSE
80 PRINT O$
RUN
ENTERPRISE (5)
COLUMBIA (28)
CHALLENGER (10)
DISCOVERY (39)
ATLANTIS (33)
ENDEAVOUR (25)

READY.
■

291

Even when input and output have been
redirected to a serial port, the INPUT statement
still sends an ASCII question mark before waiting
for the next line. Just like we discussed in the last
chapter about loading programs, a terminal
program or other application that recognizes this
could send the next line as soon as it's asked for
rather than waiting for a delay on each line. This
would help speed up the loading of data files over
serial connections.

INCLUDING DATA IN PROGRAMS

Another way to use data in a Cody BASIC program
is hardcode it using DATA statements. Like
Commodore BASIC and many other Microsoft BASIC
dialects, Cody BASIC lets you add data in DATA
statements and read it later using READ statements.
Unlike other BASICs, however, Cody BASIC requires
that all data be numeric in nature. Strings are not
supported.

The data is read using READ statements. A READ
statement takes one or more number variables as
arguments and fetches the next entries from DATA
statements, starting at the top of the program. If no
more data exists, a logic error is raised to indicate an
out of data condition.

DATA statements can be placed anywhere in the
program. If one is encountered by the program, it is
ignored. Only READ statements use DATA statements.

292

To reread data starting from the beginning of the
program, the RESTORE statement can be used.

Calculating totals and averages from numbers in
DATA statements. A negative number is used as a
sentinel value to stop processing.

DATA and READ statements can be very helpful in
programs that contain a lot of raw data or data tables.
Games are a classic example as they contain
sequences of bytes representing the game's sprites,
tiles, backgrounds, and more. If a program needs to
use portions of machine code to speed up operations
or perform special operations, storing the assembled
code in DATA statements is also common. Lastly,
programs with mathematical computations can use
DATA statements to store lookup tables for part of
their calculations. Consider, for example, a program
that estimates model rocket flights using tables of
rocket engine data.

10 READ I
20 IF I<0 THEN GOTO 60
30 T=T+I
40 C=C+1
50 GOTO 10
60 PRINT "TOTAL ",T
70 PRINT "COUNT ",C
80 PRINT "AVERAGE ",T/C
90 DATA 3,10,12,7,6
100 DATA 3,15,8,2,-1
RUN
TOTAL 66
COUNT 9
AVERAGE 7

READY.
■

293

TIMEKEEPING

Cody BASIC has a limited form of timekeeping
using the TI variable. More of a pseudovariable, TI
stores the number of jiffies since the computer
powered on. The value starts at zero, counts up
through the positive numbers, wraps around through
the negative numbers, and repeats. A single jiffy is
1/60th of a second, so the full range of TI is a little
over 18 minutes. For longer time periods you can check
in on the TI variable and update a seconds or minutes
counter accordingly.

Using TI is preferable to hardcoded delays from
loops in your Cody BASIC programs. However, direct
comparisons between two values are not meaningful
because TI will loop around through both positive and
negative values. Instead, you must subtract the current
value of TI from your previous value, then compare the
difference. Because of the nature of signed arithmetic
and modular arithmetic, this will calculate the correct
difference in jiffies.

294

Sample program that waits for a given number of
seconds before stopping. Note the conversion of the
delay from seconds to jiffies (multiplying by 60), as
well as the inline calculation subtracting the current TI
from the initial value.

READING AND WRITING MEMORY

While Cody BASIC is more high-level than
assembly language, it's still very low-level compared
to most modern languages. In the 8-bit era,
interpreted BASICs commonly manipulated hardware
directly, generally through reading and writing to
memory. Communication with support chips and
peripherals often occurred by direct reads and writes
to registers, and passing data to machine language
routines required similar access to reserved memory
locations.

Cody BASIC, like most BASICs, provides the POKE
statement to write to memory and the PEEK statement
to read from it. It's important to be careful when using
these parts of Cody BASIC as you can easily freeze up
the Cody Computer or worse. However, once you
understand how they work and learn the Cody
Computer's memory map, most of the computer's

10 INPUT D
20 D=D*60
30 I=TI
40 IF TI-I<D THEN GOTO 40
RUN

READY.
■

295

features will be open to you from BASIC alone. While
many programs at this level are better written in
assembly language, BASIC provides a solid foundation
to begin from.

It's worth noting that the 65C02's address space
ranges from 0 to 65535 because its address bus is 16
bits wide. Cody BASIC numbers are also 16 bits, but
they are signed numbers, not unsigned, and they
range from -32768 to 32767. Fortunately, Cody BASIC
automatically parses unsigned number literals as the
equivalent signed value, so you won't have a problem
working with memory addresses in Cody BASIC. For
example, you can type 50176 (the default start of
screen memory) directly into your program and have
it work. However, if you print the number out, Cody
BASIC will print -15360, the signed number equivalent
for the same bit pattern as 50176.

WRITING TO MEMORY

The POKE statement writes to memory. It takes two
arguments, a memory address and a value to write to
that address. The address can be anything within the
65C02's address space, ranging from 0 to 65535 (or
the signed-number equivalent as discussed above).
The value written to that address should be a byte
from 0 to 255.

296

Program that directly writes to screen and color
memory to draw graphical characters in a variety of
colors. Exactly why this works is discussed in the
chapter on graphics programming.

A POKE statement won't work correctly in memory
areas that are read-only on the Cody Computer. The
top 8 kilobytes of the Cody Computer's memory are
essentially a ROM with Cody BASIC and the default
character set, and these can't be modified by writing to
them. Some registers are also read-only.

READING MEMORY

The PEEK() function reads a memory address. It
takes one argument, a memory address just like those
used in the POKE statement. It returns the byte at that
address in memory as a number between 0 and 255.

10 S=50176
20 C=55296
30 FOR I=0 TO 999
40 POKE S+I,128+MOD(RND(),32)
50 POKE C+I,RND()
60 NEXT
RUN

READY.
■

297

Program that reads a memory location representing
the first keyboard row. The memory location is
automatically updated by a keyboard scanning routine
in Cody BASIC. Your program can read the memory
location and determine what keys are held down at the
moment.

PEEK() functions aren't dangerous like POKE
statements because they don't change the contents of
memory. However, it's still important to understand
the memory map and use the correct addresses.
Otherwise your programs might not work correctly,
and at such a low level, it can be difficult to debug
them.

USING MACHINE CODE

High-performance programs for the Cody
Computer should probably be written in assembly
language and loaded as binary programs. However, it's
possible to include some of the benefits of assembly
language in your Cody BASIC programs. To do this,
you write small portions of assembly language (either

10 PRINT "PRESS Q TO QUIT..."
20 IF AND(PEEK(16),1)=1 THEN GOTO 10
30 PRINT "Q PRESSED"
RUN
PRESS Q TO QUIT...
PRESS Q TO QUIT...
PRESS Q TO QUIT...
Q PRESSED.

READY.
■

298

using an assembler or by hand), then load the
machine code into memory as part of your program.

When you want to call the machine code, you use
Cody BASIC's SYS command, which temporarily
passes control to a machine-language subroutine of
your choosing. It even handles swapping the 65C02's
accmulator, X, and Y registers in and out of special
memory locations so you can use them in your code.

This topic is difficult enough that it's worth a
detailed walkthrough. For a very simple example,
imagine we want a machine code routine that takes the
values in the accumulator, X register, and Y register,
then increments each by one before returning to
BASIC. First we need to write the assembly language
routine that would do this for us. (Our example is
simple enough to assemble by hand, but an assembler
is recommended for more advanced ones.)

A snippet of 65C02 assembly that increments the
accumulator, X, and Y registers.

Once we have the assembly language code, we need
to load it into a memory location that's otherwise not
in use. Somewhere very high in BASIC program
memory or another free spot in the memory map are
ideal. We include the numbers for our assembled
machine code in one or more DATA statements, using
READ to get each byte and POKE to load it into
memory starting at that address.

To actually call the code, we would use the SYS
statement. It takes only one argument, the address to

 INC A ; $1A (decimal 26)
 INX ; $E8 (decimal 232)
 INY ; $C8 (decimal 200)
 RTS ; $60 (decimal 96)

299

call. It calls that address using the 65C02's JSR
instruction and returns back to your program once
your machine code executes an RTS instruction.

You can pass parameters back and forth to your
machine code from Cody BASIC using POKE and PEEK
to addresses used by the machine code routine.
However, SYS also has another way to do much of this
for you. It copies the values at the first three memory
locations, $00 through $02, into the accumulator, X
register, and Y register before calling your machine
code. When done, it copies the current values of those
registers back to those same memory locations. Your
BASIC program only needs to POKE values into those
addresses before the call, then PEEK them to get the
results after it's done.

300

Using the above machine code in a Cody BASIC
program. The instructions are poked into memory,
user-entered data is moved into designated memory
locations, and the routine called using the SYS
statement. When done the updated data is read back
and displayed.

Using machine code from within a Cody BASIC
program isn't an easy thing to do, but in certain
situations, it can be quite beneficial. Effectively doing
so requires a good understanding not only of Cody

10 P=25856
20 READ B
30 IF B<0 THEN GOTO 70
40 POKE P+I,B
50 I=I+1
60 GOTO 20
70 INPUT A
80 INPUT X
90 INPUT Y
100 POKE 0,A
110 POKE 1,X
120 POKE 2,Y
130 SYS P
140 PRINT "A=",PEEK(0)
150 PRINT "X=",PEEK(1)
160 PRINT "Y=",PEEK(2)
170 DATA 26,232,200,96,-1
RUN
? 1
? 4
? 9
A=2
X=5
Y=10

READY.
■

301

BASIC but of the Cody Computer's memory map and
of 65C02 assembly language itself.

If you find yourself using this approach, it might
be worth asking yourself if you're better off just
writing the entire program in assembly or a
compiled language. On the other hand, some
BASIC programs in the 8-bit era took advantage
of similar features. The most critical parts of the
code were written in assembly language, but most
of the program was written in BASIC.

PROGRAMMING HINTS

Along with all the details involved in Cody BASIC
programming, it's important to be aware of some of
the other important aspects when writing your
programs. Many of these are less technical, but no less
important. You want your programs to be
understandable both for yourself and for others. You
also want your programs to be easily changeable as
your requirements change, or if someone else uses
one of your programs and needs to modify it. These
skills are generally the same as in any programming
language, but Cody BASIC's quirks add some
additional things to consider.

DOCUMENTING YOUR PROGRAMS

In your program you should make use of REM, or
remark, statements. These are the 8-bit BASIC
equivalent of code comments and were used to

302

document programs. Programs often started with
remarks about the name of the program, its author,
and a description of what it did. In the program itself,
remarks often marked different sections or routines
within the program. They were also added to provide
some additional information on particularly
complicated parts.

Unlike comments in modern compiled languages,
REM statements take up space in the interpreter, have
to be loaded and saved, and also have to be skipped
over at runtime. Therefore, while they're a no-op, they
don't come without a cost. That said, it's good to
document your programs.

Many programs were shared in books or magazine
articles that provided the main documentation for both
users and programmers (in that era, more often than
not one and the same). In today's world it might be
helpful to include a text file, a Markdown document, or
even a simple HTML file with your programs.

USING LINE NUMBERS

Along with documenting your programs, it's
important to structure them so that they're easy to
read and modify. While that's harder in an
environment like Cody BASIC, it's not impossible.
Because Cody BASIC, like most retro basics, has a line-
oriented editing system, much of your structure will
relate to the line numbering you use.

One tactic for maintainable programs is to be
generous with your use of line numbers. For example,
numbering lines by multiples of 10 gives you
additional room to go back and make changes without

303

having to renumber an entire program. It also gives
someone else the ability to experiment and make
changes more easily.

It can also be helpful to have gaps between line
numbering in unrelated parts of the program. Doing
this along with REM statements at the beginning can
help show where your subroutines begin and end, as
well as what they do.

You also have the option to cheat and use a modern
PC. Cody BASIC programs are stored as plain text,
unlike Commodore BASIC programs that were kept in
a tokenized format. They're also written in extended
ASCII with the important non-graphical characters
understood by any modern computer. This means you
can load saved Cody BASIC files in any text editor that
won't mangle the file's encoding or line endings, make
changes, and send them along. You can also write
programs from scratch in a text editor and then send
them over to the Cody Computer just like any saved
program. You just need to be careful about line
endings. You also must ensure that your programs end
with a blank line indicating the end of the file.

AN EXAMPLE PROGRAM

Below is an example program using some of the
above advice. It's a very contrived example that only
adds two numbers together, and in real life, such a
simple program wouldn't need nearly so much
boilerplate. The example is intentionally simple to
demonstrate how the techniques above might be used
in a larger program, without having to wade through
the code of a larger and more complex program itself.

304

An admittedly overengineered program
demonstrating some of the techniques in this section.
Note the REM statements, line numbering, and spacing
of subroutines.

10 REM ADDITION BY FJ MILENS III
20 GOSUB 1000
30 GOSUB 2000
40 GOSUB 3000
50 END
1000 REM GET 1ST NUMBER
1010 PRINT "1ST NUMBER";
1020 INPUT A
1030 RETURN
2000 REM GET 2ND NUMBER
2010 PRINT "2ND NUMBER";
2020 INPUT B
2030 RETURN
3000 REM CALC AND PRINT ANSWER
3010 C=A+B
3020 PRINT "THE SUM IS ",C,"."
3030 RETURN
RUN
1ST NUMBER? 6
2ND NUMBER? 5
THE SUM IS 11.

READY.
■

305

Graphics Programming

7

INTRODUCTION

The Cody Computer is equipped with its own system
for generating video graphics, the VID or Video
Interface Device. Implemented as a software peripheral
inside the Parallax Propeller chip, it presents itself as
hardware on the 65C02's system bus. Writing to
dedicated registers and memory regions allows you to
construct 8-bit mulitcolor graphics.

The VID produces a character-based screen with a
resolution of 160 pixels by 200 pixels. Each character
is four pixels by eight pixels in size, using a fat-pixel
ratio similar to that used by the Commodore 64's
multicolor graphics mode. Up to 256 different
characters can exist within a single character set, and
multiple character sets can be used on different parts
of the screen. A bitmapped mode is available that
essentially configures all of screen memory to become
addressible in character-like tiles. Screen contents can
also be fine-scrolled in hardware by setting
appropriate values.

Sprites are also supported by the VID, allowing you
to have multicolor graphics that hover over the normal
screen. These are 12 pixels across and 21 pixels tall,
and each also has a fat-pixel ratio. The memory layout
is very similar to the Commodore 64's multicolor
sprites except that the colors are less constrained. The
Cody Computer's VID doesn't support other sprite
features like scaling or collision detection. It's there to
move sprites around and draw them.

The VID supports 16 colors inspired by the
Commodore 64's color palette. These colors can be

308

used on the screen and on sprites, though are there
are some limitations in how many colors can be used
together. Characters on the screen have two unique
colors and two colors shared with the entire screen,
while sprites have two unique colors and one color
shared with other sprites.

Lastly, the VID allows you to change graphics on the
fly using what are called row effects. Similar to old-
school raster interrupts, where video options were
switched out at specific character rows on the screen,
you can program the VID to change sprite banks,
character banks, scroll amounts, and even the colors on
each character row as it draws a frame. Further
intervention by the programmer is not required.

CHANGING THE BORDER COLOR

A good introduction to graphics programming is
learning how to change the Cody Computer's border
color. The border can be set to any of the sixteen
colors supported by the Cody Computer. To change it,
all you have to do is update the low four bits of the
color register located at position $D002 in memory.

The high four bits of the color register contain the
position of color memory, something we don't want to
change right now. Instead, what we have to do is read
the current value of the color register, mask out the
low four bits with an AND, and then OR them together
with our desired color code.

This can be done from assembly language, but the
Cody BASIC PEEK and POKE will let us directly read
and write memory. We just need to use the correct
address, 53250, the decimal equivalent of $D002.

309

Simple program that changes the border color. The
user types in a number which is put into the low four
bits of the color register. Entering 7 will return the
screen to its normal yellow border.

WORKING WITH SCREEN MEMORY

Now that you know how to change the border color
using PEEKs and POKEs, we'll start using those same
operations to change the screen contents themselves.
The Cody Computer's screen is set up as a range of
1000 bytes, each of which represents a single
character on a 40 column by 25 row screen. You can
change the screen contents by changing the contents
of memory in this region, and in fact that's what Cody
BASIC does internally to display text.

UPDATING SCREEN MEMORY

As a simple example, we can fill the screen with
data. By default the screen starts at memory address

10 PRINT "BORDER COLOR (0-15)";
20 INPUT C
30 IF C<0 THEN END
40 POKE 53250,OR(AND(PEEK(53250),240),C)
50 GOTO 10
RUN
0
1
2
-1

READY.
■

310

$C400 or decimal 50176. If we populate the 1000
bytes starting at that location with numbers
corresponding to CODSCII characters, we'll see them
show up on the screen. Each number references a
single character in the character set, so the number we
POKE will be the character that we see.

Directly populating screen memory. Each POKE writes
one of the lowercase characters in the CODSCII
character set to a position in screen memory. When
run, the program will overwrite the screen with
lowercase letters.

RELOCATING SCREEN MEMORY

The default screen starts at $C400, but it's possible
to move the screen elsewhere, a capability often used
in games and other graphics-intensive applications.
Theoretically, screen memory can exist anywhere in a
16-kilobyte area of memory starting at memory
address $A000, with the restriction that the memory
must be on a 1-kilobyte boundary.

However, in practice we have to avoid certain parts
of memory. The VID itself uses a page at $D000 for its
own register banks. The SID and UARTs take up a page
at $D400. Memory must also be set aside for color
memory and character memory, two video-related
topics we'll get to in this chapter. When using such
techniques in your own programs, begin with the Cody

10 FOR I=0 TO 999
20 POKE 50176+I,97+MOD(I,26)
30 NEXT

311

Computer's memory map and sketch out where you
want things to be placed.

Setting up another region to use as screen memory
is just like the previous example. You just need to write
the appropriate bytes to reference the characters that
should be drawn. However, once you've done that, you
still need to tell the Cody Computer where it lives. The
base register at $D003 sets the starting location of
both character memory and screen memory, with
screen memory stored in the high four bits.

To determine what value to plug into the high four
bits, you need to do a simple math calculation. Four
bits can contain one of 16 values, which is convenient
because a 16-kilobyte area of memory can contain 16
regions aligned at 1-kilobyte boundaries (just what we
have). Just subtract the start of your desired screen
memory location from $A000, then divide by 1024 to
get the result. If your screen memory started at
$A000 you would use a value of 0 because you're in
the initial 1-kilobyte region. For the default screen
memory location at $C400, you would use a value of
9.

312

Temporarily relocating screen memory. Another
region in memory is specified and its base calculated.
That same region is populated with lowercase letters.
The base register is then updated with the new screen
memory base, the program waits for five seconds, and
then sets the screen memory base back to the default.

WORKING WITH COLOR MEMORY

Screen memory specifies what characters to draw on
the screen, but color memory specifies what colors to
draw them in. Characters on the Cody Computer can
have up to four colors, two of which can be unique for
each column-row position on the screen. These two
colors are loaded from the corresponding color
memory for the screen.

Much like screen memory, color memory is a
contiguous array of 1000 bytes, and there is a one-to-
one correspondence between screen memory and
color memory locations. Cody BASIC updates color
memory locations for you in PRINT statements, but
you can also do so by yourself using POKEs.

10 A=41984
20 B=(A-40960)/1024
30 FOR I=0 TO 999
40 POKE A+I,97+MOD(I,26)
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),15),B*16)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),15),9*16)

313

UPDATING COLOR MEMORY

Color memory begins by default at address $D800
or decimal 55296. Much like for screen memory, we
need to POKE data into this region to see the contents
of the screen change. In this case, instead of poking in
numbers for characters, we poke in numbers that
represent the foreground and background colors for
each character. The foreground color code goes into
the top four bits of the number and the background
color code goes into the bottom four bits.

Program that updates the default color memory with
new foreground and background colors.

RELOCATING COLOR MEMORY

Just like screen memory, color memory can be
moved to a different location. As with screen memory,
the region of memory starting at $A000 is divided

10 A=55296
20 PRINT "FOREGROUND COLOR (0-15)";
30 INPUT F
40 PRINT "BACKGROUND COLOR (0-15)";
50 INPUT B
60 C=F*16+B
70 FOR I=0 TO 999
80 POKE A+I,C
90 NEXT
RUN
FOREGROUND COLOR? 13
BACKGROUND COLOR? 0

READY.
■

314

into 1-kilobyte blocks, and the same caveats and
restrictions on their use apply here as well. To
calculate the base for a particular color memory
location, you can use the same formula that you used
for screen memory in the prior section.

Once you've decided on a new location for color
memory, you need to update the color register at
$D002. You updated the low four bits of this register
to change the border color at the beginning of this
chapter, but now you'll update the high four bits to
specify the base location for color memory.

315

Program that temporarily relocates color memory to a
different location. A second color memory region is set
up with the colors selected by the user. The color
register is then temporarily updated to point to the
new region before returning back to the default
location.

CHARACTERS AND CHARACTER
MEMORY

Screen memory specifies what characters to draw
and color memory specifies what colors to draw them
in, but character memory specifies what the characters
themselves look like. A character set on the Cody
Computer consists of up to 255 unique characters,
each of which is four pixels across and eight pixels tall.

10 PRINT "FOREGROUND COLOR (0-15)";
20 INPUT F
30 PRINT "BACKGROUND COLOR (0-15)";
40 INPUT B
50 C=F*16+B
60 A=41984
70 B=(A-40960)/1024
80 FOR I=0 TO 999
90 POKE A+I,C
100 NEXT
110 POKE 53250,OR(AND(PEEK(53250),15),B*16)
120 T=TI
130 IF TI-T<300 THEN GOTO 130
140 POKE 53250,OR(AND(PEEK(53250),15),14*16)
RUN
FOREGROUND COLOR? 15
BACKGROUND COLOR? 12

READY.
■

316

CHARACTERS IN ROM

The Cody Computer contains the full default
CODSCII character set in a 2-kilobyte area of memory
starting at $E000 or decimal 57344. When the
computer starts up, the BASIC ROM copies this
character set into memory at $C800, where it can be
seen by the Video Interface Device and used to draw
the screen. You can always access these characters
yourself to see what data they contain in numeric
format.

A Cody BASIC program that reads a character's bytes
from the character ROM.

This means that in your own programs, you don't
have to worry about clobbering the existing characters
in video memory, or preserving them somewhere else.

10 INPUT S$
20 C=ASC(S$)
30 A=57344+C*8
40 FOR I=0 TO 7
50 PRINT PEEK(A+I)
60 NEXT
RUN
? A
0
4
17
17
21
17
17
17

READY.
■

317

You can just modify or overwrite them, and then copy
the original characters from the ROM back to video
memory to clean up.

A program that copies the lowercase characters over
the uppercase characters, temporarily making
everything on the screen lowercase. When done it
copies the original uppercase characters from ROM
back into video memory. Note that this isn't changing
the screen memory contents at all. Instead, it's
changing the characters themselves.

CUSTOM CHARACTERS

As mentioned, characters on the Cody Computer
actually have four colors. Two of the colors, 0 and 1,
are unique to each character position on the screen.
Those colors are read from the color memory you
learned about earlier. The other two colors, 2 and 3,
are shared as common colors by every location on the
screen.

The shared colors are kept in the screen colors
register at location $D005 or decimal 53253 and have
a similar format to color memory. Color 2 is stored in

10 S=51200+97*8
20 D=51200+65*8
30 FOR I=0 TO 207
40 POKE D+I,PEEK(S+I)
50 NEXT
60 T=TI
70 IF TI-T<300 THEN GOTO 70
80 S=57344+65*8
90 D=51200+65*8
100 FOR I=0 TO 207
110 POKE D+I,PEEK(S+I)
120 NEXT

318

the low four bits and color 3 is stored in the high four
bits of the register.

You don't notice these colors when the Cody
Computer starts up because the default character set
only uses colors 0 and 1, the two colors that are unique
to a given screen position. This works nicely for the
character set as we can specify the foreground and
background colors independently for each position on
the screen. However, in more graphical applications
such as games, it helps to have more colors.

To use them, you have to define your own
characters. Each character consists of eight bytes, with
each pixel in a character represented by two bits. Bit
combinations 00 and 01 reference the two screen
colors at that location, while bit combinations 10 and 11
reference the common colors in the screen register.
Each character is four pixels wide and eight pixels
high, and the data in character memory is stored from
the top of the character to the bottom. Within each
byte, the pixel data goes from the leftmost pixel in the
two highest bits to the rightmost pixel in the two
lowest bits.

To design your own character you work out the bit
combinations for your own 4-by-8 pixel pattern, then
POKE that data somewhere in the current character
set. Remember that characters don't actually have to
be characters as such. They can be any kind of image,
including tiles for games or portions of a background
picture. You can even use different character sets on
different screen rows if you need more unique
characters (for example, using one character set for
the user interface and another for the game world

319

itself). This can even be a substitute for bitmap
graphics if used wisely.

Example program that defines a new character that
consists of four colored blocks, then fills the screen
with it. Two of the new character's colors are unique to
the character itself and stored in the color memory.
The other two are shared by all the characters on the
screen and are stored in the screen colors register.

RELOCATING CHARACTER MEMORY

Like screen memory and color memory, character
memory can be relocated. Like screen memory, the
base location of character memory is specified in the
base register at $D003 or decimal 53251. The base for
character memory is stored in the low four bits of the
register, and the base can be calculated similar to that
for screen and color memory: Subtract the base
address from $A000 or decimal 40960, then divide
by 2048 in this case. Character sets take 2 kilobytes
and must be aligned on a 2048-byte boundary, unlike
screen and color memory that take 1000 bytes and
must be aligned on a 1024-byte boundary.

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 POKE 53253,1
100 DATA 80,80,80,80,250,250,250,250

320

A program that fills another 2-kilobyte region of
memory with test patterns, then temporarily points
the base of character memory to it. In a real
application the character data would be a new
character set, game tiles, or similar. Note the 2-
kilobyte alignment of the character set's start address
and division by 2048 for calculating the base.

Relocating character memory becomes very
important when used in combination with row effects,
which we'll cover later in this chapter. Row effects let
you specify a different base for the character set on
each character row, allowing you to switch out
character sets within a single video frame.

This technique can be used for video games, for
example using different character sets for the main
game area as opposed to the surrounding graphics
and status displays. It's also how the Cody Computer
can display fully-bitmapped graphics by breaking a
bitmap into a series of tiles.

WAITING FOR BLANKING

In this section you've been making a lot of changes
to the Cody Computer's video registers. One thing we

10 A=40960
20 B=(A-40960)/2048
30 FOR I=0 TO 2047
40 POKE A+I,MOD(I,2)*85
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),240),B)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),240),5)

321

haven't discussed yet is what happens if you make
changes when the video hardware is in the middle of
drawing a frame. The answer is that while it won't
break anything, there's the chance for screen tearing,
jerky motion, and other weird visual glitches popping
up in the middle of a frame.

One way to avoid those problems is to update the
video registers and the active video memory only
when the video device isn't generating a frame. The
blanking register at $D000, or decimal 53248,
indicates the current state. A zero indicates that the
visible area of the screen is being drawn, while a 1
indicates that the blanking area or top and bottom
borders are being drawn instead.

A common technique is to poll the blanking register
until it transitions from a 0 to 1, then perform any
required updates for the next frame. This usually
works better in assembly language because of its
increased speed, but we can still use the same
approach in Cody BASIC as an example.

322

A program that prints a message whenever a new
frame begins, then waits for it to end before repeating.
The program will run forever until you break using the
Cody + Arrow key combination. Note that the
program likely won't print on every frame in reality
because of the time required for Cody BASIC to
execute each line.

SCROLLING THE SCREEN

The Cody Computer's Video Interface Device also
has features to support vertical and horizontal
scrolling with hardware assistance. Two types of
scrolling exist with different levels of support. One
type of scrolling, fine scrolling, allows you to adjust
the vertical and horizontal position up to a full column
or row. Once you've adjusted it up to that level, you
need to use coarse scrolling, where scrolling occurs at
a column or row basis. Fine scrolling is supported by
the scroll register, while coarse scrolling is usually

10 IF PEEK(53248)=0 THEN GOTO 10
20 PRINT "NEW FRAME"
30 IF PEEK(53248)=1 THEN GOTO 30
40 GOTO 10
RUN
NEW FRAME
NEW FRAME
NEW FRAME
NEW FRAME
BREAK IN 10

READY.
■

323

implemented as a side effect of relocating screen
memory.

FINE SCROLLING WITH REGISTERS

Two different registers are involved in fine scrolling.
Fine scrolling is enabled using the control register at
$D001 or decimal 53249. When set to a 1, bit 1
enables vertical scrolling and bit 2 enables horizontal
scrolling. Vertical and horizontal scrolling can be
enabled individually or at the same time.

Enabling scrolling affects the screen dimensions.
Vertical scrolling decreases the displayed vertical
screen size by one row. Horizontal scrolling on
decreases the displayed horizontal screen size by two
columns. The actual screen and color memory layout
are unaffected but the space on the screen is replaced
by expanded borders.

Once scrolling has been enabled for a particular
direction, the amount to scroll must be specified in the
scroll register at $D004 or decimal 53252. The
horizontal scroll amount is stored in the higher four
bits while the vertical scroll amount is stored in the
lower four bits. Horizontal scrolling supports a value
between 0 and 3 while vertical scrolling supports a
value between 0 and 7. The difference occurs because
pixels are wider than they are tall on the Cody
Computer, much like how a character has 4 horizontal
pixels but 8 vertical pixels.

324

A program that lets you experiment with vertical and
horizontal scrolling at the same time. The code accepts
vertical and horizontal scroll values from the user,
then turns on scrolling and pokes the values into the
scroll register. At the end the normal settings are
restored.

COMBINED SCROLLING

Fine scrolling works well for simple effects, but to
make a scrolling game it's not enough by itself. For
that you need to combine it with coarse scrolling,
where you move the entire screen by a row or column.
Unfortunately, much like its Commodore inspiration,
the Cody Computer has no direct support for coarse
scrolling. Instead, what you do is draw a second screen,
then flip to it when you need to scroll, using the same

10 PRINT "H SCROLL (0-3)";
20 INPUT H
30 IF H<0 THEN GOTO 100
40 PRINT "V SCROLL (0-7)";
50 INPUT V
60 IF V<0 THEN GOTO 100
70 POKE 53249,OR(PEEK(53249),6)
80 POKE 53252,H*16+V
90 GOTO 10
100 POKE 53249,AND(PEEK(53249),249)
110 POKE 53252,0
RUN
H SCROLL? 2
V SCROLL? 4
H SCROLL? -1

READY.
■

325

techniques you learned earlier in this chapter for
relocating the screen and color memory.

That's a lot of memory to draw, and moving that
much data around on a per-frame basis is typically
reserved for assembly language applications. Even
then, it's typically an optimized process where part of
the screen and color memory is drawn behind the
scenes during each fine-scrolled frame so that it's all
ready to go. In some respects the Cody Computer
makes this easier because the color memory can also
be relocated, unlike its fixed position on the
Commodore 64.

However, just because we can't do it fast enough in
Cody BASIC doesn't mean we can't at least give a
simple example of how it works. The following
program demonstrates most of the techniques needed,
but it keeps the screen design simple so that we only
have to generate two example screens at the start. It
also doesn't change the colors so we don't need to do
anything about the color memory.

10 A(0)=40960
20 A(1)=41984
30 B(0)=(A(0)-40960)/1024
40 B(1)=(A(1)-40960)/1024
50 FOR I=0 TO 999
60 C(0)=20
70 C(1)=20
80 IF MOD(I,2)=1 THEN C(0)=194
90 IF MOD(I,2)=0 THEN C(1)=194
100 POKE A(0)+I,C(0)
110 POKE A(1)+I,C(1)
120 NEXT
130 S=0
140 POKE 53252,0
150 POKE 53249,OR(PEEK(53249),4)
160 M=S/4

326

A simple combined scrolling example in Cody BASIC.
Two screens are generated with repeating patterns
offset by one column. Horizontal scrolling is enabled
and the screen is fine-scrolled one pixel on each
frame. Every fourth frame the screen memory is
toggled between the two screen regions we set up to
handle the coarse scrolling. When the user presses the
Q key, the program terminates and restores the
normal video configuration.

MOVING GRAPHICS WITH SPRITES

The Cody Computer supports sprites, movable
graphical objects on the screen often used in games.
Sprites are independent of the screen background and
hover over it. Each sprite is 12 pixels wide and 21 pixels
tall with a total of three colors plus a transparent
option. Two colors are unique to each sprite while one
is shared by all the sprites on the screen. Sprites can
be positoned anywhere on the screen as well as
partially off the screen on both the vertical or
horizontal axes.

Sprite data uses a total of 63 bytes of memory, with
the amount being rounded up to 64 as a power-of-

170 IF M=0 THEN B(2)=B(0)
180 IF M=1 THEN B(2)=B(1)
190 IF PEEK(53248)=0 THEN GOTO 190
200 POKE 53252,MOD(S,4)*16
210 POKE 53251,OR(AND(PEEK(53251),15),B(2)*16)
220 S=MOD(S+1,8)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230
250 GOTO 160
260 POKE 53251,OR(AND(PEEK(53251),15),9*16)
270 POKE 53249,AND(PEEK(53249),251)
280 POKE 53252,0

327

two. Each byte contains four pixels in a multicolor
format like those used by the character memory.
Sprite memory is organized from left to right, with the
top-left portion of the sprite beginning at the first
location in memory. Within each byte, the left-most
pixel data is stored in the higher bits and moves to the
lower bits.

Each color is represented by two bits, with a value of
0 indicating a transparent pixel. Values of 1 and 2
represent the two unique sprite colors, while a value of
3 represents the common color shared by all sprites
on the screen. Sprite memory is organized from left to
right, with the top-left portion of the sprite beginning
at the first location in memory.

Programming sprites is somewhat difficult in the
beginning. In addition to the sprite data that defines
the image of a sprite, registers must be programmed
to set up the sprite, specify its location, unique colors,
and base address of its image data. In order to support
a large number of sprites on the screen, an entire page
of memory is set aside as sprite register banks, and
this must also be taken into account.

DISPLAYING A SPRITE

To display a single sprite we have to do a few things
first. We need to copy the sprite's image data into a
64-byte-aligned location in the 16-kilobyte area
beginning at $A000. As with similar operations, we
also need to ensure that it won't collide with registers
or data already there.

Once we have a location picked out, we need to use
it to calculate the sprite's base pointer, which is

328

calculated in a similar way to the screen, color, and
character memory base pointers. You subtract your
sprite's starting address from the start of the region at
$A000, then divide the result by 64 to determine the
base pointer. Conveniently there are 256 possible
locations aligned at 64-byte boundaries, so this value
fits into a single byte.

Once the data is loaded for a sprite, you need to
program the sprite registers to tell the computer how
to display it. Sprite registers begin at location $D080
or 53376 decimal, and each sprite takes up four
consecutive bytes starting at the beginning. The first
byte specifies the sprite's x-position, the second byte
specifies the sprite's y-position, the third byte
specifies the sprite's two unique colors, and the fourth
and final byte specifies the base pointer for the
sprite's image data. (Multiple sprites can reuse the
same image data, such as in old games where the bad
guys reused the same picture in different colors.)

The sprite's position on the screen, notably, does not
start at (0,0) at the top-left corner. Sprites can slide in
from the sides of the screen and be only partially
displayed. To support this, a margin is added to the
normal screen dimensions. Because sprites are 12
pixels wide, a 12 pixel margin is added to either side of
the screen. Likewise, because sprites are 21 pixels tall,
a 21 pixel margin is added to the top and bottom. This
margin isn't displayed on the screen, but it allows the
sprite to be partially positioned off the screen. This
also means that the first screen location that would
fully display the sprite is at (12,21).

A sprite's unique color data is stored in a format like
the color memory. Two colors are stored in one byte,

329

with sprite color 1 stored in the lower half of the byte
and sprite color 2 stored in the upper half. The
common color, color 3, shared by all sprites is stored
in the sprite register at $D006 or decimal 53254,
where it's kept in the low half of the byte. The color
codes are the same as those used in color memory.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 IF PEEK(53248)=0 THEN GOTO 140
150 POKE 53376+0,P(0)
160 POKE 53376+1,P(1)
170 P(0)=P(0)+D(0)
180 P(1)=P(1)+D(1)
190 IF P(0)=12 THEN D(0)=-D(0)
200 IF P(0)=160 THEN D(0)=-D(0)
210 IF P(1)=21 THEN D(1)=-D(1)
220 IF P(1)=200 THEN D(1)=-D(1)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230
250 GOTO 140
260 POKE 53376+0,0
270 POKE 53376+1,0
280 DATA 0,20,0,1,85,64,5,85
290 DATA 80,5,85,80,21,125,84,21
300 DATA 215,84,21,213,84,21,213,84
310 DATA 21,215,84,5,125,80,5,85
320 DATA 80,5,85,80,13,85,112,12
330 DATA 93,48,12,93,48,3,28,192
340 DATA 3,12,192,3,12,192,0,142

330

A sprite demo that bounces a balloon sprite around on
the screen. The sprite's data is kept in DATA
statements and POKEd into memory. The sprite's
position and velocity are kept in arrays and updated
on each frame. The code waits for the blanking interval
and updates the sprite position using the numbers
from the arrays. Pressing the Q key exits the program
and restores the default settings.

A single sprite in the form of a balloon.

DISPLAYING MULTIPLE SPRITES

Up to eight sprites can be displayed on the same
part of the screen at any one time. You only need to
set up the other sprite registers just as you did the first
one in the previous example. As mentioned before,
each sprite is more or less independent of the screen,

350 DATA 0,0,170,0,0,170,0,131

331

and in fact sprites are more or less independent of
each other.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 FOR I=0 TO 7
90 POKE 53376+I*4+2,1*16+(I+7)
100 POKE 53376+I*4+3,B
110 X(I)=13+MOD(RND(),147)
120 Y(I)=22+MOD(RND(),177)
130 U(I)=1
140 V(I)=1
150 IF MOD(RND(),2)=0 THEN U(I)=-U(I)
160 IF MOD(RND(),2)=0 THEN V(I)=-V(I)
170 NEXT
180 IF PEEK(53248)=0 THEN GOTO 180
190 FOR I=0 TO 7
200 POKE 53376+I*4+0,X(I)
210 POKE 53376+I*4+1,Y(I)
220 X(I)=X(I)+U(I)
230 Y(I)=Y(I)+V(I)
240 IF X(I)=12 THEN U(I)=-U(I)
250 IF X(I)=160 THEN U(I)=-U(I)
260 IF Y(I)=21 THEN V(I)=-V(I)
270 IF Y(I)=200 THEN V(I)=-V(I)
280 NEXT
290 IF AND(PEEK(16),1)=0 THEN GOTO 320
300 IF PEEK(53248)=1 THEN GOTO 300
310 GOTO 180
320 FOR I=0 TO 7
330 POKE 53376+I*4+0,0
340 POKE 53376+I*4+1,0
350 NEXT
360 DATA 0,20,0,1,85,64,5,85
370 DATA 80,5,85,80,21,125,84,21
380 DATA 215,84,21,213,84,21,213,84
390 DATA 21,215,84,5,125,80,5,85
400 DATA 80,5,85,80,13,85,112,12
410 DATA 93,48,12,93,48,3,28,192

332

A program that bounces multiple balloons around the
screen. The program is similar to the previous example
except that all eight sprites in the first sprite bank are
in use. Program flow is largely the same, though loops
are added to iterate over each sprite, its coordinates,
and its velocity. Pressing Q will exit the program.

All eight sprites in use with the same balloon image
but different color values.

Here we only used 8 sprites that can move around
the entire screen. So far we've only been using the first
sprite bank that begins at $D080 and continues for 32
bytes (4 bytes for each of 8 sprites). Up to 32 sprites
can be displayed using sprite banks and row effects,
something covered when we discuss row effects in
more detail.

In those situations, multiple sprite banks with their
own information are swapped in and out by the Video

420 DATA 3,12,192,3,12,192,0,142
430 DATA 0,0,170,0,0,170,0,131

333

Interface Device as it draws the frame. The top half of
the sprite register at $D006 is used to select one of
the sprite banks, and this value can be overridden at
the start of each subsequent character row by a row
effects setting. However, there can still only be a
maximum of 8 sprites on any row.

DISABLING VIDEO OUTPUT

The VID also allows you to turn off the video display
entirely, for example if you don't want the user to see
the screen slowly being drawn in Cody BASIC. One
workaround would be to relocate the screen and color
memory to another location, but a quicker way is to
just shut off the video temporarily.

This can be done using the control register at $D001
or decimal 53249. When bit 0 is set to 1, the display
output is turned off and replaced with the current
screen border color. When the bit is cleared back to a
0, screen output returns as expected.

A simple example that turns off the video output for 5
seconds.

Because the VID is implemented inside the
Propeller and uses its internal memory, disabling
video output doesn't speed up the 65C02. Many older
computers turned off video generation to speed up
computations as the video hardware no longer shared

10 POKE 53249,1
20 T=TI
30 IF TI-T<300 THEN GOTO 30
40 POKE 53249,0

334

the bus, but in the Cody Computer, our system just
doesn't work like that.

ROW EFFECTS

One last feature of the Video Interface Device is its
ability to switch out graphics while the screen is being
drawn. Many 8-bit computers of the past had raster
interrupts that notified the processor when a particular
line was drawn on the screen, and if the computer
could respond fast enough, it could actually swap out
some of the data. The Cody Computer has a built-in
way of doing this.

The Cody Computer supports a system of row
effects, where the VID can be programmed to replace
the contents of certain registers on specified character
rows. The base register, scroll register, screen colors
register, and sprite register can all be overridden at
any character row boundary using this mechanism.
Once applied, the change remains for the rest of the
current frame or until another value is specified. On
the next frame the process begins anew with the
original register values.

Using the row effects unlocks the full capacity of the
Cody Computer's graphics system. You can have
multiple banks of sprites on the screen at the same
time, so long as they are partitioned into different
rows on the screen. You can change the shared screen
and sprite colors to have a more colorful output and
avoid color attribute clashes. You can have split
scrolling so that a game screen can be scrolled while
status bars remain fixed in place. You can dynamically

335

swap out character sets and create a very detailed,
dynamic screen without resorting to bitmap mode.

ROW EFFECTS REGISTER BANKS

The mechanism works by having two dedicated row
effects register banks of 32 bytes each. The first bank,
starting at $D040 or decimal 53312, contains the
control values for each row effect. These values tell the
VID where to perform the replacement and what
register to replace. The second bank, starting at
$D060 or decimal 53344, specify the replacement
values that should be used.

The control bytes consist of several pieces of
information packed into a single byte. Bits 0 through 5
contain the row number to begin the replacement on.
Bits 6 and 7 contain a two-bit value specifying the
target register to override. The last bit, bit 8, is an
enable bit that must be set to 1 for that specific row
effect to be applied. The two-bit destination code is as
follows:

Destination 00 replaces the base register.
Destination 01 replaces the scroll register.
Destination 10 replaces the screen colors
register.
Destination 11 replaces the sprite register.

Row effects must also be enabled globally in the
control register at $D001 or decimal 53249. Bit 3 of
the control register must be set to 1 to enable the
effects regardless of the enable bit on each control
byte in the row effect bank.

•
•
•

•

336

SCREEN COLORS AND ROW EFFECTS

One of the typical uses for row effects is increasing
the number of colors on the screen. As you may recall,
each location on the screen has two unique colors and
two shared colors. With row effects, the shared colors
can be swapped for other colors starting at any
character row boundary.

Programs can use this ability to divide the screen
into different shared color regions for different
reasons. Games might use this to have different shared
colors in different areas, for example, different shared
colors for sky, ground, and ocean. Paint programs
could use this to permit more colors on the screen for
artwork. And for more detailed graphics, the same
principle applies, allowing more colors to be used in
detailed images or backgrounds than would normally
be possible.

To do this, we need to select the screen colors
register as our destination using code 10, then ensure
that the replacement value is loaded into the
corresponding row effect data register. The format of
the data in the row effect data register is the same as it
would be if directly stored to the screen colors
register.

337

A modified version of the sample program for defining
custom characters. As in that example a character
pattern using four different colors is programmed in
and filled to the entire screen. Unlike the earlier
example, the two common colors on the characters will
be different for each row. This is because we told the
Cody Computer to change the shared screen colors on
each row using row effects.

SPRITE COLORS AND ROW EFFECTS

While not as broadly useful, the shared sprite color
can also be changed on a per-row basis using the
sprite register row effect. The sprite register contains
both the sprite bank base (in the high four bits) and
the sprite shared color (in the low four bits).

By using 11 as our destination code to replace the
sprite register, we can target the sprite register for a
row effect. To change only the sprite color, our
replacement value in the corresponding data register

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 FOR I=0 TO 24
100 POKE 53312+I,OR(192,I)
110 POKE 53344+I,MOD(I,16)*16+MOD(I+8,16)
120 NEXT
130 POKE 53249,OR(PEEK(53249),8)
140 DATA 80,80,80,80,250,250,250,250

338

would have the sprite bank register held constant but
use a different color code in the low four bits.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 FOR I=0 TO 24
150 POKE 53312+I,OR(224,I)
160 POKE 53344+I,MOD(I,16)
170 NEXT
180 POKE 53249,OR(PEEK(53249),8)
190 IF PEEK(53248)=0 THEN GOTO 190
200 POKE 53376+0,P(0)
210 POKE 53376+1,P(1)
220 P(0)=P(0)+D(0)
230 P(1)=P(1)+D(1)
240 IF P(0)=12 THEN D(0)=-D(0)
250 IF P(0)=160 THEN D(0)=-D(0)
260 IF P(1)=21 THEN D(1)=-D(1)
270 IF P(1)=200 THEN D(1)=-D(1)
280 IF AND(PEEK(16),1)=0 THEN GOTO 310
290 IF PEEK(53248)=1 THEN GOTO 290
300 GOTO 190
310 POKE 53376+0,0
320 POKE 53376+1,0
330 DATA 0,20,0,1,85,64,5,85
340 DATA 80,5,85,80,21,125,84,21
350 DATA 215,84,21,213,84,21,213,84
360 DATA 21,215,84,5,125,80,5,85
370 DATA 80,5,85,80,13,85,112,12
380 DATA 93,48,12,93,48,3,28,192
390 DATA 3,12,192,3,12,192,0,142

339

A modified version of the balloon sprite example. In
this program we have also added row effects to change
the common sprite color on each row. As the balloon
travels the screen the shared color will pulsate and
change depending on the rows the balloon sprite
hovers over. Press Q to quit.

SPRITE BANKS AND ROW EFFECTS

As you may have guessed during the above section
on sprite color row effects, the sprite banks can also be
changed when the sprite register is used in a row
effect. Different sprite banks can contain different
sprites and the row effects can change the bank at
different rows on the screen. This approach is quite
powerful as it allows more than eight sprites to be on
the screen at the same time. The only limitation is that
only one sprite bank can be used on any single row.

This technique is very useful in games so long as
your game logic is designed to support it. An arcade
game could have up to 8 airplanes in a sky region, up
to 8 tanks on a ground region, and up to 8 ships in a
water region, all on the same screen. A similar
approach could be used for flying versus ground
enemies in a sidescroller. A player sprite that needs to
transit multiple regions can be programmed into
multiple banks with the same information, so that
regardless of its current location it's drawn
appropriately on the screen.

400 DATA 0,0,170,0,0,170,0,131

10 A=41984
20 B=(A-40960)/64

340

A sprite example with multiple sprite banks in use.
Based on the multiple sprite example earlier in the
chapter, this program sets up a total of 32 sprites in
four sprite banks. The sprites are split into four
horizontal regions and the first four row effects

30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 FOR I=0 TO 31
80 POKE 53376+I*4+0,13+18*MOD(I,8)
90 POKE 53376+I*4+1,25+(I/8)*48
100 POKE 53376+I*4+2,9*16+MOD(I,16)
110 POKE 53376+I*4+3,B
120 NEXT
130 FOR I=0 TO 31
140 POKE 53312+I,0
150 NEXT
160 FOR I=0 TO 3
170 POKE 53312+I,OR(224,I*6)
180 POKE 53344+I,I*16
190 NEXT
200 POKE 53249,OR(PEEK(53249),8)
210 IF PEEK(53248)=0 THEN GOTO 210
220 FOR I=0 TO 31
230 T=PEEK(53376+I*4)+1
240 IF T>174 THEN T=0
250 POKE 53376+I*4,T
260 NEXT
270 IF AND(PEEK(16),1)=0 THEN GOTO 300
280 IF PEEK(53248)=1 THEN GOTO 280
290 GOTO 210
300 FOR I=0 TO 31
310 POKE 53376+I*4+0,0
320 POKE 53376+I*4+1,0
330 NEXT
340 DATA 0,20,0,1,85,64,5,85
350 DATA 80,5,85,80,21,125,84,21
360 DATA 215,84,21,213,84,21,213,84
370 DATA 21,215,84,5,125,80,5,85
380 DATA 80,5,85,80,13,85,112,12
390 DATA 93,48,12,93,48,3,28,192
400 DATA 3,12,192,3,12,192,0,142
410 DATA 0,0,170,0,0,170,0,131

341

registers set up to switch out sprite banks at those
screen-split locations. Pressing Q will quit.

A total of 32 sprites on the screen thanks to row
effects. Note how each group of eight sprites exists in
its own horizontal region on the screen.

SCROLLING WITH ROW EFFECTS

Row effects can also be used to set different fine-
scroll amounts on different parts of the screen. The
contents of the scroll register can be overridden using
destination code 01 and the new value of the scroll
register in the corresponding row effect data register.
Horizontal or vertical scrolling must be enabled in the
control register separately.

This approach can be useful for games that require
a split-screen effect. Many games include a static
status area with health/life, timer, inventory, or other
information while the main game area scrolls along.

342

Splitting the screen into multiple scroll areas can help
with this, and the split can even be combined with the
double-buffering approach mentioned in the earlier
section on fine and coarse scrolling.

An example of split-screen scrolling. The row effects
registers are cleared and then set up to have two
different horizontal scrolling values, zero for the first
three rows and a changing amount for the remainder
of the screen. Horizontal scrolling and row effect are
switched on and the main loop updates the scroll
amount. Pressing the Q key ends the program and
shuts off the extra effects.

RELOCATIONS USING ROW EFFECTS

The base register can be updated when the
destination code is set to 00. This can be used to
update the base of screen memory on the fly, but in

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 FOR I=0 TO 31
50 POKE 53312+I,0
60 NEXT
70 POKE 53312+0,OR(160,0)
80 POKE 53344+0,0
90 POKE 53312+1,OR(160,3)
100 POKE 53249,12
110 S=0
120 IF PEEK(53248)=0 THEN GOTO 120
130 POKE 53344+1,S*16
140 S=MOD(S+1,4)
150 IF AND(PEEK(16),1)=0 THEN GOTO 180
160 IF PEEK(53248)=1 THEN GOTO 160
170 GOTO 120
180 POKE 53249,0

343

general is going to be used to change the character set
base portion of the register instead. Doing this allows
more than 256 characters to be used on the screen at
the same time.

The format used for the row effect's data register is
the same as that used for the register itself. For
example, to change the character set, keep the same
screen memory base but use a different character set
base.

This can be useful in games. For example, imagine a
full character set used as tiles for the game world, and
a separate character set used for the text and user
interface at the top and bottom of the screen.

Using row effects to change the base address of the
character set in the middle of a frame. A test pattern
from a previous example is programmed into a second
character set, then switched out in the middle of the
frame using a row effect. The Q key will quit the
program.

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 A=40960
50 B=(A-40960)/2048
60 FOR I=0 TO 2047
70 POKE A+I,MOD(I,2)*85
80 NEXT
90 FOR I=0 TO 31
100 POKE 53312+I,0
110 NEXT
120 POKE 53312,OR(128,12)
130 POKE 53344,9*16+B
140 POKE 53249,8
150 IF AND(PEEK(16),1)=1 THEN GOTO 150
160 POKE 53249,0

344

BITMAPPED GRAPHICS

The Cody Computer also supports a limited form of
bitmap graphics. In this mode, each byte in screen
memory is expanded to eight bytes containing the bit
pattern to draw at the location. The layout of each
eight-byte section is exactly the same as in character
memory, and the same color limitations apply as in
the normal character graphics mode. This also expands
the size of video memory from 1000 bytes to 8000
bytes. Bitmap mode is enabled by bit 4 of the video
control register at $D001 or decimal 53249.

In many respects the bitmap mode is more of a
hybrid mode between character graphics and a fully-
bitmapped screen. The first eight bytes represent the
first 4x8 tile, the next eight bytes represent the second
4x8 tile, and so on for the remainder of the screen.
While this makes the implementation easier within the
Cody Computer's firmware (and also more faithful to
how things actually worked on the Commodore
computers), it does make plotting pixels more difficult.

To find where to plot a pixel, it's necessary to begin
with the (x,y) coordinate on the screen's 160x200 grid.
First divide the y-coordinate by 8 (the number of lines
in a character) rounding down, then multiply by 320
(the number of bytes in a row of 40 tiles). Then divide
the x-coordinate by 4 (the number of columns in a
character) rounding down, then multiply by 8 (the
number of bytes in a character). This gets us to the
beginning of the bytes for that section of the screen.
We add the remainder from the earlier division of the
y-coordinate to get the final byte we need to update.

345

To select the actual pixel within that byte, however,
we still have a bit of work to do. We need to mask out
the portion of the byte we want to change and replace
it with the color we want to draw. Just like in character
memory, each byte is represented by two bits, with the
highest two bits representing the leftmost dot in the
line of pixels. This means that we'll need a two-bit
mask that we shift right the appropriate number of
two-bit increments, and we'll need to do the same with
the color value we'll insert.

It's not an easy operation, though once you've
walked through the steps, it'll become clearer. It also
means that it's a lot more time-consuming than just
updating a single byte to change an entire tile on the
screen. Bitmapped graphics have their place, but for
things like video games, many of the most action-
intense ones will need to rely on the character
graphics mode over the bitmapped mode: A slow
retro-style system like the Cody Computer just isn't
going to push that many pixels.

Below we have a Cody BASIC program that
demonstrates the bitmap mode by setting it up and
randomly plotting some pixels. We have to relocate
our screen memory so that we have enough space for
the bigger memory, clear out the memory, set up our
colors, and finally enter a loop where we randomly
plot pixels into the screen area. The complicated
calculation discussed above is implemented as a
subroutine in Cody BASIC to make it a little easier to
follow.

10 FOR I=40960 TO 48960
20 POKE I,255

346

Plotting random pixels in bitmap mode. It will take a
little while to run as it clears out screen memory
before beginning to plot pixels. When ready to exit,
press the Q key and the screen will be restored to
character graphics mode.

30 NEXT
40 FOR I=55296 TO 56296
50 POKE I,RND()
60 NEXT
70 POKE 53253,1
80 POKE 53250,224
90 POKE 53251,5
100 POKE 53249,OR(PEEK(53249),16)
110 X=MOD(RND(),160)
120 Y=MOD(RND(),200)
130 C=MOD(RND(),4)
140 GOSUB 300
150 IF AND(PEEK(16),1)=0 THEN GOTO 200
160 GOTO 110
200 POKE 53253,22
210 POKE 53250,231
220 POKE 53251,149
230 POKE 53249,AND(PEEK(53249),15)
240 END
300 P=40960
310 P=P+Y/8*(40*8)
320 P=P+X/4*8
330 P=P+MOD(Y,8)
340 M=192
350 C=C*64
360 R=MOD(X,4)
370 IF R=0 THEN GOTO 420
380 M=M/4
390 C=C/4
400 R=R-1
410 GOTO 370
420 POKE P,OR(AND(PEEK(P),XOR(M,255)),C)
430 RETURN

347

HIGH RESOLUTION GRAPHICS

High-resolution character and bitmap graphics
modes are also available. These allow programs to
increase the screen resolution to 320 pixels by 200
pixels at the cost of disabling many of the Cody
Computer's more advanced video features. The
horizontal resolution is doubled but only two colors
may appear in any 8-by-8 pixel region. Features such
as sprites and scrolling are disabled. Row effects are
still possible but many of them have no effect because
of the lack of sprites and other features. To enable the
high-resolution mode you must turn on bit 5 of the
video control register at $D001 or decimal 53249.

Pixel data is similar to the low-resolution multicolor
mode except that there are only two choices for colors.
As a result, each pixel is represented by a single bit. A
single byte of pixel data represents eight pixels, each
of which can have only one of two colors. A 0 bit
selects the low nibble in color memory for a particular
location while a 1 bit selects the high nibble in color
memory.

Character graphics in high resolution mode are
identical to those in the normal graphics modes. The
only difference is in the format of the data in character
memory, which uses the one-bit-per-pixel layout
described above. Otherwise it behaves exactly the
same way as for the four-color mode you already
learned about.

A simple example below will load some abstract
high-resolution designs into unused spaces in
character memory, then show them on the screen in a

348

high-resolution mode. You will also notice how the
default characters look different (but are often
nonetheless readable) even when switched into high-
resolution mode. This occurs because the two-bit
multicolor patterns are being interpreted as single-bit
on-or-off values instead.

An example of the high-resolution character mode.
Four characters at the top of character memory are
reprogrammed as high-resolution characters. High-
resolution mode is enabled and the color and screen
memory updated with random colors and values. At
the end you press enter to exit from the high-
resolution mode.

A high-resolution bitmap mode is also possible.
While most of the additional graphics features are not
available in high-resolution mode, bit 4 of the video
control register at $D001 or decimal 53249 can be
used together with bit 5 to enable the high-resolution
bitmap mode. As with the character mode, the overall

10 FOR I=0 TO 31
20 READ M
30 POKE 51200+252*8+I,M
40 NEXT
50 POKE 53249,OR(PEEK(53249),32)
60 FOR I=0 TO 999
70 POKE 50176+I,252+MOD(RND(),4)
80 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
90 NEXT
100 PRINT "PRESS ENTER TO EXIT";
120 INPUT X$
130 POKE 53249,AND(PEEK(53249),15)
140 DATA 1,3,7,15,31,63,127,255
150 DATA 0,128,192,224,240,248,252,254,255
160 DATA 255,127,63,31,15,7,3,1
170 DATA 255,254,252,248,240,224,192,128,0

349

memory layout is the same. The only difference is the
pixel data, which must conform to the same one-bit-
per-pixel layout described for character pixel data.

Plotting a specific pixel on the screen also follows
the same algorithm as described for the normal
multicolor bitmap mode. Again divide the y-
coordinate by 8 and multiply by 320. However, you
must divide the x-coordinate by 8 instead of 4 because
there are eight pixels across per character rather than
four, then multiply that result by 8. As before, add the
remainder from dividing the y-coordinate to get the
actual byte. The bit mask operation also works in a
similar fashion except that the mask is only one bit
and is shifted in one-bit increments.

The following example is very similar to the bitmap
example shown previously. However, it has been
adjusted to support the high-resolution two-color
mode instead of the lower-resolution multicolor mode.
Note the changes to portions of the code related to the
x-coordinate and bit-shifting in particular.

10 FOR I=40960 TO 48960
20 POKE I,0
30 NEXT
40 FOR I=55296 TO 56296
50 POKE I,RND()*16
60 NEXT
70 POKE 53250,224
80 POKE 53251,5
90 POKE 53249,OR(PEEK(53249),48)
100 X=MOD(RND()+RND()*2,320)
110 Y=MOD(RND(),200)
120 C=MOD(RND(),2)
130 GOSUB 300
140 IF AND(PEEK(16),1)=0 THEN GOTO 200
150 GOTO 100
200 POKE 53250,231

350

A modified bitmap example for the two-color high-
resolution mode. As with the earlier bitmap example,
pressing the Q key returns to the default graphics
mode.

210 POKE 53251,149
220 POKE 53249,AND(PEEK(53249),15)
230 END
300 P=40960
310 P=P+Y/8*(40*8)
320 P=P+X/8*8
330 P=P+MOD(Y,8)
340 M=128
350 C=C*128
360 R=MOD(X,8)
370 IF R=0 THEN GOTO 420
380 M=M/2
390 C=C/2
400 R=R-1
410 GOTO 370
420 POKE P,OR(AND(PEEK(P),XOR(M,255)),C)
430 RETURN

351

Sound and Music
Programming

8

INTRODUCTION

The Cody Computer supports sound and music
through the Sound Interface Device or "SID," a copy of
the famous SID from the Commodore 64. The Cody
Computer's SID supports many, but not all, of the
same features as its predecessor. It's intended as a
simplified sound generator suitable for the curious
hobbyist or casual user, but with a significant degree
of compatibility. Like the Cody Video Interface Device,
the Cody SID is implemented as a software peripheral
in the Propeller.

Like the original SID, the Cody SID relies on
principles of digital audio synthesis to generate
sounds. Unlike modern computers which essentially
play back raw audio data (often after processing the
signal in some way), the SID generates sound
mathematically. Counters and mathematical formulas
are used to produce sound-like waves and combine
them together, with the exact characteristics of these
waves under the control of the programmer.

The Cody SID supports up to three voices, or
independent sounds, at the same time. Each voice can
generate a sound at a different frequency, and each
sound can consist of either a triangle wave, a sawtooth
wave, a pulse wave, and white noise. These are
combined with another wave called an envelope, which
determines how loud the sound gets, how quickly, and
how slowly it fades away when turned off.

The envelope is defined using attack (how fast the
sound reaches a peak volume), decay (how long the
sound drops to its normal value after the peak),

354

sustain (how loud the sound stays), and release (how
long the sound takes to fade out). This ADSR envelope
shapes the underlying sound for each voice and is
capable of mimicking many instruments and sound
effects.

The original SID chips in the Commodore 64 family
had other features, including filters that let the
programmer emphasize certain high-frequency, low-
frequency, or middle portions of each sound. Filters
could vary greatly between SID chips, and in order to
keep the Cody Computer a fun learning tool, filters
aren't supported by the Cody Computer's SID. Some
sounds and songs, even if ported to work on the Cody
Computer, won't sound quite right as a result, but
most results are at least passable. Also unlike the
Commodore SID, the Cody SID doesn't permit the user
to select multiple waveforms for the same voice: you
have to pick one, and only one, type of sound for each
voice at any one time.

MAKING A SOUND

To program sounds, you poke values into memory
registers. Each voice has seven registers, and there are
a total of three voices, starting at memory location
$D400 (decimal 54272). Global settings for the SID,
including volume, are controlled by a handful of other
registers immediately following the voice registers.

For each voice, the registers are organized in the
same order. The first two registers contain the low and
high bytes for the voice's sound frequency as a
number from 0 to 65535 (these map, more or less, to
a range between 0 and 4 kilohertz as audio

355

frequencies). Following those are two registers only
used for pulse waveforms, containing the low and high
bytes of the pulse wave's duty cycle (how long it is on
relative to how long it is off). The pulse value can
range from 0 to 4095, with a zero being off all the
time and 4095 being on all the time. (If you're curious,
the more limited range of the pulse width occurs
because the top half of the pulse wave's high byte is
unused, just as it was on the C64.)

After that, the fifth register, the control register,
allows you to select the type of sound you want to
produce. The high four bits contain the type of sound
while the lower four bits contain other control
information, including turning the voice on and off. Bit
4 selects a triangle wave, bit 5 selects a sawtooth wave,
bit 6 selects a pulse wave, and bit 7 selects a white
noise wave. The lowest bit, bit 0, is the gate bit that
turns the voice itself on and off. (The other bits are
used for more advanced features that we'll cover
later.)

The sixth and seventh registers define the ADSR
(attack-decay-sustain-release) envelope that was
mentioned in the introduction. The attack and decay
are set by the sixth register. The attack value (how
long the sound takes to reach maximum volume ater it
starts) is stored in the top half of the sixth register. The
decay value (how long the sound takes to decrease
from its maximum to its sustain level) is stored in the
bottom half. Both range from 0 to 15 but cover
different time ranges. The attack range covers between
0 and 8 seconds while the decay range covers between
0 and 24 seconds. The relationship is not linear, so you
need to consult the table below to find the exact value.

356

The seventh and final voice register contains the
other part of the ADSR envelope, the sustain and
release values. The sustain value (the volume the voice
stays at after the decay phase) is stored in the top half
of the register. The release value (the time it takes the
sound to fade out after it's turned off) is stored in the
bottom half. The sustain value ranges from 0 to 15 and
represents a volume level. The release value also
ranges from 0 to 15 but represents a time value, with
its possibilities being the same as those for the decay
value.

Value (dec)
Value
(hex)

Attack
(ms)

Decay/Release
(ms)

0 $0 2 6

1 $1 4 24

2 $2 16 48

3 $3 24 72

4 $4 38 114

5 $5 58 168

6 $6 68 204

7 $7 80 240

8 $8 100 300

9 $9 250 750

10 $A 500 1500

11 $B 800 2400

12 $C 1000 3000

13 $D 3000 9000

14 $E 5000 15000

15 $F 8000 24000
The attack, decay, and release values and their rates.
Note that sustain values are not included in the table

357

because the sustain setting is a volume, not a time
constant.

In many respects, sound programming can be more
difficult than video programming. While video
programming has many complicating factors to get a
picture on the screen, the overall concepts of pixels,
characters, and sprites are usually somewhat familiar.
Sound programming, absent any personal experience
with musical instruments or signal processing, can take
longer to understand.

For that reason, we'll start with a simple example.
The following BASIC program will generate a triangle
wave at 440 hertz, which is common in music as the A
note above middle C. This particular frequency is used
as a standard to tune instruments, and we'll use it here
to get started.

A program that plays an A note on voice 1. The SID
registers are reset to 0, then the values for a note on
voice 1 are poked into memory. A brief delay occurs
before the sound is turned off.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,AND(7382,255)
60 POKE 54273,7382/256
70 POKE 54277,2*16+4
80 POKE 54278,14*16+6
90 POKE 54276,16+1
100 T=TI
110 IF TI-T<120 THEN GOTO 110
120 POKE 54276,16

358

The program begins by clearing out all the SID
registers. This is very important in any case, as you
may have noticed earlier in the book when running
one program messes up the environment for a later
one. For the SID it's particularly important so that any
existing sounds or settings get cleared out.

After the SID is cleared out, the program sets the
volume to maximum. The volume is poked into the
lower half of the main volume control register at
$D418 or decimal 54296. The 440 Hz frequency is
converted to its corresponding SID value, 7382, and
then poked into the frequency registers at $D400
(decimal 54272) and $D401 (decimal 54273). (To
calculate the frequency value to poke in, an old
formula for the Commodore SID can be used, dividing
the desired frequency by 0.0596. If you forget that, a
reasonable approximation can be made by recalling
that the range of frequencies goes from 0 to about
4000, and the register value goes from 0 to 65535;
you won't get the exact value, but you can solve it like
any other proportion.)

The attack and decay values are poked into register
$D405 or decimal 54277. Relatively small values are
used for this example, with an attack value of 2
corresponding to a mere 16 milliseconds. The decay
value of 4 isn't much bigger, corresponding to about
114 milliseconds. Sustain and release values are then
poked into the following register at $D406 or decimal
54278. A relatively high sustain volume of 14 is poked
along with a relatively short decay value of 6
(corresponding to around 204 milliseconds).

To start the sound, the program pokes the voice 1
control register at $D404. Bit 4 is set to enable the

359

triangle wave sound, while bit 0 is also set to begin the
sound. A timer loop waits for about two seconds, and
then the control register is poked with bit 0 turned off
to end the sound.

CREATING SOUNDS WITH
NUMBERS

This may be the first time you're hearing of triangle
waves, sawtooth waves, pulse waves, so we'll go over a
brief example of each one. The exact values, including
the frequencies and ADSR values, aren't the main
focus here. The intent is to give you an idea of how the
different sounds actually sound.

TRIANGLE WAVES

A triangle wave is basically what it sounds like. The
wave goes up to a maximum in a straight line, peaks,
goes down to a minimum in a straight line, and then
repeats. Triangle waves are enabled by setting bit 4 in
a voice's control register.

The triangle wave is also special in that it's the
closest the SID can produce to an actual sine wave.
Because of its audio characteristics, it can be described
as sounding like something between a square wave (or
pulse) and a sine wave.

360

A Cody BASIC program that produces a triangle wave.
The exact SID register values were taken from an
emudev.de article on the Commodore 64's sounds.

SAWTOOTH WAVES

A sawtooth wave is kind of like a triangle wave with
special characteristics. Instead of going up and down in
a linear fashion, it goes up to a maximum, then
immediately drops to its minimum. This produces a
waveform that looks a lot like the teeth on a saw blade.
Sawtooth waves are enabled with bit 5 in a voice's
control register.

Sawtooth waves tend to sound very harsh and sharp.
They can be made to sound similar to a buzzer in
many situations. Yet when set up with the appropriate
characteristics, they can also be very useful for other
sound effects and even music.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,22
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,17

361

An example of a sawtooth wave. The exact SID register
values were taken from an emudev.de article on the
Commodore 64's sounds.

PULSE WAVES

A pulse wave may be what most people think of as
an electronically-generated sound. It goes
immediately to its maximum, stays there for a
particular time, and then drops to its minimum,
staying there for a while until the process repeats. A
pulse wave has a duty cycle that indicates how long
the wave is on compared to how long it is off: For
example, a wave with a duty cycle of 75% is at its
maximum three times longer than its minimum. A
square wave is just a special case of the pulse wave
with a duty cycle of 50%. Pulse waves are enabled
using bit 6 in a voice's control register.

In addition to being useful to generate very
electronic beeps and blips, different duty cycles for
each wave can produce a variety of unique sounds. On
the SID the pulse wave is unique in that in addition to
the frequency value, the pulse is also programmable
using some of the voice's registers.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,195
60 POKE 54273,10
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,33

362

An example of a pulse wave. The exact SID register
values were taken from an emudev.de article on the
Commodore 64's sounds.

NOISE

Noise is similar to the white noise that you may
have heard from a white noise sound machine.
Different techniques can be used to generate noise,
but one of the most common is to use what is called a
linear feedback shift register. It's similar to a normal
shift register, but it has taps at different places along
the shift register's path to obtain output or feed back
into the circuit. Noise output is enabled using bit 7 of a
voice's control register.

Noise is useful for a variety of sound effects, but it
can also be used in various musical sounds. Nor
should noise be considered as something to be used
for static in sound effects. Consider that a white noise
sound with the appropriate frequency, fade-in, and
fade-out, could be used to mimic the sound of the
ocean.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54274,15
80 POKE 54275,15
90 POKE 54277,105
100 POKE 54278,252
110 POKE 54276,65

363

An example of noise output. The exact SID register
values were taken from an emudev.de article on the
Commodore 64's sounds.

EXPERIMENTING WITH DIFFERENT VALUES

Now that you've heard how the Cody Computer can
generate sounds, try the following program to see
what other kinds of sounds can be produced. Instead of
writing many different programs with different
settings, you can use the one below to enter different
values and hear the results immediately. This won't
work as an exhaustive example of every sound the
Cody Computer can make using its SID, but it gives
you a place to begin.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,129

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 PRINT "AVAILABLE SOUNDS:"
50 PRINT "1. TRIANGLE"
60 PRINT "2. SAWTOOTH"
70 PRINT "4. PULSE"
80 PRINT "8. NOISE"
90 PRINT "SOUND (1, 2, 4, OR 8)";
100 INPUT C
110 PRINT "FREQUENCY (0-65535)";

364

A tool for experimenting with simple SID sounds. On
each loop the user is prompted for some SID values,
and the program plugs them into the SID registers for
voice 1.

To use the program you just need to load and run it.
You specify the type of sound you want to generate by
entering a number corresponding to the voice settings
in the top half of the control register. After that you

120 INPUT F
130 W=0
140 IF C<>4 THEN GOTO 170
150 PRINT "PULSE WIDTH (0-4095)";
160 INPUT W
170 PRINT "ATTACK RATE (0-15)";
180 INPUT A
190 PRINT "DECAY RATE (0-15)";
200 INPUT D
210 PRINT "SUSTAIN LEVEL (0-15)";
220 INPUT S
230 PRINT "RELEASE RATE (0-15)";
240 INPUT R
250 PRINT "OVERALL VOLUME (0-15)";
260 INPUT V
270 POKE 54296,V
280 POKE 54272,AND(F,255)
290 POKE 54273,F/256
300 POKE 54274,AND(W,255)
310 POKE 54275,W/256
320 POKE 54277,A*16+D
330 POKE 54278,S*16+R
340 PRINT "PRESS ENTER TO PLAY";
350 INPUT X$
360 POKE 54276,C*16+1
370 PRINT "PRESS ENTER TO STOP";
380 INPUT X$
390 POKE 54276,C*16
400 PRINT "AGAIN (Y/N)";
410 INPUT X$
420 IF X$="N" THEN END
430 PRINT ""
440 GOTO 10

365

enter the raw values for the frequency, attack, decay,
sustain, and release, along with the overall volume. If
you're trying out a pulse wave you'll also be prompted
for the pulse's duty cycle. The program doesn't do any
error checking, so if you enter an invalid value, you'll
get some strange results.

You should experiment with different values to see
how they sound, but below are some examples from a
1984 edition of the Commodore 64 User's Manual.
One table contains the suggested values to resemble
the sounds of different musical instruments. Another
table shows a subset of the musical scale, giving you
one octave's worth of constants to try out different
notes.

Instrument Sound Pulse Attack Decay Sustain Release

Piano 4 225 0 9 0 0

Flute 1 0 0 6 0 0

Harpsichord 2 0 0 9 0 0

Xylophone 1 0 0 0 15 0

Accordion 1 0 6 6 0 0

Trumpet 2 0 6 0 0 0

Noise 4 0 0 0 0 0
A table of settings copied from a 1984 edition of the
Commodore 64 User's Manual. Each is intended to be a
rough first approximation of a musical instrument.

The exact sound values you use are largely the
result of experimentation, and the above table is only
a beginning. As Commodore's own data sheet for the
SID noted long ago, the exact characteristics of an
instrument are vital when determining what values to
plug in. A violin often builds up somewhat slowly

366

when bowed and reaches an intermediate volume
before fading out. As a first guess, one might try a
somewhat slow attack, a middle-range sustain volume,
and a shorter decay and longer release time. A
percussion instrument, on the other hand, generally
reaches a peak volume suddenly, then goes away
entirely. In the end, the correct values to plug in are
those that sound best for the song or effect that one is
trying to achieve.

Along with the ADSR settings, however, is the
frequency. We discussed before that you can calculate
the frequency value by dividing the frequency in hertz
by 0.0596, and it helps to use this formula when you
need to. Below is a brief table of notes and their
corresponding frequency register values for the fourth
octave, including the 440 hertz A note you played
earlier.

Note Frequency (Hz) Value (dec) Value (hex)

C4 261.63 4389 $1125

D4 293.66 4927 $133F

E4 329.63 5530 $159A

F4 349.23 5859 $16E7

G4 392.00 6577 $1981

A4 440.00 7382 $1CD6

B4 493.88 8286 $205E
A subset of the musical note frequency values from
the Commodore SID 6581 data sheet. Values for the
fourth octave (excluding sharps) are included as an
example.

Don't limit yourself to trying to play musical
sounds. The SID can be used for a variety of sound

367

effects as well. Also try to familiarize yourself with
how the different settings work in practice. Listen for a
faster or slower buildup as you adjust the attack rate,
and note how the decay and sustain portions of the
sound change as you alter their values. Try different
release values to learn how a sound can quickly or
slowly fade off.

PLAYING A SIMPLE SONG

The same approach can be used to play simple
songs in Cody BASIC. To play an entire song, however,
the musical notes and their lengths need to be taken
into account. A musical note is just a frequency, so the
corresponding frequency register value can be used to
represent each note at a low level. The time for each
note can be represented as a time constant of some
sort.

To play a note, a program would load the instrument
data from the above table, load the frequency value
for the note to play, and then start playing by setting
the gate bit to 1. The program then waits for a time
associated with the length of a note before turning the
note off and moving on to the next one.

In music, a common standard for timing is 4/4 time,
in which a whole note lasts for an entire portion of a
song called a measure. The rest of the system is
fractional, with a half-note lasting for half of a
measure, a quarter note lasting for one-fourth of a
measure, and so on. A corresponding symbol, the
whole rest, indicates that no note should be played for
the entire measure. These also have fractional

368

divisions such as the half-rest and quarter-rest. These
concepts can easily be represented on a computer.

To see how this could work, we'll look at an
introductory example from one edition of the
Commodore 64 User's Manual as translated to the
Cody Computer. In it, a simple program of POKEs,
FOR/NEXT statements, and DATA statements is used
to play a portion of the chorus from the American folk
song "Tom Dooley."

10 S=54272
20 FOR Z=S TO S+24
30 POKE Z,0
40 NEXT
50 POKE S+24,15
60 POKE S+2,255
70 POKE S+3,0
80 POKE S+5,9
90 POKE S+6,0
100 READ H,L,D
110 PRINT H," ",L," ",D
120 IF H=0 THEN END
130 POKE S,L
140 POKE S+1,H
150 POKE S+4,65
160 FOR Z=1 TO D*4
170 NEXT
180 POKE S+4,64
190 FOR Z=1 TO 400
200 NEXT
210 GOTO 50
220 DATA 18,104,250,18,104,500,18,104,250
230 DATA 20,169,500,24,146,500,30,245,1000
240 DATA 30,245,1000,18,104,250,18,104,500
250 DATA 18,104,250,20,169,500,24,146,500
260 DATA 27,148,2000,18,104,250,18,104,500
270 DATA 18,104,250,20,169,500,24,146,500
280 DATA 27,148,1000,27,148,1000,27,148,250
290 DATA 27,148,500,30,245,250,24,146,500

369

A modified program from the 1984 edition of the
Commodore 64 User's Manual. It clears the SID
registers and then plays a portion of the American folk
song "Tom Dooley."

As in the earlier example, the SID registers are all
reset to zero. The configuration data is then POKEd
into voice 1 on the SID before the song is played. The
song data is kept in DATA statements at the end of the
program, with each set of three numbers representing
a note: The first number is the high byte of the
frequency value, the second number is the low byte of
the frequency value, and the third number is the note's
length. A value of 1000 represents a whole note, 500
represents half-note and 250 a quarter-note.

To play the song, the three pieces of data are read in
a loop. Just as in the C64 example, an inner loop
counts down for the length of the note. The note is
then turned off and a brief delay occurs between notes
for a folk-song feel. When a sequence of zero values
is read at the end of the music data, the program stops.

There are, of course, many improvements that could
be made to even a simple program such as this.
Storing the notes and their delays as values for a loop
worked well on the C64, but on the Cody Computer we
have to make adjustments because the simpler Cody
BASIC interpreter loops faster. The notes could instead
be encoded using some other scheme, and the delays
could be implemented by looking at the TI variable to
determine elapsed time as in our graphics examples.
However, the example serves its purpose, and it also

300 DATA 20,169,500,24,146,1500,0,0,0

370

demonstrates the level of compatibility between the
Cody SID and the real SID of the Commodore 64.

Keep in mind that this is a simple example that only
uses one voice and doesn't show the best approach to
playing music. On the Commodore 64, music was
often written as self-contained programs called SID
files, which were loaded into memory and called on a
periodic basis to play a song.

Many of the simpler or earlier SIDs are playable on
the Cody Computer, though there are also many
incompatible ones because of differences in memory
layouts and system features. Compute! magazine's
SIDPLAYER, similar to a real MIDI-like computer music
system, would likely be a better fit for the Cody
Computer.

A simple SID player for PSID files, CodySID, is
included as an assembly language example
program later in the book. While not perfect, it
does show how to load a SID file and play it in
memory, and some recommended SID files that
are known to work with it are mentioned. Writing a
player for the MIDI-like SIDPLAYER system is left
for the future or as an exercise for the reader.

SOUND EFFECTS

The SID can also be used for a variety of sound
effects. In addition to the more obvious ones, it's also
possible to update the values in the SID registers
themselves to make even more interesting sounds.
Many music players did exactly this, and games also

371

took advantage of the ability to control sound
parameters on top of what the SID was already doing.
(On the Cody SID, however, you'll want to be a bit
more careful. If you change values in the Cody SID
registers too quickly, the sound system may not pick
up there was a change.)

The best way to come up with sound effects for your
programs is to play around and come up with some
yourself. There's no exact science to the process.
Additionally, given that the C64 was at one point one
of the most popular computers in the world, you'll find
many resources on SID sounds that can be easily
ported to the Cody Computer. A few examples are
provided below to get you started.

AN EXPLOSION

The following program makes a quick explosion-like
sound using the noise output from the Cody SID. The
sound's attack and decay values are set to zero to
produce an immediate effect, and the sustain level is
set to a reasonably high value of 11. A release value of
10 ensures that the explosion sound takes a little while
to fade away.

372

A short Cody BASIC program that makes an
explosion-like sound. Something like this could be
used for a depth charge dropped on a submarine or a
photon torpedo hit against a starship.

AN ALERT SIREN

This example produces a sound like an alert or siren.
To get a sharp, Klaxon-like sound, a sawtooth wave is
used as the basis for the sound generation. ADSR
values suitable for a siren were also plugged in. Also,
because sirens or alerts go from high to low and back
again, the program contains a FOR loop that turns the
sound on and off three times as it plays. Brief delays
during each part of the sound guarantee that the user
will hear both the attack and release stages.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,0
80 POKE 54278,186
90 POKE 54276,129
100 T=TI
110 POKE 54276,128
120 IF ABS(TI-T)<90 THEN GOTO 120
130 POKE 54276,0

373

This program produces an alert or siren-like sound.
Something like this could call a ship's crew to general
quarters, or perhaps set the mood aboard a distressed
space station.

AN ENERGY BEAM

This program makes a sound suitable for use in
games as an energy beam on a far-off spaceship
defending the frontier, or perhaps a deranged robot
trying to zap the player in a sidescrolling platformer. It
uses a pulse wave for the sound but randomly changes
the low byte of the frequency value while the sound is
playing.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,176
80 POKE 54278,249
90 FOR I=1 TO 3
100 POKE 54276,33
110 T=TI
120 IF ABS(TI-T)<60 THEN GOTO 120
130 POKE 54276,32
140 T=TI
150 IF ABS(TI-T)<60 THEN GOTO 150
160 NEXT

374

A short Cody BASIC program that makes a laser-beam
or energy-beam sound effect.

A COMMODORE 64 EXAMPLE

Also remember that the Cody SID is essentially a
simplified version of the SID chip used in the
Commodore 64. Not everything will be completely
compatible, but a lot of it will be, even if you have to
make some minor changes to a program. To
demonstrate that, let's take a look at the program
below.

This program is a translation of another program
from the Commodore 64, this one a sound effects
program used to show off the C64 and SID's
capabilities to new users. It will play one of six possible
sounds in a loop, allowing you to select a new one
when it's done. When done, break out of the program
using the Cody and Arrow key combination.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54273,40
60 POKE 54275,8
70 POKE 54276,0
80 POKE 54277,0
90 POKE 54278,192
100 POKE 54276,65
110 T=TI
120 POKE 54272,RND()
130 IF ABS(TI-T)<60 THEN GOTO 120
140 POKE 54276,0

375

10 PRINT "WHICH SOUND EFFECT:"
20 PRINT "1. WAILING"
30 PRINT "2. SHOOTING"
40 PRINT "3. SIREN"
50 PRINT "4. ROCKET"
60 PRINT "5. CRASH"
70 PRINT "6. MACHINE GUN"
80 INPUT X
90 S=54272
100 FOR I=S TO S+24
110 POKE I,0
120 NEXT
130 K=-1
140 T=TI
150 GOSUB 1000+X*100
160 POKE S+2,P(2)
170 POKE S+3,P(1)
180 POKE S+5,A(1)
190 POKE S+6,A(2)
200 POKE S+1,N(1)
210 POKE S,N(2)
220 IF Q=2 THEN Q=3
230 IF Q<>2 THEN GOTO 260
240 POKE S+1,64
250 POKE S,188
260 POKE S+4,W(1)
270 IF Q<>1 THEN GOTO 360
280 FOR I=1 TO 40
290 N(2)=200-I*5
300 POKE S,N(2)
310 NEXT
320 FOR I=1 TO 30
330 N(2)=150-I*5
340 POKE S,N(2)
350 NEXT
360 L=15
370 POKE S+24,L
380 IF L=V THEN GOTO 440
390 IF X=4 THEN GOTO 440
400 L=L+K
410 FOR I=1 TO D
420 NEXT
430 GOTO 370
440 POKE S+4,W(2)

376

450 IF ABS(TI-T)>300 THEN GOTO 10
460 IF Q<>3 THEN GOTO 200
470 Q=2
480 GOTO 230
1100 V=15
1105 N(1)=65
1110 N(2)=0
1115 W(1)=65
1120 W(2)=64
1125 P(1)=9
1130 P(2)=255
1135 A(1)=15
1140 A(2)=0
1145 D=1
1150 Q=1
1155 RETURN
1200 V=0
1205 N(1)=40
1210 N(2)=200
1215 W(1)=129
1220 W(2)=128
1225 P(1)=0
1230 P(2)=0
1235 A(1)=15
1240 A(2)=15
1245 D=1
1250 Q=0
1255 RETURN
1300 V=0
1305 N(1)=36
1310 N(2)=85
1315 W(1)=33
1320 W(2)=32
1325 P(1)=0
1330 P(2)=0
1335 A(1)=136
1340 A(2)=129
1345 D=350
1350 Q=2
1355 RETURN
1400 V=0
1405 N(1)=25
1410 N(2)=100
1415 W(1)=129
1420 W(2)=128
1425 P(1)=0

377

The sound effects example from the Commodore 64
manual, updated to run on Cody Basic. While not the
easiest program to follow, even in its original C64
version, it demonstrates the variety of sound effects
possible even in simple BASIC programs.

The vast majority of the program consists of the
values to plug in for different sounds. You can look at
the initial register values by reading the appropriate
lines in the program (a GOSUB branches to the setup
code for a particular sound). A collection of POKE,

1430 P(2)=0
1435 A(1)=9
1440 A(2)=129
1445 D=50
1450 Q=0
1455 RETURN
1500 V=0
1505 N(1)=5
1510 N(2)=251
1515 W(1)=129
1520 W(2)=128
1525 P(1)=0
1530 P(2)=0
1535 A(1)=129
1540 A(2)=65
1545 D=50
1550 Q=0
1555 RETURN
1600 V=15
1605 N(1)=34
1610 N(2)=75
1615 W(1)=129
1620 W(2)=128
1625 P(1)=0
1630 P(2)=0
1635 A(1)=8
1640 A(2)=1
1645 D=50
1650 Q=0
1655 RETURN

378

FOR, and IF statements take the values and use them
to generate the selected sound.

The code for playing a sound is actually quite
complicated, mostly because like the original program
it uses the same code for playing all six sounds. Some
values are changed on different loops, which adds to
the complexity. For a particular sound in the example,
it's best to just follow the code path to understand
what it does. You can then use a similar approach in
your own programs.

A PRACTICAL SOUND PROGRAM

Sound effects aren't just for games. In addition to
creating music, sound effects can be used in a variety
of more serious applications. Sounds can provide cues
in a program, tell the user when something happened,
or even be the main output of a program. Below is a
simple Morse code generator that takes an input string
and generates the corresponding dots and dashes.

The program uses many of the things you've
learned in previous chapters on Cody BASIC. It accepts
input from the user, processes each character in the
input string, and uses IF statements to look up the
corresponding sequence of dots and dashes for each
character. In addition to printing out the dots and
dashes, it uses sound effects to play short and long
tones corresponding to each part of the translated
Morse code output.

100 REM MORSE CODE GENERATOR
110 U=10
120 GOSUB 700

379

130 PRINT "MESSAGE";
140 INPUT M$
150 PRINT
160 GOSUB 200
170 PRINT
180 GOTO 110
200 REM SEND MESSAGE
210 IF M$="" THEN RETURN
220 A=ASC(M$)
230 M$=SUB$(M$,1,LEN(M$))
240 REM CHECK DELAY BETWEEN WORDS
250 IF A<>32 THEN GOTO 300
260 PRINT "<SPACE>"
270 D=7
280 GOSUB 800
290 GOTO 200
300 REM PROCESS NEXT LETTER
310 PRINT CHR$(A),TAB(20);
320 GOSUB 600
330 IF C$<>"" THEN GOTO 360
340 PRINT "NO CODE"
350 GOTO 520
360 REM SEND DOTS AND DASHES
370 B=ASC(C$)
380 C$=SUB$(C$,1,LEN(C$))
390 PRINT CHR$(B);
400 POKE 54276,65
410 IF B=45 THEN D=3
420 IF B=46 THEN D=1
430 GOSUB 800
440 POKE 54276,0
450 REM DELAY BETWEEN BEEPS
460 D=1
470 GOSUB 800
480 IF C$<>"" THEN GOTO 360
490 REM DELAY BETWEEN LETTERS
500 D=3
510 GOSUB 800
520 PRINT
530 GOTO 200
600 REM GET MORSE
601 IF A>=97 THEN A=A-32
602 C$=""
603 IF A=65 THEN C$=".-"
604 IF A=66 THEN C$="-..."
605 IF A=67 THEN C$="-.-."

380

606 IF A=68 THEN C$="-.."
607 IF A=69 THEN C$="."
608 IF A=70 THEN C$="..-."
609 IF A=71 THEN C$="--."
610 IF A=72 THEN C$="...."
611 IF A=73 THEN C$=".."
612 IF A=74 THEN C$=".---"
613 IF A=75 THEN C$="-.-"
614 IF A=76 THEN C$=".-.."
615 IF A=77 THEN C$="--"
616 IF A=78 THEN C$="-."
617 IF A=79 THEN C$="---"
618 IF A=80 THEN C$=".--."
619 IF A=81 THEN C$="--.-"
620 IF A=82 THEN C$=".-."
621 IF A=83 THEN C$="..."
622 IF A=84 THEN C$="-"
623 IF A=85 THEN C$="..-"
624 IF A=86 THEN C$="...-"
625 IF A=87 THEN C$=".--"
626 IF A=88 THEN C$="-..-"
627 IF A=89 THEN C$="-.--"
628 IF A=90 THEN C$="--.."
629 IF A=48 THEN C$="-----"
630 IF A=49 THEN C$=".----"
631 IF A=50 THEN C$="..---"
632 IF A=51 THEN C$="...--"
633 IF A=52 THEN C$="....-"
634 IF A=53 THEN C$="-...."
635 IF A=54 THEN C$="--..."
636 IF A=55 THEN C$="---.."
637 IF A=56 THEN C$="----."
638 IF A=57 THEN C$="....."
639 RETURN
700 REM SET UP SOUND
705 FOR I=0 TO 6
710 POKE 54272+I,0
715 NEXT
720 POKE 54296,14
725 POKE 54272,0
730 POKE 54273,30
735 POKE 54275,8
740 POKE 54276,0
745 POKE 54277,0
750 POKE 54278,192
755 RETURN

381

This program generates Morse code for an input
string, displaying the dots and dashes on the screen as
the corresponding sounds are played.

The provided Morse code example printing the codes
for the word 'RADIOACTIVITY'. Note that when run
you'll also hear the dots and dashes.

RING MODULATION

Ring modulation modifies one voice using the
output of another voice, allowing the programmer to
construct a variety of interesting sounds. In addition to
producing sound effects, bell-like or gong-like sounds
can also be generated using this approach.

800 REM DELAY
810 T=TI
820 L=D*U
830 IF ABS(TI-T)<L THEN GOTO 830
840 RETURN

382

Ring modulation on the Cody SID, like the original
SID, requires two voices and has some important
limitations. Only triangle waves are supported, so the
primary voice must be set to output a triangle wave
along with the ring modulation bit (bit 2) in the control
register. Also unlike real ring modulation, ring
modulation for the SID only relies on multiplying the
signs of the signals, rather than a full multiplication as
in true ring modulation.

The secondary voice that supplies the other input
for ring modulation must also be set up with a
frequency for any of this to work. Other settings on the
secondary voice are ignored and otherwise has no
effect on the ring modulation. The corresponding voice
used for the secondary voice in ring modulation is
hardwired: Voice 1 uses voice 3, voice 2 uses voice 1,
and voice 3 uses voice 2.

For an example of ring modulation, see the
following Cody BASIC example that generates a
somewhat-technological humming sound. In addition
to the typical ADSR envelope, it uses voice 1 and voice
3 together. Voice 1 is set up as a triangle wave with ring
modulation turned on, and voice 3 is set up with a
separate frequency to modulate voice 1's output.

383

A program that produces a low, fading hum. A sound
like this could be used for some kind of futuristic
machinery or perhaps a teleport between game levels.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,40
70 POKE 54277,160
80 POKE 54278,251
90 POKE 54286,0
100 POKE 54287,10
110 POKE 54276,21
120 T=TI
130 IF ABS(TI-T)<120 THEN GOTO 130
140 POKE 54276,20
150 T=TI
160 IF ABS(TI-T)<120 THEN GOTO 160

384

Input and Output
Programming

9

INTRODUCTION

The Cody Computer has multiple input and output
devices built into it. Using the Propeller it has two
UARTs for serial communication, one connected to the
Prop Plug port and the other to the expansion port on
the back. Another chip, the 65C22 Versatile Interface
Adapter, implements two 8-bit I/O ports along with
some miscellaneous signals and a programmable shift
register.

Some of these capabilities are already in use by the
Cody Computer. For example, Port A on the 65C22 I/O
chip is used to read the keyboard matrix and joystick
ports, while port A's control signals are used to check
if a cartridge is plugged into the expansion port. Port
B, on the other hand, is connected directly to the
expansion port for use in your own programs and
projects.

Being able to connect your own circuits and
peripherals to the Cody Computer opens up many new
options and projects. You could write your own
machine-language games and store them on a
cartridge, effectively turning the Cody Computer into
an 8-bit game machine. You could implement modern
protocols for communicating with other chips, such as
I2C or SPI, and use them to interface with the outside
world. Projects requiring simple serial communications
(such as reading NMEA sentences from a GPS) could
be built with either of the Cody Computer's UARTs,
provided the external devices can support the Cody
Computer's slower (by modern standards) speeds.
And for projects that require extra capabilities, you

386

could even wire another microcontroller to the
expansion port to extend the base system.

Wiring stuff into the expansion slot or ports is
one of the few ways that you could easily destroy
your Cody Computer. While modern electronics
aren't as brittle or likely to fry as they once were,
incorrect connections or voltages could still result
in doom. Also be aware that while the Cody
Computer's chips can drive 3.3-volt digital signals,
you'll want to follow good design practices when
connecting up motors, relays, and higher voltages
or currents. Think through what you're doing and
refer to the 65C22 and Propeller data sheets as
well as the Cody Computer's schematics.

KEYBOARD AND JOYSTICK INPUT

We covered the Cody Computer's keyboard in
chapter 2, including a discussion of the keyboard
matrix and how the joystick ports are actually treated
as the last two rows of the keyboard. The keyboard is
wired to the 65C22 I/O chip's Port A, which scans the
keyboard and joystick using three of its pins. The three
pins are decoded into one of eight rows by a 1-of-8
decoder chip, with the five pins for that row or joystick
port read back into the 65C22.

In assembly language programs you will have to
scan the keyboard and joystick by communicating with
the 65C22's Port A directly. However, in your Cody
BASIC programs this is handled automatically by the
BASIC interpreter. It has an interrupt in the

387

background that scans the keyboard and joystick
matrix many times per second, updating a portion of
memory with the data. You can access the values with a
PEEK statement.

Memory locations $10 (decimal 16) through $15
(decimal 21) are populated with the scanned key rows.
Memory locations $16 (decimal 22) and $17 (decimal
23) store the scans for joystick ports 1 and 2. Because
of the Cody Computer's keyboard wiring, the bits are
actually inverted, meaning that a 0 indicates a key or
button that is pressed, while a 1 indicates that it's not
pressed.

To see this in action, try the below Cody BASIC
program. It loops over the values in the memory
region we just mentioned, then prints out each bit as
well as the entire number. You can press keys on your
keyboard or use your joystick, then watch as the bits
change. The program isn't particularly fast, particular
as it has a nested loop that calculates each bit and
prints it to the screen.

388

A Cody BASIC program that prints out the current
state of the keyboard and joystick matrix.

Once you've played around with the program, try
comparing the results you get to the Cody Computer's
keyboard schematic (available online or in Chapter 2
of this book). You should be able to match up the key
you're pressing with a position in the keyboard matrix,
then see the corresponding bits for that row on the
screen.

Your own programs don't need to perform the per-
bit calculations or display anything at all. The most
common use case for reading the keyboard or joystick
like this is in a game where you want to determine
particular keypresses or joystick actions. For that, you
will want to just check the relevant memory locations
and bits.

This is particularly relevant for reading the joystick.
Even in a BASIC game you may want to read the
joystick to move a player around on the screen, and
the following example will help get you started. It

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR A=0 TO 7
40 D=PEEK(16+A)
50 M=128
60 FOR B=0 TO 7
70 N=0
80 IF AND(D,M)>0 THEN N=1
90 PRINT N;
100 M=M/2
110 NEXT
120 PRINT " (",D,")"
130 NEXT
140 GOTO 20

389

reads from the last of the memory locations, $16 and
$17, then examines each bit to determine what position
the joystick has and whether the fire button is being
pushed.

A Cody BASIC program that reads the joysticks and
prints out the current joystick position and fire button
status.

In an assembly language program, however, you'll
have to scan the keyboard and joystick yourself. Cody
BASIC won't be able to help you. However, the
techniques you learn in Cody BASIC can make it
easier. For example, learning how to map the keyboard
and joystick values to the keyboard matrix and
computer schematic will give you a head start on
understanding how to program them. You can also rely
on the existing code within the Cody BASIC interpreter
as a place to start writing your own.

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR I=1 TO 2
40 PRINT "JOY ",I,": ";
50 D=PEEK(16+5+I)
60 PRINT TAB(10);
70 IF AND(D,16)=0 THEN PRINT "FIRE";
80 PRINT TAB(16);
90 IF AND(D,8)=0 THEN PRINT "RIGHT";
100 PRINT TAB(22);
110 IF AND(D,4)=0 THEN PRINT "LEFT";
120 PRINT TAB(28);
130 IF AND(D,2)=0 THEN PRINT "DOWN";
140 PRINT TAB(34);
150 IF AND(D,1)=0 THEN PRINT "UP";
160 PRINT
170 NEXT
180 GOTO 20

390

SERIAL INPUT AND OUTPUT

The Cody Computer also has two UART (Universal
Asychronous Receiver Transmitter) peripherals
implemented using the Propeller. These allow the
Cody Computer to communicate with other systems
over a serial port, with some restrictions. In most
respects the Cody Computer UARTs serve a similar
function to the 6551 Asynchronous Communications
Interface Adapter (ACIA) used in many 6502-based
computers, but in reality they're quite different to
program.

The Cody Computer UARTs are specific to the needs
of the Cody Computer, so they only support a
standard 8-N-1 serial configuration with 8 data bits, no
parity bit, and one stop bit. It's also entirely polling-
based, which means you have to check them on a
regular basis from within your program. On the other
hand, they have ring buffers for transmitting and
receiving bytes, which means you don't have to check
them as often. Each UART has a total of 23 registers,
almost all of them related to the ring buffer.

A ring buffer is a data structure commonly used for
communications, and it consists of a range of memory
devoted to storing data. Along with the data are two
values indicating the start and the end of the data in
the buffer, the head and the tail. When data enters the
buffer it's stored at the head position, which is then
moved forward. When data is removed from the buffer
it's taken from the tail position, which is then moved
forward as well. However, the positions actually roll
around from the end of the buffer back to the start,

391

hence the term "ring buffer." (This also means that to
determine when the buffer is full, we have to either
store a count or look at the distance between the head
and tail.)

To actually program a UART, you'll need to POKE
and PEEK its registers just like you have for the other
peripherals. UART 1, connected to the Propeller Plug
port, resides at $D480 (decimal 54400). UART 2 is
part of the expansion port on the back and resides at
$D4A0 (decimal 54432). From either of those
positions, the offsets to a particular register are the
same, just shifted by the base address for the UART
you're talking to.

The first UART register, register $0, is the control
register. It sets the baud rate to use when sending or
receiving data. The baud rate goes into the lower half
of the register, with the current half of the register
currently being unused. Similar to the Cody SID, you'll
need to look up the matching baud rate for each
number in the following table. The values are actually
taken from the 6551's baud rate options and do not
follow any standard progression.

Value (dec) Value (hex) Bit Rate

0 $0 Invalid

1 $1 50

2 $2 75

3 $3 110

4 $4 135

6 $6 300

7 $7 600

8 $8 1200

392

Value (dec) Value (hex) Bit Rate

9 $9 1800

10 $A 2400

11 $B 3600

12 $C 4800

13 $D 7200

14 $E 9600

15 $F 19200
The Cody Computer's UART baud rate table. Inspired
by the 6551's baud rate options, these values cover
the common baud rates for systems of a particular
vintage.

The second UART register, register $1, is the
command register. It consists of a single bit at bit 0
that turns the UART on and off. Setting it to 1 turns the
UART on, while setting it to 0 resets the UART. After
you turn the UART on or off, you need to check the
UART's status register to ensure it has processed the
command. (We'll cover that in a minute.)

The third UART register, at $2, is the status register.
It provides a window into what the UART is currently
doing. Bit 0 is unused. Bit 1 is set to 1 if a framing error
has occurred, indicating that a stop bit wasn't received
as expected. Bit 2 is set to 1 if an overrun has occurred,
meaning that more data was coming into a receive
buffer than there was room to store it. Bits 3 and 4
indicate if data is currently received or transmitted,
respectively. Bit 6 indicates whether or not the UART is
running and should be polled when the UART is
turned on or off to wait until the UART is in the proper
mode.

393

The fourth register at $3 is reserved. The next two
registers, $4 and $5, contain the head and tail
positions for the UART's receive buffer. The UART will
update the head position as data is received, while you
must update the tail position as you read from it.

A similar situation exists for registers $6 and $7,
the transmit ring buffer head and tail positions.
Because you are putting data to be sent into the
buffer, you will be the one to update the head position.
The UART will update the tail position as it sends the
data.

The remaining registers consist of the receive and
transmit ring buffers. The receive buffer starts at $8
and goes on for 8 bytes. The transmit buffer starts
immediately after at $10 and goes on for an additional
8 bytes. Because of the nature of the ring buffer
implementation used by the Cody Computer, only
seven bytes can be in use at any one time. This is
because to store a full eight bytes, the head and tail
positions would be equal, a case indistinguishable
from an empty buffer without additional information
(such as a count). Rather than make the
implementation more complicated, to keep things
simple the maximum capacity is limited by one byte.

TRANSMITTING DATA

Now that we've had a bit of theory on the UART,
consider the following example Cody BASIC program.
It will collect some information from you, including a
string to send over the serial port. It then turns the
UART on, waits for it to start up, configures it and
sends the string as ASCII values. It also has to poll the

394

ring buffer as it empties to fill it up with the rest of the
data you're trying to send.

To run the program you should be able to use the
same serial program you've been using to
communicate with the Cody Computer until now. You'll
just need to set it up to receive with the baud rate you
select, and then begin sending data to it using this
program.

10 REM UART TRANSMIT EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400
50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 PRINT "TEXT";
90 INPUT S$
100 REM STRING TO BYTES
110 L=LEN(S$)
120 I=0
130 IF I=L THEN GOTO 180
140 S(I)=ASC(S$)
150 S$=SUB$(S$,1,LEN(S$)-1)
160 I=I+1
170 GOTO 130
180 REM CONFIGURE UART
190 POKE A+1,0
200 IF AND(PEEK(A+2),64)>0 THEN GOTO 200
210 POKE A+0,B
220 POKE A+6,0
230 POKE A+1,1
240 IF AND(PEEK(A+2),64)=0 THEN GOTO 240
250 REM TRANSMIT LOOP
260 FOR I=0 TO L-1
270 H=PEEK(A+6)
280 T=PEEK(A+7)
290 IF ABS(H-T)>6 THEN GOTO 270
300 POKE A+16+H,S(I)
310 POKE A+6,MOD(H+1,8)
320 PRINT "SENDING CHR '",CHR$(S(I)),"' (",S(I),")"

395

A short example in Cody BASIC that shows how to
send data by low-level programming of a UART. In
practice these operations would be done either by the
BASIC interpreter itself or from within an assembly
language program.

There are a few key parts of this program. Note how
the UART base address is selectable. Also note how
the program breaks the string you enter into a series
of numbers to send via the UART. Regarding the actual
UART programming, the program turns the UART off
and waits for the status register to update. It then sets
up the baud rate and configures the UART before
turning it back on, again waiting for the status register.

For the main loop, it uses an approach common to
working with a ring buffer. It checks the head and tail
positions, then performs a quick subtraction to see if
the buffer is full. If not, it adds another character to
send, then increments the head position so that the
UART knows to pick it up. Because the values wrap
around, there are some additional things the program
does, such as using modular arithmetic when
incrementing a value or an absolute value when
performing a subtraction.

In a real program, it would be a good idea to shut
the UART off when it's done. To keep this example as
minimal as possible, that's not done here. In a lower
level program written in assembly language,
constantly polling and busy-waiting would also leave
much to be desired. In that situation, it's better to
perform the polling on a periodic basis, or to

330 NEXT

396

interleave a quick check of the UART into the main
loop of your program.

RECEIVING DATA

The UART also receives data when turned on. The
baud rate option set into the control register is used
for receive and transmit and both operations occur
simultaneously (the UART is "full duplex" rather than
"half duplex"). The receive ring buffer is populated
with the incoming data and the UART automatically
updates the receive buffer head register as new data
arrives. The programmer is responsible for reading
data from the buffer and updating the tail register,
exactly the opposite as what happens when
transmitting via the UART.

The following Cody BASIC program sets up the
UART to receive data. You can run it in the same
manner as the transmit example above but using your
serial program to send characters to the Cody
Computer instead. Note that because the entire
program is written in Cody BASIC, it runs very slowly
compared to assembly language, and there's
significant overhead. While it can support even the
highest available baud rates for the UART, you will
likely need to insert a per-character delay inside your
serial program to communicate without overrunning
the buffer. Otherwise this little program just won't be
able to keep up.

10 REM UART RECEIVE EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400

397

A Cody BASIC example of receiving data from a UART
at a low level. This is only an example that
unfortunately runs quite slowly. In actual usage the
program would likely be written in assembly language
if the existing Cody BASIC input routine was
insufficient.

The overall program flow is very similar to the
transmit example. It obtains the configuration data
from the user, turns the UART off to reset it, turns it
back on and waits for it to come up, sets the UART up,
and begins listening. Each time a new character is
found in the buffer, it's removed from the buffer and
an update message is printed to the screen.

50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 REM CONFIGURE UART
90 POKE A+1,0
100 IF AND(PEEK(A+2),64)>0 THEN GOTO 100
110 POKE A+0,B
120 POKE A+5,0
130 POKE A+1,1
140 IF AND(PEEK(A+2),64)=0 THEN GOTO 140
150 REM RECEIVE LOOP
160 E=PEEK(A+2)
170 IF AND(E,2)>0 THEN GOTO 260
180 IF AND(E,4)>0 THEN GOTO 280
190 H=PEEK(A+4)
200 T=PEEK(A+5)
210 IF H=T THEN GOTO 160
220 C=PEEK(A+8+T)
230 POKE A+5,MOD(T+1,8)
240 PRINT "RECEIVED CHR '",CHR$(C),"' (",C,")"
250 GOTO 160
260 PRINT "FRAMING ERROR"
270 END
280 PRINT "OVERRUN ERROR"
290 END

398

Unlike the transmit example, this example checks
the status register for the UART's two error modes,
both of which only show up when receiving. A framing
error (bit 1 in the status register) indicates that the
UART didn't read a stop bit when expected, meaning
that something was out of whack (perhaps different
baud rates between sender and receiver, or perhaps
the sender wasn't sending 8-N-1). An overrun error
(bit 2 in the status register) means that the program
couldn't read data out of the buffer as fast as it was
coming in, and the UART ran out of room to store more
data.

The examples show transmit and receive separately,
but keep in mind that the Cody UARTs can do both at
the same time. Setting up the UARTs is exactly the
same, but both the receive and transmit buffers would
need to be checked and updated to support
simultaneous transmit and receive.

It's not a particularly difficult task, but it's one best
left to low-level programs in assembly language. For
high-speed communication using the UARTs in Cody
BASIC, you're best off using the OPEN statement to
redirect INPUT and PRINT statements to the serial
port. This topic is covered in Chapter 6 while
discussing how to read and write text files over a serial
link, but the same technique can be used for general
text-based serial input and output. (Even binary data
could be sent across if a hex or other encoding is used,
albeit with some additional overhead.)

399

GENERAL-PURPOSE INPUT AND
OUTPUT

Aside from the UART and some of the special
65C22 pins (such as its built-in shift register), most of
the pins on the Cody Computer's expansion port are
not dedicated to any particular use. These can be
configured either as inputs or outputs by setting the
65C22's Data Direction Register B at address $9F02
(decimal 40706). By default, each bit is zero and
configured as an input, but setting the bit to 1 makes it
an output instead. Output values for each pin can be
specified by writing to IO Data Register B at address
$9F00 (decimal 40704), while reading the same
register will return the input values for the input pins.

As a simple example we'll use one of the pins to
blink an LED. To build this circuit you will need a small
breadboard. Expansion port pin 1 (counting from the
rightmost side when looking down on the Cody
Computer) should be connected to the ground row, pin
2 should be connected to the positive voltage row, and
pin 12 should be connected to an LED through a
current-limiting resistor. The LED's anode (long lead)
should be connected to the resistor's other terminal,
with its cathode (the short lead) connected to ground.
The Cody Computer's expansion port is not designed
to be hot-plugged, so turn the computer off when
wiring to it, then turn it back on when you're finished.

400

The simple breadboard circuit at left blinks an LED
under the Cody Computer's control.

Once wired up, the following Cody BASIC program
can be used to blink the LED on and off for a few
cycles. It clears the data register then sets up output
pin 1 as an output by writing to the data direction
register. After that, bit 1 of the data register is toggled
off and on in a loop with a brief delay, blinking the
LED.

401

A program to blink an LED.

Each pin can also be used as an input when the
corresponding bit in the data direction register is
turned off. In this case, the input bits can be read by
reading from the port B data register as mentioned
above.

A simple circuit based on the LED circuit can be used
to show this. The LED and resistor are no longer
needed, and the wire connected to pin 12 of the
expansion port can instead be plugged into the 3.3 volt
or ground buses for an input value of 1 or 0
respectively. However, you should be careful when
rewiring the circuit and running the program below, as
you don't want to plug the pin into one of the buses
when set up in output mode. Instead, as before, wire up
the circuit when the computer is off, then turn the
computer on.

10 POKE 40704,0
20 POKE 40706,1
30 FOR I=0 TO 9
40 POKE 40704,1
50 T=TI
60 IF TI-T<60 THEN GOTO 60
70 POKE 40704,0
80 T=TI
90 IF TI-T<60 THEN GOTO 90
100 NEXT
110 POKE 40706,0

402

An even more simple circuit can be used to drive an
input pin using either the 3.3V and ground lines.

The following Cody BASIC program will read the
input pin and display its current value. The data
direction register is set to zero, then the data register
itself is read in a loop. The value for pin 1 is selected
using an AND function (unconnected input pins can
flap between 0 and 1 so bit-masking the value we want
makes the output clearer to read). When the program
is running, you can move the input wire back and forth
between the 3.3 volt and ground lines to produce a 1 or
0 input.

A program to read and display a single input bit.

10 POKE 40706,0
20 I=PEEK(40704)
30 PRINT AND(I,1)
40 GOTO 20

403

SPECIAL PINS AND SHIFT
REGISTERS

The 65C22 also has two handshaking ports
consisting of two pins each. The pins for port A CA1
and CA2, are already in use as a cartridge-detect
mechanism for the Cody Computer. The others, CB1
and CB2, are free for use in your own projects. While
these pins can be used to implement a handshaking
mechanism for 8-bit data transfer across port B as
discussed in the 65C22's data sheet, there are also
other possibilities.

One possibility is to use the pins as an interrupt
input. This would allow external devices to signal that
something has occurred and have an interrupt handler
run in an assembly language program. Another
interesting option is to configure the pins as a shift
register, letting you clock data in or out on a periodic
basis.

None of these scenarios are trivial, so if you intend
to do something like this in your own projects, you'll
want to refer to the 65C22 data sheet. It's also difficult
to come up with good examples of more advanced
features without having some other parts around that
can use them, so by necessity this section is somewhat
limited. We can demonstrate the shift register function
using an LED, but to follow along, it would be helpful
to have access to an oscilloscope or other means of
seeing the actual signal.

First you'll need a circuit. For those without any kind
of oscilloscope or logic analyzer tool, you'll want a
circuit very similar to the LED circuit earlier in this

404

chapter. However, in this case, instead of connecting
the LED's resistor to expansion port pin 12, you'll
connect it to expansion port pin 3. Expansion port pin 3
is wired to the 65C22's CB2 pin, which has the actual
data coming out of the shift register.

An LED circuit connected to the expansion port's CB2
pin. The LED brightness changes depending on the
data sent out of the shift register. Here it glows a dull
red because few of the bits in the data sequence are
ones.

The 65C22 supports various shift register modes for
both input and output using different clock signal
sources. Most of the configuration happens through
the 65C22's Auxiliary Control Register at address
$9F08 (decimal 40715). For this example, we're going
to be setting it up as a simple output controlled by the
65C22's Timer 2 internal clock. This means that bits
through 2 through 4 of that register need to be set to
binary 100 according to the data sheet.

405

We also need to set up 65C22 timer 2 to generate
the clock signal. Each time the Cody Computer's
system clock ticks, Timer 2 will decrement by one. We
give the timer a value to count down from, and the
time it takes to count to zero ends up being the time
for one phase of the clock. The timer 2 counter is a 16-
bit value with the low byte at address $9F08 (decimal
40712) and the high byte at address $9F09 (decimal
40713). We write the low byte followed by the high
byte, with the writing of the high byte triggering the
timer's clock to restart with the new timer value.

The shift register's output is kept in a register at
address $9F0A (decimal 40714). The value written
there continues to be reused until a new value is
programmed in. Other registers or interrupts can be
used to determine when the shift register needs to be
fed new data, but for our simple example, we're fine
with the value wrapping around.

You can see all this put together in a small Cody
BASIC program. It prompts you for a value to write to
the shift register, then sets up the shift register and
timer 2 with the longest possible delay in this mode.
Counting down from 65535 with a 1-megahertz
system clock means that the shift register sends out a
new bit about every .07 seconds, which is too fast to
see without some way to capture the actual signal.

406

A program to send a pattern out of the shift register.

However, different patterns will change the
brightness of the connected LED because it will be on
or off for different periods of time. For example, a
value of 255 is all ones, which means the LED will be at
maximum brightness, while a value of 0 is all zeroes,
so the LED will be off. A decimal value of 170
corresponds to a binary 10101010, while a decimal
value of 136 corresponds to 10001000. Try different
values and see their results.

If you do have an oscilloscope around, you can
actually see the individual zeroes and ones. The
65C22's CB1 pin is connected to expansion port pin 4
and acts as the shift register's clock. The 65C22's CB2
pin is connected to expansion port pin 3 and actually
sends (or receives) the data. Connect your first
oscilloscope probe to expansion port pin 4, your
second oscilloscope probe to expansion port pin 3, and
set up your oscilloscope to trigger on the first probe.

You should see a square wave for the clock signal
and a sequence of highs and lows for the data signal
corresponding to whatever number you typed in. This
isn't purely an academic exercise, as you might end up
having to do pretty much the same thing to track down
bugs when bit-banging various protocols out of the
expansion port. A logic analyzer would also suffice.

10 INPUT I
20 POKE 40714,I
30 C=OR(AND(PEEK(40715),227),16)
40 POKE 40715,C
50 POKE 40712,255
60 POKE 40713,255

407

Watching the shift register's clock and data pins using
an oscilloscope. The yellow trace shows the shift
register's clock and the purple trace shows the shift
register's data output. The clock will always be the
same but the data will change based on what's being
shifted out.

Remember that the shift register isn't just used for
output. It can also be used for input from an external
device. It's just a matter of wiring it up and then writing
the appropriate software in Cody BASIC or assembly
language to talk to it.

408

Note that the 65C22 shift register is not
compatible with SPI communications, though there
are some hacks to work around it for one
particular SPI mode (the Steckschwein
retrocomputer actually does this to implement an
SPI master). For this reason the Cody Computer
implements SPI in software, as you'll learn in the
next section. However, the 65C22's CB pins can do
a lot, and you should refer to the 65C22 data
sheet to learn more about them. And for your own
Cody Computer peripherals, you can do it your
way.

SPI COMMUNICATION AND
CARTRIDGES

The Cody Computer's expansion port is a relatively
general-purpose device. With the few exceptions
noted above, every pin is programmable as an input or
an output and can be directly controlled from either
BASIC or assembly language. By themselves or with
minimal additional hardware they can even implement
more modern data protocols such as Inter-Integrated
Circuit (I2C) or the Serial Peripheral Interface (SPI).

In fact, some of the general-purpose pins also have
a designated special use to load programs from
cartridges. Like many computers of the 8-bit era, the
Cody Computer supports program cartridges that can
be plugged directly into the expansion port. If one is
detected using the CA lines, the Cody Computer's

409

ROM will load the program from the cartridge over SPI
and run that program instead of Cody BASIC.

This topic is complex enough to warrant a separate
discussion. More details are provided in Chapter 11,
Cartridges and SPI.

410

Assembly Language
Progamming

10

INTRODUCTION

In this chapter we'll provide some examples of
programming the Cody Computer in 65C02 assembly
language. The chapter isn't an introduction to the
65C02's assembly language in itself. If you haven't
worked with it before, you're better off learning the
basics using an online emulator before digging into
these examples. The 6502 family, while decades old,
was one of the most popular microprocessor families
in existence. Documentation, both historical and
modern, is plentiful online.

Regarding the chip itself, the 65C02 is essentially
an updated 6502 with some additional instructions
added and invalid ones removed. It has a very small
number of registers—an accumulator (A), two index
registers (X and Y), and some additional registers for
stack and CPU flag management. It supports most of
the addressing modes typical for a chip of its era,
including direct addressing, indexed addressing, and
some forms of indirect addressing. It also uses a range
of 256 "zero-page" addresses that, while stored in
main RAM rather than the processor, can be viewed as
being a huge bank of low-cost registers.

In its day it was the affordable alternative to more
expensive microprocessor or microcontroller families.
Many of the most popular 8-bit computers utilized the
6502 family for their main processor, and 16-bit
variants of the family went on to be used in later
computers, add-ons, and game consoles. The same
efficiency and elegance that made the chip so popular

412

in prior decades is also put to good use by the Cody
Computer.

This chapter introduces two small assembly
language programs. The first is a SID player that can
play many, but not all, Commodore 64 SID music files.
The second is a simple game demo inspired by 1980s
platformers to show some of the Cody Computer's
sound and graphics capabilities. The programs are not
too complicated, but without a basic grasp of 65C02
assembly programming, they can be a bit much to
digest. If you've programmed in another assembly
language but haven't worked with the 65C02, you'll
probably be able to at least follow along. Having a
65C02 reference will be handy.

Just as with Cody BASIC, the assembly language
programs are written using 64tass, a 6502-family
assembler for the Commodore computers that can
also generate generic 65C02 code. This assembler is
both open-source and freely downloadable, so
installing or building a copy should not be difficult on
any of today's major computing platforms.

THE CODYSID MUSIC PLAYER

A simple SID player is a good project for assembly
language. It requires low-level programming,
including reading a SID file over the UART, loading it
into memory, and calling its functions on a regular
basis to play the song. SID files have some unique
characteristics that make it easier to write a player, yet
these same characteristics also make it less likely that
any particular SID file will play on the Cody Computer.

413

At its core a SID file is just a program with a load
address and some functions to call. One of the
functions is the INIT routine that sets up the SID file.
Another is a PLAY routine that plays the current
portion of the song when called on a regular basis by
the player. Everything else, including the way the
music data is stored, is under the control of the person
who wrote the SID.

This is very different from more traditional music
formats such as MIDI that contain structured data
about the song. Because a SID file is a program, each
SID has its own unique expectations about where it will
be loaded, how it will be called, the memory layout of
the system, and what peripherals (including interrupts
and timers) are present.

While the Cody Computer has a rudimentary SID
built in, it's not a Commodore 64. As a result many
perfectly valid SID files will fail to play on it. However,
many of them will, particularly if we constrain
ourselves to a certain subset of SID file types and
carefully look at their sizes and load addresses. For
now, we'll limit ourselves to PSID files of version 2,
then prepare ourselves for a certain amount of
disappointment.

Even some incompatible SIDs might work after
running them through a relocator tool such as
Linus Akesson's sidreloc. Another option would be
to write a player for Compute! Magazine's MUS
file format, which is more MIDI-like and has fewer
hardware dependencies. We won't be covering any
of that in this book.

414

THE PSID FILE FORMAT

There are several versions of the SID file format.
PSID files are less platform-specific and more
amenable to playing them without full C64
compatibility. RSID files, on the other hand, generally
require a full emulator or real C64. We'll limit
ourselves to PSID files, and within that category, we'll
only support version 2 of the format. This still leaves
us with many songs to try out.

The file begins with a header containing some
information about the song. Much of this we don't care
about at all. A few parts of it, such as the song name,
author, and other related information, are nice to know
but not necessary for playing it. A few pieces of
information related to function addresses within the
SID file are required, so we'll have to get those from
the header. We'll also need to take into account that
the header is in a big-endian format but the 65C02
works as a little-endian system.

After the header comes the actual SID data. Because
of the assumptions we've made, we can expect the SID
data will begin with the load address for the SID itself.
This tells us where to copy it into memory, and we
hope that it won't conflict with our own unique
memory layout. (There's actually a field for this in the
header, but it's usually not populated and we ignore it
for our purposes.)

Once the SID is loaded starting at its load address,
we have to set up a periodic timer interrupt to call the
song's code and play it. The SID itself needs us to call
its INIT function before each time we play, then call its

415

PLAY routine on each timer interrupt to keep the song
playing. (It's actually possible for a SID to contain
multiple songs, something we handle when calling the
INIT function.)

As far as the actual music data, it's just contained
somewhere within the SID code and data we loaded.
We don't know how it's stored, what it does, or much of
anything about it without reverse-engineering the file
itself. In many respects writing a SID player is more
like writing a program loader, and it's one of the
reasons this project is relatively straightforward.

You can find many references online to the SID file
format if you're interested in the details. For what
we're going to write, this is sufficient to begin going
through the code. Any little details we haven't covered
here will be mentioned as we go through the CodySID
program.

THE CODYSID PROGRAM

The CodySID source code starts with constant
definitions referring to various memory addresses that
will be used by the program. Many of these you've
already heard of in earlier chapters, such as the UART
1 and 65C22 VIA register addresses. We'll need the
UART to load the SID files, while we need the VIA to
scan the keyboard and run a timer. Other addresses
include the base addresses of the current screen
memory and the SID.

ADDR = $0300 ; The actual loading address of the program

SCRRAM = $C400 ; Screen memory base address
SIDBASE = $D400 ; SID register base address

UART1_BASE = $D480 ; Register addresses for UART 1
UART1_CNTL = UART1_BASE+0
UART1_CMND = UART1_BASE+1

416

Constants for many of the peripherals' register
locations.

The program will also need some places to put its
data. These include STRPTR to loop through text
strings, SCRPTR for the current location in screen
memory, and SIDPTR to point to the beginning of the
loaded SID data. Other data includes SONGNUM for
the current SID song, a PLAYBIT flag indicating if a
song is playing, and several KEYROW variables
containing the current keyboard matrix as of the last
scan. (Because we need to register our own interrupt
service routine on top of the one built into Cody
BASIC, we also define ISRPTR to know where the ISR
address needs to go.)

UART1_STAT = UART1_BASE+2
UART1_RXHD = UART1_BASE+4
UART1_RXTL = UART1_BASE+5
UART1_TXHD = UART1_BASE+6
UART1_TXTL = UART1_BASE+7
UART1_RXBF = UART1_BASE+8
UART1_TXBF = UART1_BASE+16

VIA_BASE = $9F00 ; VIA base address and register locations
VIA_IORB = VIA_BASE+$0
VIA_IORA = VIA_BASE+$1
VIA_DDRB = VIA_BASE+$2
VIA_DDRA = VIA_BASE+$3
VIA_T1CL = VIA_BASE+$4
VIA_T1CH = VIA_BASE+$5
VIA_SR = VIA_BASE+$A
VIA_ACR = VIA_BASE+$B
VIA_PCR = VIA_BASE+$C
VIA_IFR = VIA_BASE+$D
VIA_IER = VIA_BASE+$E

417

Assorted zero-page variables for memory locations,
song status, and keyboard matrix status.

Many of the constants are dedicated to the SID
header. Our program will load the header into a fixed
address at $0200 as denoted by the SIDHEAD
constant. From there we have offsets into the header
portions our program might actually need, such as the
init routine address (SIDINIT), play routine address
(SIDPLAY), and song information (SIDNAME for the
name, SIDAUTH for the author, SIDRELE for the
release/copyright info, and SIDSNUM for the number
of songs).

Offsets within the SID header.

Two 16-bit values define the program header for the
Cody Computer. When Cody BASIC tries to load a
machine language program, it needs to know where to
put it and how long it is. This means that each program
begins with a load address and an ending address. We
can calculate these using the ADDR constant and LAST

ISRPTR = $08 ; Pointer to the ISR address zero page variable

STRPTR = $D0 ; Pointer to string (2 bytes)
SCRPTR = $D2 ; Pointer to screen (2 bytes)
SIDPTR = $D4 ; Pointer to SID load address (2 bytes)
SONGNUM = $D8 ; Song number
PLAYBIT = $D9 ; Play bit (are we playing a song?)
KEYROW0 = $DA ; Keyboard row 0
KEYROW1 = $DB ; Keyboard row 1
KEYROW2 = $DC ; Keyboard row 2
KEYROW3 = $DD ; Keyboard row 3
KEYROW4 = $DE ; Keyboard row 4
KEYROW5 = $DF ; Keyboard row 5

SIDHEAD = $0200 ; Page to store the SID file header
SIDLOAD = SIDHEAD+$08
SIDINIT = SIDHEAD+$0A
SIDPLAY = SIDHEAD+$0C
SIDNAME = SIDHEAD+$16
SIDAUTH = SIDHEAD+$36
SIDRELE = SIDHEAD+$56
SIDSNUM = SIDHEAD+$0E

418

label we define. We also tell the 64tass assembler to
start generating code starting at our load address
using the .LOGICAL directive.

Creating the program header and telling the
assembler where our program will start.

On startup, control begins in the MAIN routine right
at the load address. In our case it performs all the
initial setup, such as enabling our interrupt service
routine, turning on the timer, and preparing to scan the
keyboard. After that it tries to load a SID file, then
enters the program's main loop. User input from the
keyboard is mapped to the menu options, and as the
user makes selections, the program branches to the
corresponding code.

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL ADDR ; The actual program gets loaded at ADDR

;
; MAIN
;
; Main loop of the SID player. Responsible for initialization, information display,
; and menu selection.
;
MAIN SEI
 STZ PLAYBIT ; Not playing by default

 LDA #$07 ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
 STA VIA_DDRA

 LDA #<TIMERISR ; Set up timer ISR location
 STA ISRPTR+0
 LDA #>TIMERISR
 STA ISRPTR+1

 LDA #<20000 ; Set up VIA timer 1 to emit ticks for timing purposes
 STA VIA_T1CL
 LDA #>20000
 STA VIA_T1CH

 LDA #$40 ; Set up VIA timer 1 continuous interrupts, no outputs
 STA VIA_ACR

 LDA #$C0 ; Enable VIA timer 1 interrupt
 STA VIA_IER

419

CodySID's main routine. It begins by setting up the
Cody Computer, loading the first SID, and then
entering the main loop to handle menu selections.

Two routines act as a bridge between the CodySID
program and the SID's own routines. STARTSID starts

 CLI ; Turn on interrupts

 JSR CMDLOAD ; Always start by loading and playing a song

_MENU JSR SHOWMENU ; Always print the menu just in case

_SCAN JSR SHOWREGS

 LDA KEYROW0 ; Pressed Q for quit?
 AND #%00001
 BNE _QUIT

 LDA KEYROW1 ; Pressed L for load?
 AND #%10000
 BNE _LOAD

 LDA KEYROW2 ; Pressed N for next?
 AND #%01000
 BNE _NEXT

 LDA KEYROW5 ; Pressed P for previous?
 AND #%10000
 BNE _PREV

 BRA _SCAN ; Repeat main loop

_QUIT JSR STOPSID ; Shut off SID

 SEI ; Disable interrupts

 RTS ; Return to BASIC and hope it works

_LOAD JSR CMDLOAD ; Run the load command
 BRA _MENU

_NEXT LDA KEYROW2 ; Wait for N key to be released
 BNE _NEXT

 JSR STOPSID ; Stop playing music

 LDA SONGNUM ; Increment song number if within range, else play
 INC A
 CMP SIDSNUM
 BEQ _PLAY

 STA SONGNUM ; Update song number and play
 BRA _PLAY

_PREV LDA KEYROW5 ; Wait for P key to be released
 BNE _PREV

 JSR STOPSID ; Stop playing music

 LDA SONGNUM ; If song number at zero, just play the song
 BEQ _PLAY

 DEC SONGNUM ; Otherwise decrement song number and then play
 BRA _PLAY

_PLAY JSR SHOWINFO
 JSR STARTSID
 BRA _MENU

420

the SID using the current song number and calling its
init address. STOPSID stops playing of the SID by
clearing the play flag and resets the SID's registers.
Note how interrupts are disabled during certain parts
as we don't want the SID to play in the middle of
making these kinds of changes.

Routines for starting and stopping SID file playback.
The PLAYBIT variable is a flag indicating the current
play status.

We need a routine to load a SID when the user
requests it. The CMDLOAD routine handles this by
displaying an appropriate message on the screen, then
loading a SID using the LOADHEAD and LOADDATA
routines. After the file is loaded some quick byte-
swaps are done to convert certain addresses from big-
endian to little-endian. Before returning, the load
routine starts playing the SID.

;
; STARTSID
;
; Begins playing the SID by calling its INIT function.
;
STARTSID SEI ; Initialize and start playing the SID file
 LDA SONGNUM
 JSR _CALLINIT
 LDA #1
 STA PLAYBIT
 CLI
 RTS
_CALLINIT JMP (SIDINIT)

;
; STOPSID
;
; Stops the currently playing SID.
;
STOPSID SEI
 STZ PLAYBIT
 CLI

 LDA #0
 LDX #0
_LOOP STA SIDBASE,X
 INX
 CPX #25
 BNE _LOOP
 RTS

421

The CMDLOAD routine handles SID file loading at a
high level.

Support routines include the KEYSCAN routine for
scanning the keyboard matrix and the TIMERISR
routine for handling timer interrupts. Both of these are
very similar to routines in the Cody BASIC interpreter
except for the SID specific behavior. TIMERISR calls
KEYSCAN to update the keyboard variables scanned

;
; CMDLOAD
;
; Implements the menu option to load a SID file over the UART connection.
;
CMDLOAD JSR STOPSID ; Stop the current song and clear the SID registers

 JSR SHOWSCRN ; Clear screen

 LDX #0 ; Display message about waiting to receive SID file
 LDY #3
 JSR MOVESCRN

 LDX #MSG_RECEIVE
 JSR PUTMSG

 JSR UARTON ; Receive the SID file
 JSR LOADHEAD
 JSR LOADDATA
 JSR UARTOFF

 LDA SIDINIT+0 ; Swap INIT address bytes (big-endian in PSID header)
 PHA
 LDA SIDINIT+1
 STA SIDINIT+0
 PLA
 STA SIDINIT+1

 LDA SIDPLAY+0 ; Swap PLAY address bytes (big endian in PSID header)
 PHA
 LDA SIDPLAY+1
 STA SIDPLAY+0
 PLA
 STA SIDPLAY+1

 LDA SIDSNUM+0 ; Swap song count address bytes (big endian in PSID header)
 PHA
 LDA SIDSNUM+1
 STA SIDSNUM+0
 PLA
 STA SIDSNUM+1

 STZ SONGNUM ; Always start at first song

 JSR SHOWSCRN ; Clear screen

 JSR SHOWINFO ; Display the info of the SID file we read

 JSR STARTSID ; Start playing the current SID and song

 RTS ; All done

422

by the main routine, and it also calls the SID's play
routine when a song is playing.

A simple routine for scanning the keyboard matrix and
storing the results into the KEYROW zero-page
variables.

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN PHA ; Preserve registers
 PHX

 STZ VIA_IORA ; Start at the first row and first key of the keyboard
 LDX #0

_LOOP LDA VIA_IORA ; Read the keys for the current row from the VIA port
 EOR #$FF
 LSR A
 LSR A
 LSR A
 STA KEYROW0,X

 INC VIA_IORA ; Move on to the next keyboard row
 INX

 CPX #6 ; Do we have any rows remaining to scan?
 BNE _LOOP

 PLX ; Restore registers
 PLA

 RTS

;
; TIMERISR
;
; A timer interrupt handler that scans the keyboard and calls the SID's play routine.
;
TIMERISR BIT VIA_T1CL ; Clear 65C22 interrupt by reading

 PHA ; Preserve registers
 PHX
 PHY

 JSR KEYSCAN ; Scan the keyboard

 LDA PLAYBIT ; Are we playing?
 BEQ _DONE

 JSR _CALLPLAY ; Call the play routine

_DONE PLY ; Restore registers
 PLX
 PLA

 RTI ; All done

423

The SID player's TIMERISR updates the keyboard
variables and plays the next part of the song if
playing.

Loading of the SID data is handled by the
LOADHEAD and LOADDATA routines. These are called
once the UART is turned on and rely on various UART
helper routines to read incoming bytes. Because we
have no specific end-of-file for the incoming SID data,
we rely on a timeout instead. This could be a problem
over an unreliable serial link, but relatively low baud
rates over modern communications are generally
reliable. If you find yourself having intermittent
problems, check your connections and cables.

_CALLPLAY JMP (SIDPLAY)

;
; LOADHEAD
;
; Loads a SID file header into the SIDHEAD page. Assumes PSID version 2.
;
LOADHEAD LDX #0

_READ JSR UARTGET
 BCC _READ

 STA SIDHEAD,X
 INX

 CPX #$7C
 BNE _READ

 RTS

;
; LOADDATA
;
; Loads the SID file data into memory. The routine assumes the load address
; must be read from the file (not included in the SID header).
;
LOADDATA

_READ1 JSR UARTGET
 BCC _READ1
 STA SIDPTR+0

_READ2 JSR UARTGET
 BCC _READ2
 STA SIDPTR+1

 LDX #$FF

_READ3 DEX
 BEQ _DONE

 JSR UARTGET
 BCC _READ3

424

LOADHEAD and LOADDATA copy the SID's contents
from the UART into the Cody Computer's memory.

Important information in the SID header is shown to
the user when the file is playing. In CodySID this is
handled in the SHOWINFO routine, which moves to
certain positions on the screen and prints the SID's
name, author, copyright information, song numbers,
and code addresses.

 LDX #$FF ; Reset counter

 STA (SIDPTR) ; Store data

 INC SIDPTR+0 ; Increment load address
 BNE _READ3
 INC SIDPTR+1
 BRA _READ3

_DONE RTS

;
; SHOWINFO
;
; Displays SID information on the screen. This includes the song name,
; author, release/copyright, load/init/play addresses, and song number.
;
SHOWINFO LDX #0 ; Move to song name position
 LDY #3
 JSR MOVESCRN

 LDX #0 ; Print song name from header
_NAME LDA SIDNAME,X
 JSR PUTCHR
 INX
 CPX #32
 BNE _NAME

 LDX #0 ; Move to song author position
 LDY #4
 JSR MOVESCRN

 LDX #0 ; Print song author from header
_AUTH LDA SIDAUTH,X
 JSR PUTCHR
 INX
 CPX #32
 BNE _AUTH

 LDX #0 ; Move to song release/copyright position
 LDY #5
 JSR MOVESCRN

 LDX #0 ; Print song release/copyright information
_RELE LDA SIDRELE,X
 JSR PUTCHR
 INX
 CPX #32
 BNE _RELE

 LDX #0 ; Print song load address from header
 LDY #7
 JSR MOVESCRN

425

The SHOWINFO routine displays the song's header
information.

While the song is playing, the SID's registers are
being updated constantly by the code in the SID file
itself. To show the user what's going on, we
periodically display the current contents of the SID
registers. This is handled by the SHOWREGS routine,
which displays the registers broken down by voice
register bank and filter/volume register. This routine

 LDX #MSG_LOAD
 JSR PUTMSG

 LDA SIDLOAD+1
 JSR PUTHEX
 LDA SIDLOAD+0
 JSR PUTHEX

 LDX #0 ; Print song init address from header
 LDY #8
 JSR MOVESCRN

 LDX #MSG_INIT
 JSR PUTMSG

 LDA SIDINIT+1
 JSR PUTHEX
 LDA SIDINIT+0
 JSR PUTHEX

 LDX #0 ; Print song play address from header
 LDY #9
 JSR MOVESCRN

 LDX #MSG_PLAY
 JSR PUTMSG

 LDA SIDPLAY+1
 JSR PUTHEX
 LDA SIDPLAY+0
 JSR PUTHEX

 LDX #0 ; Print song number in SID
 LDY #10
 JSR MOVESCRN

 LDX #MSG_SONGNUM
 JSR PUTMSG

 LDA SONGNUM
 INC A
 JSR PUTHEX

 LDX #MSG_SONGOF
 JSR PUTMSG

 LDA SIDSNUM+0
 JSR PUTHEX

 RTS ; All done

426

is itself called from within the main loop to keep the
screen up to date.

;
; SHOWREGS
;
; Displays the SID register values as hex numbers on the screen.
;
SHOWREGS LDX #3 ; Print register column headings
 LDY #12
 JSR MOVESCRN

 LDX #MSG_REGS
 JSR PUTMSG

 LDX #0 ; Print voice 1 registers
 LDY #13
 JSR MOVESCRN

 LDX #MSG_V1
 JSR PUTMSG

 LDX #0
_V1 LDA SIDBASE+0,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR
 INX
 CPX #7
 BNE _V1

 LDX #0 ; Print voice 2 registers
 LDY #14
 JSR MOVESCRN

 LDX #MSG_V2
 JSR PUTMSG

 LDX #0
_V2 LDA SIDBASE+7,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR
 INX
 CPX #7
 BNE _V2

 LDX #0 ; Print voice 3 registers
 LDY #15
 JSR MOVESCRN

 LDX #MSG_V3
 JSR PUTMSG

 LDX #0
_V3 LDA SIDBASE+14,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR
 INX
 CPX #7
 BNE _V3

 LDX #27 ; Print filter and volume registers
 LDY #13
 JSR MOVESCRN

 LDX #0
_FV LDA SIDBASE+21,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR
 INX

427

SHOWREGS is responsible for displaying the current
SID register values on the screen. This is a common
feature in many SID players.

Small helper routines are used to display other
parts of the user interface. SHOWMENU displays the
menu at the bottom of the main screen while
SHOWSCRN clears the screen and prints the CodySID
banner at the top.

Helper routines for displaying a new CodySID player
screen and the menu.

A total of three routines exist to handle
communications over the UART. UARTON turns UART 1
on with a baud rate of 19200. UARTGET checks to see

 CPX #4
 BNE _FV

 RTS

;
; SHOWMENU
;
; Shows the menu text at the bottom of the screen.
;
SHOWMENU LDX #0
 LDY #20
 JSR MOVESCRN

 LDX #MSG_MENU
 JSR PUTMSG
 RTS

;
; SHOWSCRN
;
; Shows the CodySID banner at the top of the screen.
;
SHOWSCRN JSR CLRSCRN

 LDX #16
 LDY #0
 JSR MOVESCRN

 LDX #MSG_CODYSID
 JSR PUTMSG

 LDX #6
 LDY #1
 JSR MOVESCRN

 LDX #MSG_SUBTITLE
 JSR PUTMSG

 RTS

428

if any data is in the receive buffer, and if so, removes it.
If not, the routine returns immediately so that the
program doesn't block. (Code using the routine can
check if anything was read by looking at the 65C02's
carry flag.) When the program is done reading a SID
file, it calls UARTOFF to turn off UART 1. This code is
conceptually similar to the UART code in the Cody
BASIC interpreter as well as the UART examples
written in BASIC in the previous chapter.

;
; UARTON
;
; Turns on UART 1.
;
UARTON PHA
 PHY

_INIT STZ UART1_RXTL ; Clear out buffer registers
 STZ UART1_TXHD

 LDA #$0F ; Set baud rate to 19200
 STA UART1_CNTL

 LDA #01 ; Enable UART
 STA UART1_CMND

_WAIT LDA UART1_STAT ; Wait for UART to start up
 AND #$40
 BEQ _WAIT

 PLY
 PLA

 RTS ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF PHA

 STZ UART1_CMND ; Clear bit to stop UART

_WAIT LDA UART1_STAT ; Wait for UART to stop
 AND #$40
 BNE _WAIT

 PLA

 RTS

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET PHY

 LDA UART1_STAT ; Test no error bits set in the status register
 BIT #$06
 BNE _ERR

429

UART routines used when a SID file is being loaded
over the serial port.

Some additional utility routines are present to help
with displaying content on the screen. MOVESCRN
moves the current output location to a particular x and
y coordinate on the screen, while CLRSCRN clears the
screen entirely by filling the memory with whitespace
characters.

 LDA UART1_RXTL ; Compare current tail to current head position
 CMP UART1_RXHD
 BEQ _EMPTY

 TAY ; Read the next character from the buffer
 LDA UART1_RXBF,Y

 PHA ; Increment the receiver tail position
 INY
 TYA
 AND #$07
 STA UART1_RXTL
 PLA

 PLY
 SEC ; Set carry to indicate a character was read
 RTS

_EMPTY PLY
 CLC ; Clear carry to indicate no character read
 RTS

_ERR LDX #MSG_ERROR
 JSR PUTMSG

_DONE JMP _DONE

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 INY ; Increment pointer for each row
_LOOPY CLC
 LDA SCRPTR+0
 ADC #40
 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1
 DEY
 BNE _LOOPY

 CLC ; Add position on column
 TXA
 ADC SCRPTR+0
 STA SCRPTR+0

430

The MOVESCRN and CLRSCRN routines set the
current screen location or clear the screen entirely.

Other utility routines include those for displaying
content on the screen. PUTMSG prints a message
string (defined by one of the MSG_ constants) at the
current location. PUTCHR puts a single character at the
current location. PUTHEX is similar to PUTCHR but
displays the current value as a two-digit hex number.
All advance the screen location while printing.

 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1

 RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 LDA #20 ; Clear screen by filling with whitespaces

 LDY #25 ; Loop 25 times on Y

_LOOPY LDX #40 ; Loop 40 times on X for each Y

_LOOPX STA (SCRPTR) ; Store zero

 INC SCRPTR+0 ; Increment screen position
 BNE _NEXT
 INC SCRPTR+1

_NEXT DEX ; Next X
 BNE _LOOPX

 DEY ; Next Y
 BNE _LOOPY

 RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG PHA
 PHY

 LDA MSGS_L,X ; Load the pointer for the string to print
 STA STRPTR+0
 LDA MSGS_H,X
 STA STRPTR+1

 LDY #0

_LOOP LDA (STRPTR),Y ; Read the next character (check for null)

431

Utility routines for putting strings and hex numbers on
the screen.

The messages that can be displayed on the screen
are defined by set of constants. Each is prefixed with
MSG_ and relates to a particular location in the
program's message table.

 BEQ _DONE

 JSR PUTCHR ; Copy the character and move to next
 INY

 BRA _LOOP ; Next loop

_DONE PLY
 PLA

 RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR STA (SCRPTR) ; Copy the character

 INC SCRPTR+0 ; Increment screen position
 BNE _DONE
 INC SCRPTR+1

_DONE RTS

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;
PUTHEX PHA
 PHX
 TAX
 JSR HEXTOASCII
 PHA
 TXA
 LSR A
 LSR A
 LSR A
 LSR A
 JSR HEXTOASCII
 PHA
 PLA
 JSR PUTCHR
 PLA
 JSR PUTCHR
 PLX
 PLA
 RTS
HEXTOASCII AND #$F
 CLC
 ADC #48
 CMP #58
 BCC _DONE
 ADC #6
_DONE RTS

432

The messages that may be displayed by the CodySID
program.

The string themselves are defined just below as
null-terminated C strings.

The actual strings corresponding to each message ID.

To map the constants to the strings, the strings'
addresses are kept in a table of low bytes and high
bytes. Each constant represents an index into the table.
When a particular string is needed it's easy for the
PUTMSG routine to find the string pointer based on
the index within the table.

Splitting the table into low and high bytes is a
common trick in 8-bit code. The program can use the

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYSID = 0
MSG_SUBTITLE = 1
MSG_LOAD = 2
MSG_INIT = 3
MSG_PLAY = 4
MSG_REGS = 5
MSG_V1 = 6
MSG_V2 = 7
MSG_V3 = 8
MSG_MENU = 9
MSG_RECEIVE = 10
MSG_SONGNUM = 11
MSG_SONGOF = 12
MSG_ERROR = 13

;
; The strings displayed by the program.
;
STR_CODYSID .NULL "CodySID!"
STR_SUBTITLE .NULL "The Cody Computer SID Player"
STR_LOAD .NULL "Load $"
STR_INIT .NULL "Init $"
STR_PLAY .NULL "Play $"
STR_REGS .NULL "FL FH PL PH CL AD SR CL CH FR MV"
STR_V1 .NULL "V1 "
STR_V2 .NULL "V2 "
STR_V3 .NULL "V3 "
STR_MENU .NULL "(L)oad (Q)uit (P)rev (N)ext"
STR_RECEIVE .NULL "Send PSID V2 file and wait for end..."
STR_SONGNUM .NULL "Song $"
STR_SONGOF .NULL " of $"
STR_ERROR .NULL "ERROR!"

433

same index register value to look up both bytes
without any other incrementing.

The low-byte and high-byte portions of the message
table.

The program's source code is ended with some
boilerplate. The LAST label is used to indicate the end
of the program. This is used when calculating the
program length and end address for the program
header, as you may remember from the beginning of
the walkthrough. The .ENDLOGICAL assembly directive
ends the .LOGICAL directive used at the beginning of
the program to emit code for a particular load address.

;
; Low bytes of the string table addresses.
;
MSGS_L
 .BYTE <STR_CODYSID
 .BYTE <STR_SUBTITLE
 .BYTE <STR_LOAD
 .BYTE <STR_INIT
 .BYTE <STR_PLAY
 .BYTE <STR_REGS
 .BYTE <STR_V1
 .BYTE <STR_V2
 .BYTE <STR_V3
 .BYTE <STR_MENU
 .BYTE <STR_RECEIVE
 .BYTE <STR_SONGNUM
 .BYTE <STR_SONGOF
 .BYTE <STR_ERROR

;
; High bytes of the string table addresses.
;
MSGS_H
 .BYTE >STR_CODYSID
 .BYTE >STR_SUBTITLE
 .BYTE >STR_LOAD
 .BYTE >STR_INIT
 .BYTE >STR_PLAY
 .BYTE >STR_REGS
 .BYTE >STR_V1
 .BYTE >STR_V2
 .BYTE >STR_V3
 .BYTE >STR_MENU
 .BYTE >STR_RECEIVE
 .BYTE >STR_SONGNUM
 .BYTE >STR_SONGOF
 .BYTE >STR_ERROR

434

Boilerplate at the end of the program.

BUILDING AND RUNNING CODYSID

Building CodySID with tass64 is straightforward.
You only need the codysid.asm file and your installed
tass64 assembler. Just run the same command as in
the previous example, but for CodySID: 64tass --
mw65c02 --nostart -o codysid.bin codysid.asm.

Assembling CodySID into a binary file.

Once you have the binary, you can load it from the
Cody Computer like any other. Run LOAD 1,1 to begin a
load operation from the Prop Plug, then send the
newly-generated binary over as you did in the
previous example.

Once the program has started, it will prompt you to
send a SID file over. You can send this from your
terminal program just like you did the program itself.
When the SID file has been received, the player will

LAST ; End of the entire program

.ENDLOGICAL

% 64tass --mw65c02 --nostart -o codysid.bin codysid.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file: codysid.asm
Output file: codysid.bin
Data: 1126 $0000-$0465 $0466
Passes: 2

435

automatically begin playing the first song in the SID.
The screen contents will update with the current song
and SID register information as the song is played. (If
the SID is incompatible, however, anything could
happen and you may have to restart the Cody
Computer.)

You can use the on-screen options to load a
different file, quit the program, or go back and forth to
the previous or next song in the file (if any). Just press
the key on your keyboard corresponding to the menu
option.

The CodySID program playing a SID file of AC/DC's
Highway to Hell. Note how the current SID register
values are updated as the song plays.

SUGGESTED SID FILES

The High-Voltage Sid Collection contains the largest
single repository of SID files. Many, but not all, of
these can be used on the Cody Computer. During

436

development a subset of these were found to work
reasonably well and were used for testing. A list of
many of these high-quality known working files is
given below.

Agent USA by Tom Snyder (1984).
Axel F by Barry Leitch (1986).
The Blackadder Theme by Joachim Wijnhoven
(2002).
The Blues Brothers soundtrack by Paul Tankard
(1991) contains multiple songs. It clobbers the
screen memory but is otherwise playable.
Ducktales by Vincent Voois (1990).
Electricity by Pawel Wieczorek (1994).
Ghostbusters by Etienne Muson (1985).
Highway to Hell by Benjamin Dibbert (2022).
Jingle Bells by Richard Bayliss (2002).
The Mayhem in Monsterland soundtrack by
Steve Rowlands (1993) contains multiple songs
and sound effects.
The Mohican in the Gael by Zack Maxis (2024).
The Murder on the Mississippi soundtrack by Ed
Bogas (1986) contains over a dozen brief songs.
Popcorn by Sami Sepp (1980).
Radioactivity by Sami Louko (2022).
The Railroad Works by John Wentworth (1984)
plays correctly but clobbers the default character
set. Restart the computer after playing.
Seahorses by Ed Bogas (1984) contains multiple
songs and sound effects from Sea Horse Hide'n
Seek.
Starman by Sami Sepp (2015).

•
•
•

•

•
•
•
•
•
•

•
•

•
•
•

•

•

437

Star Trek - The Rebel Universe by David Dunn
(1989) is a rendition of the TV theme for the
game of the same name.
Summer Games (1984) from Epyx contains the
national anthems and event songs from the
game.
Take My Breath Away by Steven Diemer (1991).

THE "CODY BROS." DEMO

Games are often written in assembly language
because of its better performance. This is particularly
the case for any kind of game with fast action such as
arcade games. We won't be writing an entire game in
this section, but we are going to write a simple demo
reminiscent of Super Mario Brothers, Great Giana
Sisters, and other platform games. It's a good
oppportunity to show how some of the Cody
Computer's features can be used together to make a
game in assembly language.

We'll keep the game and its graphics simple so we
don't need other tools to make it, instead just writing
the relevant data as constants and tables in a simple
assembly language program. To keep things very
simple, our game will have a game world that is 64
tiles wide by 25 tiles high. We'll also only have a
handful of tile types and only a single sprite.

All control will occur by reading the joystick
periodically. When moving around in the game, the
world willscroll horizontally from side to side. The
player will have a single sprite under their control, and
we'll be able to move the sprite left and right. Moving
up on the joystick will produce a simple animation and

•

•

•

438

sound effect, while pulling down on the joystick will
change the sprite's color. The fire button will exit the
game and return to Cody BASIC.

Because it's a computer named after a dog, our
sprite will be a stylized Pomeranian. And because the
demo is inspired by a particular Nintendo classic, we'll
have his outfits be red or green. Lastly, for an
animation and sound effect, we'll make him bark
rather than jump or shoot fireballs. Once you've
mastered the basics, there's no reason you can't use
what you learn here to make a real game.

THE CODYBROS PROGRAM

As with the CodySID player, the program starts with
a variety of constant definitions and memory locations
that we'll be using throughout the program. Some of
these relate to the memory locations used for double-
buffering of graphics. Because it's not possible to
redraw an entire screen during the interval between
frames, we have to render the next screen to another
buffer. When the drawing is done, we switch them out
between frames. This means that unlike many
programs, we have two different screen memory and
color memory locations.

439

Some of the most important memory locations we'll
be using. This includes the double-buffers for the
screen and color memory.

We'll be reading from the joystick, so the constants
for the 65C22 VIA addresses are also included.

The memory locations for the 65C22 VIA's registers.

The program will need to read and update several
video register locations, so those also need to be
included somewhere in the program. Just like for the
others, we'll define constants instead of using magic
numbers.

Memory locations for the registers in the Cody
Computer's video interface device.

ADDR = $0300 ; The actual loading address of the program

SCRRAM1 = $A000 ; Screen memory locations for double-buffering
SCRRAM2 = $A400

COLRAM1 = $A800 ; Color memory locations for double-buffering
COLRAM2 = $AC00

SPRITES = $B000 ; Sprite memory locations

VIA_BASE = $9F00 ; VIA base address and register locations
VIA_IORB = VIA_BASE+$0
VIA_IORA = VIA_BASE+$1
VIA_DDRB = VIA_BASE+$2
VIA_DDRA = VIA_BASE+$3
VIA_T1CL = VIA_BASE+$4
VIA_T1CH = VIA_BASE+$5
VIA_SR = VIA_BASE+$A
VIA_ACR = VIA_BASE+$B
VIA_PCR = VIA_BASE+$C
VIA_IFR = VIA_BASE+$D
VIA_IER = VIA_BASE+$E

VID_BLNK = $D000 ; Video blanking status register
VID_CNTL = $D001 ; Video control register
VID_COLR = $D002 ; Video color register
VID_BPTR = $D003 ; Video base pointer register
VID_SCRL = $D004 ; Video scroll register
VID_SCRC = $D005 ; Video screen common colors register
VID_SPRC = $D006 ; Video sprite control register

440

We'll only have a single sprite in our program, and
we'll place it at the beginning of the first sprite bank.
This keeps the number of constants we need to define
to a minimum.

The sprite registers used in the demo. There are many
more for other sprites, but we're only using the first
sprite in the first sprite bank.

The game won't have music, but it will have a sound
effect. That means we'll need to know where the SID
registers are in memory. In particular, we'll be using
voice 1 for our sound effect, so we'll need those
registers, along with a control register for setting the
global volume. The SID, of course, has two other voices
that we won't be using.

The SID registers we'll be using in the program. The
focus is on voice 1, which we'll use for a bark-like
sound effect.

We'll also need to track the player's x and y
coordinates along with the corner x and y position on
the map. The player's y coordinate won't be used
much for our demo, but the x coordinate is needed to
determine where the player is on the screen. Because
the player can move in per-pixel increments but the

SPR0_X = $D080 ; Sprite X coordinate
SPR0_Y = $D081 ; Sprite Y coordinate
SPR0_COL = $D082 ; Sprite color
SPR0_PTR = $D083 ; Sprite base pointer

SID_BASE = $D400 ; SID registers (mostly for voice 1)
SID_V1FL = SID_BASE+0
SID_V1FH = SID_BASE+1
SID_V1PL = SID_BASE+2
SID_V1PH = SID_BASE+3
SID_V1CT = SID_BASE+4
SID_V1AD = SID_BASE+5
SID_V1SR = SID_BASE+6
SID_FVOL = SID_BASE+24

441

tile map is along character boundaries, we'll have to
convert back and forth at times in the program.

In our simple demo, the player can move up to 256
pixels because the x-coordinate is stored in a single
byte. This is also the reason our game world is limited
to 64 horizontal tiles (recall that each character on the
screen is four pixels wide). In a real game you would
probably want to have a larger game world, so you
would either need to use a 16-bit number or keep track
of per-character offsets in a separate variable.

Variables in zero-page used for the player's location
and corners.

When we draw the game screen we'll need pointers
to the game map and to the video device's screen and
color memory. These will be typical 16-bit variables
like you've already seen in other assembly programs.

Pointer variables used when drawing the game screen.

We also have a few remaining flag variables. One
tells us which of the two screen and color memory
buffers to use, as we'll need to toggle between them
on each frame. Another tells us whether the game
sprite is moving forward or backward in the game
world. We'll also need a temporary variable for some
of our calculations, so it's declared here as well.

PLAYERX = $D0 ; Player coordinates
PLAYERY = $D1

CORNERX = $D2 ; Screen top-left corner coordinates
CORNERY = $D3

MAPPTR = $D4 ; Memory pointers for drawing the screen
SCRPTR = $D6
COLPTR = $D8

442

Miscellaneous zero-page variables used by the
program.

After our definitions are in place, we start with the
beginning of the program. This program header is the
same as in the other assembly language example. We
also use the same assembly directive as before to
generate our code relative to the program's load
address.

The program header containing the start and end
addresses of the program. Cody BASIC's program
loader needs this information to be able to load and
run the program.

Immediately after the program header is the start of
the program, in our case a MAIN routine. It begins by
setting up some of the variables in the game world,
along with configuring the SID, VID, and VIA
peripherals.

BUFFLAG = $DA ; Flag indicating what buffer is being used
FWDREV = $DB ; Flag indicating player direction (forward or reverse)

TEMP = $DC ; Temporary variable

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL ADDR ; The actual program gets loaded at ADDR

443

Initial setup in the MAIN routine.

After the initial setup is done the program needs to
populate the game world. Part of that involves copying
the sprite data for our sprite into locations in sprite
memory. It also has to copy a set of characters into
character memory, as these characters are the custom
tiles that make up the game world itself. (For our
example we'll just copy them into the beginning of the
normal character memory location, but in your own
games, you could even move the character memory
itself to a different location.)

;
; MAIN
;
; The starting point of the demo. Performs the necessary setup before the demo runs.
;
MAIN STZ PLAYERX ; Reset player position
 LDA #183
 STA PLAYERY

 STZ FWDREV ; Player moving forward by default

 STZ BUFFLAG ; Clear double buffer flag

 LDA #$07 ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
 STA VIA_DDRA

 LDA #$06 ; Set VIA to read joystick 1
 STA VIA_IORA

 LDA #$01 ; Sprite bank 0, white as common color
 STA VID_SPRC

 LDA VID_COLR ; Set border color to black
 AND #$F0
 STA VID_COLR

 LDA #$E0 ; Store shared colors (light blue and black)
 STA VID_SCRC

 LDA #$04 ; Enable horizontal scrolling
 STA VID_CNTL

444

Setting up the characters (game tiles) and sprites for
the demo.

At this point the program enters the game loop. On
each loop we have to convert the player's location to
the screen coordinates, draw the screen, and then
handle any user input via the joystick. Some of the
details are handled by subroutines, but the main loop
organizes most of it.

The first part of the main loop calculates the screen
location, taking into account the bounds of the game
world. Ordinarly we want the game world centered on
the player's current location, but at the beginning and
end, we need to do a special check instead. We don't
want the player to be able to move outside of the
game world.

Once that's taken care of, the program calls
DRAWSCRN to draw the screen for this frame. As part
of drawing the screen, the program waits for a vertical
blank to update the video registers before returning.
As soon as it returns, the program calls DRAWSPRT to
update the sprite in its correct location while the
vertical blank is still occurring.

 LDX #0 ; Copy game map tiles into character memory
_COPYCHAR LDA CHARDATA,X
 STA $C800,X
 INX
 CPX #80
 BNE _COPYCHAR

 LDX #0 ; Copy sprite data into video memory
_COPYSPRT LDA SPRITEDATA,X
 STA SPRITES,X
 INX
 CPX #255
 BNE _COPYSPRT

 LDA #$D8 ; Initial sprite color
 STA SPR0_COL

445

Code for calculating the current frame's coordinates
before drawing it.

The rest of the main loop processes the joystick
input. It reads VIA port A and then checks the bits to
see if any buttons or switches are pressed. The fire
button will exit the program, while right and left
joystick movements move the player one pixel for that
frame. Pushing the joystick up calls BARK, which
displays a simple animation and sound effect. Pushing
the joystick down calls SWAPCOLOR, which toggles
the sprite's clothing color between green and red.

LOOP LDA PLAYERX ; Calculate coarse scroll position
 LSR A
 LSR A

 CMP #21
 BCC _TOOLO

 CMP #46
 BCS _TOOHI

 SEC
 SBC #21
 STA CORNERX

 BRA _DRAW

_TOOLO STZ CORNERX
 BRA _DRAW

_TOOHI LDA #25
 STA CORNERX
 BRA _DRAW

_DRAW JSR DRAWSCRN ; Draw the screen and sprite
 JSR DRAWSPRT

 LDA VIA_IORA ; Read joystick
 LSR A
 LSR A
 LSR A

 BIT #16 ; Fire button?
 BEQ _FIRE

 BIT #8 ; Joystick right?
 BEQ _RIGHT

 BIT #4 ; Joystick left?
 BEQ _LEFT

 BIT #2 ; Joystick down to swap colors?
 BEQ SWAPCOLOR

 BIT #1 ; Joystick up to bark?

446

The final portion of the MAIN routine. This code
handles the user input from the joystick and fire
button.

The BARK routine handles the sound and animation
when the player moves the joystick up. It starts by
configuring the SID to play a sawtooth wave, then
enters an inner loop, _WOOF. In the _WOOF loop, the
program increases the frequency of the sound slightly
while moving the sprite upward on the screen. At the
end the sound is shut off and the sprite moved back to
its normal y-coordinate.

 BEQ BARK

 BRA LOOP

_FIRE RTS ; Exit on fire button

_LEFT LDA #1 ; Move left
 STA FWDREV

 LDA PLAYERX
 BEQ _NEXT

 DEC PLAYERX
 BRA _NEXT

_RIGHT STZ FWDREV ; Move right

 LDA PLAYERX
 CMP #232
 BEQ _NEXT

 INC PLAYERX

_NEXT JMP LOOP

;
; BARK
;
; Handles a barking sound/animation for the sprite, then jumps back to the
; main loop.
;
BARK LDA #$0F ; Set main volume
 STA SID_FVOL

 LDA #<2400 ; Set starting frequency
 STA SID_V1FL
 LDA #>2400
 STA SID_V1FH

 LDA #$50 ; Attack/decay
 STA SID_V1AD

 LDA #$F0 ; Sustain/release
 STA SID_V1SR

 LDA #$21 ; Begin playing
 STA SID_V1CT

447

The BARK routine makes a bark-like sound while
moving the game sprite up and down quickly. As a first
approximation, it simulates a barky agitated or excited
Pomeranian.

The other player action (other than movement) is
handled by SWAPCOLOR. Those of you who have
played the original Super Mario Brothers may have
noted that Mario and Luigi were basically the same
sprite, just with red or green colors. Our demo does a
similar thing, with the player sprite starting out green.
When toggled, we switch out the sprite's color register
so that the green color is red. And when toggled again,
it switches back to green, and so on.

 LDX #0 ; Loop counter

_WOOF JSR WAITBLANK ; Wait for the next frame

 DEC SPR0_Y ; Decrement sprite Y for dog hop

 CLC ; Increment frequency for next loop
 LDA SID_V1FL
 ADC #100
 STA SID_V1FL

 LDA SID_V1FH
 ADC #0
 STA SID_V1FH

 INX ; Increment for next loop
 CPX #10
 BNE _WOOF

 LDA #0 ; Stop playing
 STA SID_V1CT

 LDA PLAYERY ; Move sprite back to original y
 STA SPR0_Y

 JMP LOOP

448

SWAPCOLOR toggles the player sprite between green
and red.

Drawing the screen is handled by the DRAWSCRN
routine. It sets up a pointer into the map data, then
iterates over the data to populate the screen and color
memory for the next frame. Because it takes so long to
draw a screen, all the drawing is done offscreen in a
technique known as double-buffering. At the end, the
routine waits for a vertical blank, then switches the
video registers to point to the new screen and color
memory areas. We flip back and forth between them
on each call to DRAWSCRN so one is being shown
while the other is being drawn.

This isn't quite how the drawing would be done in a
real game. In a real game, the screen would only be
fully updated every fourth frame. The scroll registers
would be used to slowly slide the current screen
across while the new screen is being drawn (roughly
one-quarter of it on each frame). When the scroll

;
; SWAPCOLOR
;
; Swaps the sprite color (red/green or green/red) and jumps back to the main
; loop.
;
SWAPCOLOR LDA SPR0_COL ; Check current sprite colors
 CMP #$D8
 BEQ _RED

_GRN LDA #$D8 ; Make sprite wear green
 STA SPR0_COL
 BRA _WAITJOY

_RED LDA #$28 ; Make sprite wear red
 STA SPR0_COL
 BRA _WAITJOY

_WAITJOY LDA VIA_IORA ; Read joystick
 LSR A
 LSR A
 LSR A

 BIT #2 ; Wait for joystick release
 BEQ _WAITJOY

 JMP LOOP ; All done

449

wraps around, the new screen would be ready and
swapped in.

That approach is more complex but it allows a better
frame rate than our demo. What we have here is
intended to be an example of double-buffering
without additional complications. It does mean that
we're doing extra work redrawing the entire screen on
each call, but the result is suitable to show the basics.
Just be aware that there are better ways of doing this
in real life.

Much of the drawing (or more accurately, copying)
is done in the COPYROWS routine. It takes a single
parameter in the X register, the number of rows to
copy. This is because, again, in a real application only a
subset of screen rows may be copied between frames
(rather than slowing down the whole application to
draw the whole thing each time). We just use a value
of 25 to draw all the rows.

;
; DRAWSCRN
;
; Draws the current visible of the screen. This routine uses double-buffering
; so that the new screen and colors are drawn to a different location, and the
; screens/colors are switched out during the vertical blanking interval.
;
; In a real application the screen may need to be drawn (offscreen) in sections
; to keep up with a high game frame rate. For an example this works well enough
; to avoid glitches or tearing during scrolling.
;
DRAWSCRN LDA #<MAPDATA ; Start map pointer at beginning of map
 STA MAPPTR+0
 LDA #>MAPDATA
 STA MAPPTR+1

 CLC ; Adjust map position based on player position
 LDA MAPPTR+0
 ADC CORNERX
 STA MAPPTR+0
 LDA MAPPTR+1
 ADC #0
 STA MAPPTR+1

 LDA BUFFLAG ; Determine what buffer to draw to
 TAX

 LDA SCRRAMS_L,X ; Start screen pointer at beginning of buffer
 STA SCRPTR+0
 LDA SCRRAMS_H,X
 STA SCRPTR+1

450

DRAWSCRN handles most of the high-level
operations involved in rendering a new screen and
color memory area based on the current map location.

The screen and color memory is updated by the
COPYROWS routine. As mentioned, it will update a
variable number of rows on each call, specified by the
value in the X register. It also assumes that the
MAPPTR is pointed to the current source row in the
map data, while SCRPTR and COLPTR point to the
current destination rows in scren and color memory.

Screen data is copied directly from the map data.
Color data is obtained by using the tile value as an
index into a lookup table, COLORDATA, that has the
character-specific colors for each tile. (For many
games this technique is actually not that optimal, as

 LDA COLRAMS_L,X ; Start color pointer at beginning of buffer
 STA COLPTR+0
 LDA COLRAMS_H,X
 STA COLPTR+1

 LDX #25 ; For now, try drawing everything
 JSR COPYROWS

 JSR WAITBLANK ; Wait for the blanking interval to make changes

 LDA BUFFLAG ; Determine what buffer to flip to
 TAX

 LDA BASEREGS,X ; Update base register for screen memory
 STA VID_BPTR

 LDA COLREGS,X ; Update color register for color memory
 STA VID_COLR

 LDA BUFFLAG ; Toggle buffer flag
 EOR #$01
 STA BUFFLAG

 LDA PLAYERX ; Update fine scroll position if needed

 CMP #(4*21)
 BCC _DONE

 CMP #(4*46)
 BCS _DONE

 AND #$03
 ASL A
 ASL A
 ASL A
 ASL A
 STA VID_SCRL

_DONE RTS ; All done

451

tiles may be drawn in a variety of colors, but for this
example it works nicely.)

Each row consists of 40 characters written to the
screen and color memory locations. Index registers are
used to reference particular memory locations relative
to the pointers, but after each row, they need to be
updated to move to the next row. For COLPTR and
SCRPTR they need to be incremented by 40 because
screen and color memory are 40 characters wide. For
MAPDATA the pointer needs to be incremented by 64
because the game world is 64 tiles wide.

;
; COPYROWS
;
; Copies a number of rows from the game map into the screen and color memory. The
; number of rows to copy is stored in the X register.
;
COPYROWS

_XLOOP PHX
 LDY #0

_YLOOP LDA (MAPPTR),Y ; Copy the character (game tile) into screen memory
 STA (SCRPTR),Y

 TAX ; Copy the color into color memory
 LDA COLORDATA,X
 STA (COLPTR),Y

 INY ; Next loop for Y
 CPY #40
 BNE _YLOOP

 CLC ; Increment map pointer to next row
 LDA MAPPTR+0
 ADC #64
 STA MAPPTR+0
 LDA MAPPTR+1
 ADC #0
 STA MAPPTR+1

 CLC ; Increment screen pointer to next row
 LDA SCRPTR+0
 ADC #40
 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1

 CLC ; Increment color pointer to next row
 LDA COLPTR+0
 ADC #40
 STA COLPTR+0
 LDA COLPTR+1
 ADC #0
 STA COLPTR+1

 PLX ; Next loop for X
 DEX
 BNE _XLOOP

452

The COPYROWS routine updates a certain number of
rows in a screen and color memory location with the
data from the game map.

The sprite also needs to be updated on each frame.
This is handled by the DRAWSPRT routine. It looks at
the current player position in the game world and
determines where the sprite should be drawn on the
screen. In most situations the sprite should be drawn in
the middle of the screen, but at the beginning and end
of the game world the behavior is different. In those
cases, scrolling stops, so the sprite has to move
instead.

Our sprite also has a total of four frames, two
walking forward and two walking backward. To specify
the correct sprite image, the program examines the
value in FWDREV set by the main loop to determine
whether the player's moving forward (right) or
backward (left). Once that's decided, the current
player X coordinate is used to pick one of the two walk
frames for each direction. Even values use one sprite
and odd ones the other.

This routine gets called immediately after
DRAWSCRN because we want to make the sprite
register updates during the vertical blank as well.
When drawing the screen the program waits until a
vertical blank to update the video registers, and so
calling this immediately after means the code can run
in the same vertical blank.

 RTS ; All done

;
; DRAWSPRT
;
; Draws the sprite in the correct location for this frame. Note that the sprite
; isn't "drawn" so much as its registers updated so that it appears correctly.

453

DRAWSPRT updates the sprite on the screen based on
the current game state.

WAITBLANK handles the actual waiting for a
vertical blank. First it waits for the blanking register to
have a zero value, indicating that the screen is actively
being displayed by the video hardware. After
detecting a zero, it waits for a transition to a 1, meaning
that we went from drawing to the blanking interval.
Just checking for a 1 won't do as we might be in the
middle or at the end of the interval, which isn't
necessarily what we want.

; This should be called after drawing the screen because we want to sneak in
; during the vertical blank.
;
DRAWSPRT LDA PLAYERX ; Calculate new sprite location
 CMP #(21*4)
 BCC _LO

 CMP #(46*4)
 BCS _HI

 LDA #(21*4)
 BRA _SPRX

_LO BRA _SPRX

_HI SEC
 SBC #((46*4)-84)
 BRA _SPRX

_SPRX ADC #12 ; Update sprite X
 STA SPR0_X

 LDA PLAYERY ; Update sprite Y
 STA SPR0_Y

 LDA FWDREV ; Update sprite base pointer (different frames)
 ASL A
 STA TEMP
 CLC
 LDA PLAYERX
 AND #$02
 LSR A
 ADC TEMP
 ADC #(4096/64)
 STA SPR0_PTR

 RTS

454

The Commodore 64, like many computers of its
day, had an interrupt that would fire on particular
screen lines. That could be used to handle this in
an interrupt rather than having to poll for a
changed value. Many other computers, including
the Commodore VIC-20, didn't have such an
interrupt, so polling was the only option. The Cody
Computer falls into this latter category.

The WAITBLANK routine waits for a transition
between drawing the visible screen (0) and blanking
(1). Code that updates video registers should run in the
blanking interval if possible.

The game map is defined in MAPDATA, a sequence
of 25 rows of 64 bytes. This is the source for drawing
the screen, and each byte represents a particular tile
type. In real games, some kind of map editor is usually
used to make the game map. The data is exported to
an assembly file to include in your program. In earlier
times, the game map may have actually been
designed on graph paper before such tools were

;
; WAITBLANK
;
; Waits for the vertical blank signal to transition from drawing to not drawing, then
; returns. Used to sync up screen/register updates so they don't occur in the middle
; of the screen.
;
WAITBLANK

_WAITVIS LDA VID_BLNK ; Wait until the blanking is zero (drawing the screen)
 BNE _WAITVIS

_WAITBLANK LDA VID_BLNK ; Wait until the blanking is one (not drawing the screen)
 BEQ _WAITBLANK

 RTS

455

common. For a simple example like this, we can just
pop numbers into the program as follows.

MAPDATA is a sequence of bytes that represent the
game world.

The tiles themselves are represented as characters.
When the video hardware draws the screen, the
"characters" it draws will actually be the game world's
tiles. The MAIN routine copies these characters over
the first 10 characters in the default character memory
at startup. We can use them in the game just by
putting the matching number into screen memory.

;
; The game map.
;
; 0 = Sky
; 1 = Brick
; 2 = Cloud left
; 3 = Cloud middle
; 4 = Cloud right
; 5 = Hills left
; 6 = Hills middle
; 7 = Hills right
; 8 = ?
; 9 = ?
;
MAPDATA

 .BYTE 0,2,3,4,0
 .BYTE 0,2,3,3,3,3,3,4,0
 .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0
 .BYTE 0,0,2,3,3,3,3,4,0
 .BYTE 0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0
 .BYTE 0,2,3,4,0,2,3,4,0,0,0,0,0,0
 .BYTE 0,0
 .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,2,3,4,0,0,0,0
 .BYTE 0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0
 .BYTE 0,1,1,0,0,1,1,0
 .BYTE 0,1,1,0,0,1,1,0
 .BYTE 0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,5
 .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,5,6,7,0,5,6
 .BYTE 0,5,6,6,6,7,0,5,7,0,0,5,6,6
 .BYTE 0,5,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,0,5,6,6,7,5,6,6,6
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,7,0,0,5,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6
 .BYTE 0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,5,6,6,6,7,5,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6
 .BYTE 0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,7,0,0,0,0,0,5,6,6,6,6,6,6,6,6,1,1
 .BYTE 0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,5,6,6,6,6,6,6,6,6,7,0,0,0,5,6,6,6,6,6,6,6,6,6,1,1
 .BYTE 1,1
 .BYTE 1,1

;
; The game's character tiles (used to draw the map).

456

;
CHARDATA

 .BYTE %11111111 ; Sky
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111

 .BYTE %01010101 ; Brick
 .BYTE %01000000
 .BYTE %01000000
 .BYTE %01000000
 .BYTE %01010101
 .BYTE %00000001
 .BYTE %00000001
 .BYTE %00000001

 .BYTE %11111100 ; Cloud left
 .BYTE %11000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %11000000
 .BYTE %11111100

 .BYTE %00000000 ; Cloud middle
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000

 .BYTE %00111111 ; Cloud right
 .BYTE %00000011
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000011
 .BYTE %00111111

 .BYTE %11111100 ; Hills left
 .BYTE %11111100
 .BYTE %11110001
 .BYTE %11110000
 .BYTE %11000100
 .BYTE %11000000
 .BYTE %00010000
 .BYTE %00000001

 .BYTE %00000000 ; Hills middle
 .BYTE %00010000
 .BYTE %00000000
 .BYTE %01000000
 .BYTE %00000100
 .BYTE %00000000
 .BYTE %01000000
 .BYTE %00000001

 .BYTE %00111111 ; Hills right
 .BYTE %00111111
 .BYTE %00001111
 .BYTE %01001111
 .BYTE %00000011
 .BYTE %00010011
 .BYTE %00000000
 .BYTE %01000100

 .BYTE %00000000 ; Unused
 .BYTE %00000000

457

The CHARDATA for the game tiles. This is copied into
the first 10 entries in character memory on startup.

There is no connection between tiles and their
colors. Color memory is separate from screen
memory, and each tile could in theory be drawn in a
variety of colors. For our demo, however, each tile only
needs one particular set of colors. Rather than have an
entire map just for colors, we can make a small lookup
table to find the color memory value for each game
tile. COLORDATA is exactly such a lookup table.

COLORDATA contains the color memory value for each
game tile.

The last portion of data needed for the program is
the data for the Pomeranian sprite the player can
control on the screen. As mentioned earlier in the
book, sprites are 12 pixels by 21 pixels in size and have
a layout very similar to C64 multicolor sprites. Each

 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000

 .BYTE %00000000 ; Unused
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000

;
; The color date to copy for each tile type.
;
COLORDATA

 .BYTE $00 ; Sky (no colors)
 .BYTE $09 ; Brick (black and brown)
 .BYTE $F1 ; Clouds (gray and white)
 .BYTE $F1 ; Clouds (gray and white)
 .BYTE $F1 ; Clouds (gray and white)
 .BYTE $D5 ; Hills (light green and green)
 .BYTE $D5 ; Hills (light green and green)
 .BYTE $D5 ; Hills (light green and green)
 .BYTE $00 ; Unused
 .BYTE $00 ; Unused

458

sprite fits in 63 bytes with one blank byte rounding up
to an even 64 bytes.

For the demo we have a total of four sprites, two of
the Pomeranian walking forward to the right and two
of the Pomeranian walking backward to the left. This is
a total of 256 bytes, all of which are copied to video
memory and used as sprite graphics during the game.
The actual copying is done by the MAIN routine with
the sprite registers being updated on each call to
DRAWSPRT.

;
; The sprite data for the Pomeranian sprite on the screen.
;
SPRITEDATA

 .BYTE %00000000,%00000001,%01000000 ; Pomeranian forward 0
 .BYTE %00010000,%00001101,%11110000
 .BYTE %00010000,%00001101,%01111111
 .BYTE %01010100,%00000101,%01010000
 .BYTE %01010100,%00110101,%01110000
 .BYTE %01010100,%10110101,%01010101
 .BYTE %01010100,%10111001,%01010111
 .BYTE %01010111,%10101110,%01010100
 .BYTE %01010111,%10101110,%01010000
 .BYTE %01010111,%10101110,%10100000
 .BYTE %00010110,%11101110,%10100000
 .BYTE %00011010,%11101110,%10100000
 .BYTE %00001010,%11101110,%10000000
 .BYTE %00001010,%10111010,%10000000
 .BYTE %00010110,%10111001,%01010000
 .BYTE %00010101,%01000001,%01010000
 .BYTE %01010101,%00000000,%01010000
 .BYTE %01010000,%00000000,%01010000
 .BYTE %01010000,%00000000,%01010000
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00000000

 .BYTE %00000000,%00000001,%01000000 ; Pomeranian forward 1
 .BYTE %00010000,%00001101,%11110000
 .BYTE %00010000,%00001101,%01111111
 .BYTE %01010100,%00000101,%01010000
 .BYTE %01010100,%00110101,%01110000
 .BYTE %01010100,%10110101,%01010101
 .BYTE %01010100,%10111001,%01010111
 .BYTE %01010111,%10101110,%01010100
 .BYTE %01010111,%10101110,%01010000
 .BYTE %01010111,%10101110,%10100000
 .BYTE %00010110,%11101110,%10100000
 .BYTE %00011010,%11101110,%10100000
 .BYTE %00001010,%11101110,%10000000
 .BYTE %00001010,%10111010,%10000000
 .BYTE %00000110,%10111001,%01000000
 .BYTE %00010101,%01000001,%01000000
 .BYTE %00010101,%00000101,%00000000
 .BYTE %00000101,%00000101,%00000000
 .BYTE %00010101,%00000101,%00000000
 .BYTE %01010100,%00000001,%01000000
 .BYTE %01010000,%00000001,%01000000
 .BYTE %00000000

459

SPRITEDATA consists of four sprite graphics, two of a
Pomeranian walking to the right and two of a
Pomeranian walking to the left.

The program ends with some lookup table used as
part of double-buffering. We have two different
screen/color memory buffers that need to be swapped
in and out. To make it easy to do that, lookup tables
contain the base addresses of each along with the
corresponding register values needed to update them.
When swapping, we can just read a value in the table
corresponding to the BUFFLAG variable.

 .BYTE %00000001,%01000000,%00000000 ; Pomeranian reverse 0
 .BYTE %00001111,%01110000,%00000100
 .BYTE %11111101,%01110000,%00000100
 .BYTE %00000101,%01010000,%00010101
 .BYTE %00001101,%01011100,%00010101
 .BYTE %01010101,%01011110,%00010101
 .BYTE %11010101,%01101110,%00010101
 .BYTE %00010101,%10111010,%11010101
 .BYTE %00000101,%10111010,%11010101
 .BYTE %00001010,%10111010,%11010101
 .BYTE %00001010,%10111011,%10010100
 .BYTE %00001010,%10111011,%10100100
 .BYTE %00000010,%10111011,%10100000
 .BYTE %00000010,%10101110,%10100000
 .BYTE %00000101,%01101110,%10010100
 .BYTE %00000101,%01000001,%01010100
 .BYTE %00000101,%00000000,%01010101
 .BYTE %00000101,%00000000,%00000101
 .BYTE %00000101,%00000000,%00000101
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00000000

 .BYTE %00000001,%01000000,%00000000 ; Pomeranian reverse 1
 .BYTE %00001111,%01110000,%00000100
 .BYTE %11111101,%01110000,%00000100
 .BYTE %00000101,%01010000,%00010101
 .BYTE %00001101,%01011100,%00010101
 .BYTE %01010101,%01011110,%00010101
 .BYTE %11010101,%01101110,%00010101
 .BYTE %00010101,%10111010,%11010101
 .BYTE %00000101,%10111010,%11010101
 .BYTE %00001010,%10111010,%11010101
 .BYTE %00001010,%10111011,%10010100
 .BYTE %00001010,%10111011,%10100100
 .BYTE %00000010,%10111011,%10100000
 .BYTE %00000010,%10101110,%10100000
 .BYTE %00000001,%01101110,%10010000
 .BYTE %00000001,%01000001,%01010100
 .BYTE %00000000,%01010000,%01010100
 .BYTE %00000000,%01010000,%01010000
 .BYTE %00000000,%01010000,%01010100
 .BYTE %00000001,%01000000,%00010101
 .BYTE %00000001,%01000000,%00000101
 .BYTE %00000000

;
; Lookup tables for screen and color memory locations. Used to quickly

460

Lookup tables used to simplify double-buffering
operations.

The program itself ends as our CodySID music
player example. We have a LAST label used to
calculate the end address of the program. This is
followed by an assembler directive closing the one our
program started with.

The same boilerplate at the end of the program.

BUILDING AND RUNNING CODY BROS.

You build and run the demo the same way as you
did the CodySID music player. First you'll need to run
the code through the 64tass assembler on your PC.

; switch between the double buffer during an update.
;
SCRRAMS_L

 .BYTE <SCRRAM1
 .BYTE <SCRRAM2

SCRRAMS_H

 .BYTE >SCRRAM1
 .BYTE >SCRRAM2

COLRAMS_L

 .BYTE <COLRAM1
 .BYTE <COLRAM2

COLRAMS_H

 .BYTE >COLRAM1
 .BYTE >COLRAM2

BASEREGS

 .BYTE $05
 .BYTE $15

COLREGS

 .BYTE $20
 .BYTE $30

LAST ; End of the entire program

.ENDLOGICAL

461

Just run 64tass --mw65c02 --nostart -o
codybros.bin codybros.asm and check the output:

Building the codybros demo using the 64tass
assembler.

Once you have the binary, you run LOAD 1,1 on the
Cody Computer and send the file over a serial link. The
program will start up automatically. To use the
program you'll need to have an Atari-compatible
joystick to plug into joystick port 1. Moving the joystick
left and right will move the player on the screen,
moving the joystick up runs the "bark" animation, and
moving the joystick down changes the sprite color. To
return to Cody BASIC just press the fire button.

If you don't have an Atari-compatible joystick
available, cheap ones are available online or at many
retro electronics or video game stores in larger cities.
The design is quite simple, so you can even find plans
online to make your own: Unlike Nintendo controllers
that required at least some logic chips, an Atari
joystick is literally just switches wired to a connector.

If all else fails, you can also change the program to
accept keyboard input rather than joystick input. In the
main loop where the joystick row is read, change the

% 64tass --mw65c02 --nostart -o codybros.bin codybros.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file: codybros.asm
Output file: codybros.bin
Data: 2448 $0000-$098f $0990
Passes: 2

462

row to one of the rows on the keyboard matrix, then
check for pressed keys instead of pressed switches on
the joystick. Look up the keys you would need to press
for that row and use those for the controls instead.
(You'll need the keyboard schematic and perhaps the
CodySID or input-output examples to help you in
doing that.)

A Pomeranian sprite moving around in a very Mario-
like or Giana-like game world. You can use something
like this as a starting point for a full game.

MEMORY-RESIDENT PROGRAMS

The Cody Computer also allows you to write
programs in assembly language that can be left in
memory and called by Cody BASIC programs. This can
be a powerful way to allow external devices and
peripherals to copy some code into memory that can
later be called from a SYS statement.

463

In this situation, you'll be writing an assembly
language program that can be loaded into memory
but later returns back to BASIC. The program can use
the Cody BASIC binary loader to load it into the
expected location in memory to start with, or you can
have it load the binary and then copy the code
yourself.

As part of the initialization of such a program, you
might adjust the value of PROGEND, a zero-page
variable at address $004B that specifies the page
boundary of BASIC program memory. You can move
the page down to steal memory for your program
from BASIC, then load your BASIC program after the
binary is finished loading. This is a particularly useful
approach for writing assembly language programs
that work like drivers or extensions of BASIC itself.

To show how this works, we'll go through a very
short program that will let you change the color of the
screen border. Once assembled, you will load the
program using the LOAD command. The program will
return to Cody BASIC after initialization, and you'll be
able to call it using SYS 25600 to run the routine.

To make our job easier, we'll assume the program is
loaded at $6300 (decimal 25344) with our
initialization routine. Within our program we'll include
the memory-resident routine at an offset of $100 so it
will reside at the easy to remember $6400 or decimal
25600.

464

Our program is loaded at a base address of $6300. It
also uses some of the video registers and modifies
locations in zero page.

We use the same boilerplate and assembly
directives to ensure the program starts at the location
we expect.

Boilerplate for locating the start of the program in
memory.

Our MAIN routine is quite small. It adjusts the
PROGEND location so that future BASIC programs
won't overwrite our memory-resident program and
then returns back to Cody BASIC. We don't need to
copy any code because we use the loader to put our
program in the right place to begin with.

The short initialization routine called by Cody BASIC's
loader.

ADDR = $6300 ; The actual loading address of the program

VID_BLNK = $D000 ; Video blanking status register
VID_CNTL = $D001 ; Video control register
VID_COLR = $D002 ; Video color register
VID_BPTR = $D003 ; Video base pointer register
VID_SCRL = $D004 ; Video scroll register
VID_SCRC = $D005 ; Video screen common colors register
VID_SPRC = $D006 ; Video sprite control register

PROGEND = $4B ; Boundary page for program memory
TEMP = $FF ; Temporary variable in zero page

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL ADDR ; The actual program gets loaded at ADDR

MAIN LDA #>ADDR ; Move the program memory bounds down
 STA PROGEND

 RTS

465

The interesting code is in the CYCLE routine, which
color-cycles the border color on the screen when
called. We specify the location where this should be
located and the 64tass assembler emits the code at
the proper location within our binary.

The CYCLE routine is resident at address $6400.

As with all other programs we have a bit of
boilerplate at the end as well.

The end of the program.

You can build this program like all the others. Run
64tass --mw65c02 --nostart -o resident.bin
resident.asm and check the output:

* = $6400 ; Start address of the color-cycle routine

CYCLE PHA ; Preserve registers

 LDA VID_COLR ; Increment the border color by one and store in temp
 INC A
 AND #$0F
 STA TEMP

 LDA VID_COLR ; Combine the new value and the color register to update
 AND #$F0
 ORA TEMP
 STA VID_COLR

 PLA ; Restore registers and return
 RTS

LAST ; End of the entire program

.ENDLOGICAL

466

A successful build with 64tass.

Load the program over a serial link using LOAD 1,1.
When the program is loaded and completed, you'll
return back to Cody BASIC as though nothing had
happened. In fact, it will look like the Cody Computer
has just started up for the first time. However, when
you call SYS 25600 you should notice the screen's
border color change. Try it several times to observe the
results.

Calling the resident program from Cody BASIC using
the SYS statement.

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file: resident.asm
Output file: resident.bin
Data: 9 $0000-$0008 $0009
Gap: 251 $0009-$0103 $00fb
Data: 21 $0104-$0118 $0015
Passes: 2

READY.
SYS 25600

READY.
SYS 25600

READY.

467

In some programs of this nature it might be
better to introduce a jump table. In a jump table,
each location actually contains a 65C02 JMP
instruction that jumps to the actual
implementation. The locations for each JMP
instruction are hardcoded and do not change
between releases, but the code they jump to can.
This can be useful for drivers and libraries that
may change internally but want to have a
consistent external interface.

468

Cartridges and SPI

11

INTRODUCTION

The Cody Computer also supports cartridges that
can be plugged into the expansion port. If a cartridge is
detected, a binary program from the cartridge is
loaded into memory and executed instead of booting
to Cody BASIC. The program is contained inside the
cartridge with a memory chip that supports the Serial
Peripheral Interface (SPI) protocol, and certain pins on
the expansion port are repurposed to implement SPI.

Cartridges are not necessary to use the Cody
Computer. Assembly language programs can be
loaded over a serial port just like Cody BASIC
programs. Even if you plan not to use cartridges,
examples in this chapter may be helpful if you plan to
implement the SPI protocol with the Cody Computer.

SPI is probably the simplest data transfer protocol
in common use. It's a three-wire protocol often used to
communicate between microcontrollers and their
peripherals. One line transmits data, one line receives
data, and one line acts as a clock. A fourth line not
involved in the actual communication acts as a chip
select, telling a chip when an SPI data transaction is
about to begin.

An SPI transaction begins by bringing the SPI chip
select low. From there, data is clocked out on the
output pin while data is read from the input pin, using
the SPI clock pin for the clock signal. One or more
bytes are transferred in this way. Often a command of
some kind is clocked out first, with subsequent clocks
used to read in the result of the command. The exact
behavior depends on the device itself.

470

There are actually four different SPI modes. Each
mode can differ based on the SPI clock signal's
polarity, either being idle-high or idle-low. Each mode
can also differ based on the clock phase when data is
transmitted or received. This is one of the reasons it's
preferable to bit-bang the SPI protocol using the
65C22's general-purpose I/O pins rather than relying
on a limited subset of modes that can be supported by
the built-in shift register.

The Cody Computer's cartridges are built around
the SPI protocol with some extra modifications to
support cartridge detection and size determination.
The 65C22's CA1 and CA2 handshaking pins on
expansion port pins 13 and 14 are used as a cartridge
detect. If a cartridge is detected, expansion port pin 8 is
used to read if the cartridge is 64K or smaller (0) or
larger (1) based on the cartridge's configuration.

Once set up to read from a cartridge, expansion port
pin 12 is connected to the SPI clock, pin 11 is connected
to the SPI master output/slave input, pin 10 is
connected to the master input/slave output, and pin 9
is connected to the SPI chip select. This pin
configuration is used to implement the SPI protocol
and load the program.

CARTRIDGE DESIGN

The Cody Computer cartridge is a relatively simple
design, consisting at heart of an SPI EEPROM, a
decoupling capacitor, and a connector to plug into the
Cody Computer. It's really no more than a
standardized pinout to interface an SPI EEPROM into
the system's expansion port.

471

Schematic of the Cody Cartridge. Note that depending
on assembly choices, the board can be either a
programmer or just a cartridge.

The cartridge's interface is a 20-pin male header
that connects to the female socket on the Cody
Computer's expansion port. Most of the pins are
unused, but several are in use and directly wired to
pins on the SPI EEPROM. These are the SPI clock, MISO
(master-in-slave-out), MOSI (master-out-slave-in),
and inverted chip select.

Some other pins are used to support the Cody
Computer's loading of cartridge data. Two pins are
connected to each other on the cartridge itself, making
it possible for the Cody Computer to detect a cartridge
because the connection is closed when a cartridge is
seated. Another pin is used to tell the Cody Computer
whether the SPI EEPROM is a small EEPROM (a low
value indicates a size of 64 kilobytes or less) or a large
EEPROM (a high value indicates a size of over 64
kilobytes). This is necessary because the smaller
EEPROMs only accept a two-byte address while the

472

larger ones require a three-byte address in their SPI
transmissions.

The standard Cody Computer cartridge design is
interesting in that it can be used to build either a
cartridge or a programmer for the SPI EEPROMs used
in cartridges. Instead of two versions of the board,
there's just one version, but different jumper
connections can be used to configure it. For a
programmer, jumper wires can be replaced with pin
headers and jumpers/shunts, thereby letting the user
change the behavior just by moving the jumper blocks
around.

For development purposes we'll start by building a
board for programming purposes. We'll cover building
a board for a normal cartridge later in the chapter,
along with a walkthrough of the mechanical assembly
for the case.

CARTRIDGE PROGRAMMER
ASSEMBLY

To build a cartridge's PCB as a programmer, header
pins are soldered into the board instead of using wires.
Jumpers can be used to toggle the different
possibilities for the programmer's setup. They can also
be used for testing cartridges after they're
programmed. A socket is used to (more or less) easily
insert and remove the SPI EEPROMs being
programmed.

This circuit is actually simple enough that you could
build it using point-to-point wiring on a protoboard, as
long as the protoboard will fit into the Cody
Computer's expansion port hole in the back.

473

Prototypes of the cartridge were built in exactly such a
way during the Cody Computer's development.

A cartridge programmer PCB alongside its hand-wired
prototype on protoboard.

However, the rest of the chapter assumes that you
have printed circuit boards available.

INSTALLING THE EXPANSION CONNECTOR

The programmer, like the cartridges themselves, has
a 20-pin right angle .100" male connector. This
matches up with the female connector on the Cody
Computer's expanson port when the cartridge is
connected.

For this step you'll need the following:

1 20-pin male .100" right-angle header pin

For this step you need to place the header pins into
J1, then solder the connector. It's very important that

•

474

the headers go on at a right angle so they will
correctly line up with the expansion port's socket.

Insert the header into J1. Ensure the pins are at a
right-angle to the board.
Solder the header to J1.

The board with the connector pins soldered at a right
angle.

INSTALLING THE SOCKET AND CAPACITOR

Once the connector is soldered on, it's time to add
an 8-pin socket and decoupling capacitor for the SPI
EEPROM. The socket makes it easier to insert and
remove the IC to be programmed, while the
decoupling capacitor serves the same purpose as it

1.

2.

475

does for ICs on the Cody Computer's main PCB. You'll
need the following:

1 8-pin DIP socket
1 0.1µF ceramic capacitor (KEMET
C315C104K1R5TA or equivalent)

For this step you need to solder the IC socket and
the capacitor. The IC socket should have a small notch
or other mark at the top, and it should align with the
notch on the PCB's silkscreen for the part. The
decoupling capacitor is not polarized and can be
soldered in either direction.

Solder the capacitor to C1.
Solder the IC socket to U1.

The board with the socket and capacitor added. Note
the mark on the IC socket.

•
•

1.
2.

476

INSTALLING THE HEADERS

In this step we'll add some pin headers to the
various jumper positions on the board. This makes it
possible to reconfigure the cartridge programmer,
whereas for an actual cartridge you could just solder
them with jumper wire. This requires the following:

2 3-pin male .100" headers, vertical
1 2-pin male .100" header, vertical

Soldering the header pins is relatively
straightforward:

Solder a 3-pin male header to JP1.
Solder a 3-pin male header to JP2.
Solder the 2-pin male header to JP3.

The board with the jumper headers added.

•
•

1.
2.
3.

477

INSERTING THE IC AND JUMPERS

Now we can add the EEPROM IC and jumpers. These
steps assume that a 128-kilobyte 25LC1024 SPI
EEPROM is being used, so the jumpers will be
configured appropriately.

1 25LC1024 128-kilobyte SPI EEPROM or
equivalent (DIP-8)
3 2-pin jumpers/shunts (Harwin M7583-46 or
equivalent)

The IC must be carefully inserted without bending
the pins. Sliding the jumpers into position is often
easier with a pair of tweezers or forceps.

Place a jumper on JP1 connecting WR PROT and
WP OFF.
Place a jumper on JP2 connecting CART SIZE and
LARGE.
Place a jumper on JP3 connecting only one of the
two pins.
Insert the 25LC1024 into the socket so that the
pin marks align.

•

•

1.

2.

3.

4.

478

The programmer as configured to program a
25LC1024 SPI EEPROM.

SPI PROGRAMMING IN BASIC

Now that you have a board set up to program a
cartridge, it's time to learn how to program it. In order
to program the SPI EEPROM you'll need to understand
some of the key concepts about SPI programming, but
you'll also need to understand how the 25LC21024
works when communicating over SPI. To help with that,
we'll write some simple Cody BASIC programs before
moving on to a more fully-featured programmer in
assembly language.

SIMPLE SPI COMMUNICATION

Whenever you're attempting to use SPI to
communicate with a device, it's a good idea to start
with a simple example and work from there. SPI has

479

four different modes related to clock edges, and on top
of that, not every device is without its own quirks. For
our first example, we'll try to read an ID value from the
25LC1024 built into the cartridge as it's a relatively
simple operation.

The following Cody BASIC program sends the
25LC1024 an RDID command (decimal 171), which
wakes up the chip and reads its built-in ID. This is
probably the easiest place to begin with the chip, as
the expected ID value is a known quantity from the
datasheet. Obtaining it from the chip will tell us that
our external hardware is correctly connected and that
our program is working as expected.

480

A program that reads the RDID from a 25LC1024 SPI
EEPROM.

For this to work you'll need to have the cartridge
connected to the expansion port. It's a good idea to
turn the Cody Computer off, plug in the cartridge, and
then power it on again. The expansion port is not
intended to be hot-pluggable, and connecting some

10 REM READ EEPROM RDID
20 GOSUB 1000
30 O=171
40 FOR N=1 TO 5
50 GOSUB 2000
60 NEXT
70 GOSUB 3000
80 PRINT "RDID ID: ",I
90 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN

481

pins before others could potentially cause unexpected
behavior or even damage.

When run, the program reads the RDID value from
the 25LC1024 EEPROM and prints the received value:

Output from the program reporting the RDID value as
41 decimal.

A TEST PROGRAM

Now that we can talk to the EEPROM, we'll want to
have some data to send into it. Because we're also
trying to use this as an example of how cartridges
work on the Cody Computer's expansion port, we'll put
together a small program to store in the EEPROM's
memory.

Below is a very short assembly language program
that prints a short message on the screen. For this
example, all we care about is that we can assemble this
code into some data we'll program into the EEPROM.

RUN
RDID ID: 41

READY.

;
; codycart.asm
;
; An example assembly language program for the Cody Computer. The program
; pokes the message "Cody!" into the default screen memory location after
; starting up, then loops forever.
;
; You can assemble the program with 64tass using the following command:
;
; 64tass --mw65c02 --nostart -o codycart.bin codycart.asm
;

ADDR = $3000 ; The actual loading address of the program
SCRRAM = $C400 ; The default location of screen memory

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

482

A simple assembly language program to store in an
EEPROM.

You can assemble this program just like the ones the
previous chapter. Assembled into a binary file, the
program is only 26 bytes long. It can be represented
as a sequence of 26 numbers (0, 48, 21, 48, 162, 0, 189,
16, 48, 240, 6, 157, 0, 196, 232, 128, 245, 76, 13, 48, 67,
111, 100, 121, 33, and 0). We'll rely on this knowledge
to program it into the EEPROM chip for our example
cartridge.

WRITING TO THE EEPROM

Now that you have a program to put into the
EEPROM, you'll need a way to actually write it.
Another Cody BASIC program very similar to the
previous one can do this. Again, it's only an example,
but it can write the values from DATA statements into
the EEPROM's memory over SPI.

There are some details that need to be covered for
this to work. In particular, the 25LC1024 is broken up
into a sequence of 256-byte pages. While this is good

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

;
; The actual program.
;

.LOGICAL ADDR ; The actual program gets loaded at ADDR

MAIN LDX #0 ; The program starts running from here

_LOOP LDA TEXT,X ; Copies TEXT into screen memory
 BEQ _DONE

 STA SCRRAM,X

 INX
 BRA _LOOP

_DONE JMP _DONE ; Loops forever

TEXT .NULL "Cody!" ; TEXT as a null-terminated string

LAST ; End of the entire program

.ENDLOGICAL

483

for the EEPROM (because write cycles are limited to
certain subsets of the whole memory), it's less good
for us. It means that we can't just start at memory
address 0 and count our way through as we write to
the chip. Instead, we have to stop our current write
transaction and begin a new one at the end of each
page.

Another complication is that the chip itself can take
some time to write a byte. We don't need to worry
about this in Cody BASIC because our program runs so
slow, but in a better EEPROM writer, you would want to
check the chip's internal registers to ensure the write
cycle had completed.

On the 25LC1024, writes require two steps. We first
send the WREN (write enable) command (decimal 6),
followed by the actual WRITE (decimal 2) with the
starting address to write to. We then just loop over our
data until we reach the end, making sure that we stop
the current transaction and start over at the end of
each page.

10 REM WRITE EEPROM DATA
20 A=0
30 REM BEGIN NEW PAGE
40 GOSUB 1000
50 O=6
60 GOSUB 2000
70 GOSUB 3000
80 REM WRITE OPERATION
90 GOSUB 1000
100 O=2
110 GOSUB 2000
120 O=0
130 GOSUB 2000
140 O=A/256
150 GOSUB 2000
160 O=AND(A,255)

484

A program that writes data into a 25LC1024 SPI
EEPROM.

170 GOSUB 2000
180 READ N
190 IF N<0 THEN GOTO 260
200 O=N
210 GOSUB 2000
220 A=A+1
230 IF AND(A,255)>0 THEN GOTO 180
240 GOSUB 3000
250 GOTO 30
260 REM END OF DATA
270 GOSUB 3000
280 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN
4000 REM DATA TO PROGRAM
4010 DATA 0,48,21,48,162,0,189,16
4020 DATA 48,240,6,157,0,196,232,128
4030 DATA 245,76,13,48,67,111,100,121
4040 DATA 33,0,-1

485

READING THE EEPROM

Now that we've programmed the cartridge we
should verify its contents. Fortunately we have another
Cody BASIC program that reads from the cartridge
instead of writing to it. it's very similar to the previous
two SPI programs, particularly with respect to the
various subroutines used for the actual SPI operations.
Where it differs it that it's set up to run the READ
command (decimal 3), which reads the data stored in
the EEPROM. The READ operation is simpler as we
only need to provide the starting address (0 in our
case) and then keep reading data one byte at a time.

10 REM READ EEPROM DATA
20 A=0
30 GOSUB 1000
40 O=3
50 GOSUB 2000
60 FOR N=1 TO 3
70 O=0
80 GOSUB 2000
90 NEXT
100 FOR N=1 TO 16
110 GOSUB 2000
120 PRINT A,TAB(10),I
130 A=A+1
140 NEXT
150 PRINT
160 PRINT "MORE (Y/N)";
170 INPUT S$
180 IF S$="Y" THEN GOTO 100
190 GOSUB 3000
200 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN

486

A program that reads the stored data from a 25LC1024
SPI EEPROM.

If you run the program you should see the same
numbers that were in the DATA statements in the
previous program:

2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN

487

Reading the first bytes from the EEPROM.

BOOTING THE CARTRIDGE

Because the cartridge has been programmed, you
can also boot from it and run the program it contains.
Turn off the Cody Computer and reaffix jumper JP3 so
that the cartridge detection is enabled on the cartridge
side. Then power the Cody Computer back on.

If everything works as expected, the words "Cody"
will appear at the top of the screen. It's as simple as
that.

When you're done, shut off the Cody Computer and
disconnect JP3, placing the header back on a single pin
so that it doesn't get lost. This way the cartridge is
ready to be programmed next time.

RUN
0 0
1 48
2 21
3 48
4 162
5 0
6 189
7 16
8 48
9 240
10 6
11 157
12 0
13 196
14 232
15 128

MORE (Y/N)?

488

A PROGRAM FOR PROGRAMMING

It would be possible to write a cartridge
programmer in Cody BASIC, but it would also run
slower than you would probably prefer. Like we talked
about in earlier chapters, you could write parts of your
program in assembly language and call them from
BASIC to speed them up. But it's probably better to
just write a dedicated assembly language program in
this case, so in this section that's what we're going to
do.

What will our program need to do? Once loaded,
the user must be able to send a binary file to the Cody
Computer. Because our serial communications don't
have any checks on them, we'll actually require the file
to be sent twice. We can verify the contents are the
same on both transmissions before proceeding. After
that we'll want to program the SPI EEPROM with the
data, then read back from the SPI EEPROM to make
sure everything was copied over correctly.

We already know how to program SPI from the
previous section and the provided Cody BASIC
examples. We also have code in the Cody BASIC
interpreter itself that can handle SPI communications
so that cartridges can be loaded. In the chapter on
assembly language, we wrote an assembly language
program that received a binary file over the UART, in
that case to play a SID file. So you've probably seen all
the parts, just not assembled in quite this way.

489

THE CODYPROG PROGRAM

Like our other assembly language programs, this
one starts out with a bunch of definitions that we get
out of the way in a hurry. Many of them, such as those
for screen memory addresses, 65C22 VIA addresses,
and UART addresses, have been used in other
programs earlier in the book.

Some common definitions at the start of the program.

The zero page variables we use are very similar to
those in other programs. We also have some variables
for a pointer, a top pointer, and a length of the
program we're going to burn into the cartridge. Our
SPI routines also need a couple of temporary variables
we'll define here.

ADDR = $0300 ; The actual loading address of the program

SCRRAM = $C400 ; Screen memory base address

UART1_BASE = $D480 ; Register addresses for UART 1
UART1_CNTL = UART1_BASE+0
UART1_CMND = UART1_BASE+1
UART1_STAT = UART1_BASE+2
UART1_RXHD = UART1_BASE+4
UART1_RXTL = UART1_BASE+5
UART1_TXHD = UART1_BASE+6
UART1_TXTL = UART1_BASE+7
UART1_RXBF = UART1_BASE+8
UART1_TXBF = UART1_BASE+16

VIA_BASE = $9F00 ; VIA base address and register locations
VIA_IORB = VIA_BASE+$0
VIA_IORA = VIA_BASE+$1
VIA_DDRB = VIA_BASE+$2
VIA_DDRA = VIA_BASE+$3
VIA_T1CL = VIA_BASE+$4
VIA_T1CH = VIA_BASE+$5
VIA_SR = VIA_BASE+$A
VIA_ACR = VIA_BASE+$B
VIA_PCR = VIA_BASE+$C
VIA_IFR = VIA_BASE+$D
VIA_IER = VIA_BASE+$E

STRPTR = $D0 ; Pointer to string (2 bytes)
SCRPTR = $D2 ; Pointer to screen (2 bytes)
PRGPTR = $D4 ; Pointer to the start of the program data
PRGTOP = $D6 ; Pointer to the end of the program data
PRGLEN = $D8 ; Length of the program in memory

490

Zero-page variables used by the program.

We also define the start of our buffer for the binary
data at $1000. Other new definitions include the pins
we'll use to talk to the SPI EEPROM inside the
cartridge. The expansion port pins we're interested in
are wired to 65C22 VIA port B. These constants define
the bits that correspond to each pin in its register.

Other constants required by the program.

Our code contains the same preamble as the other
assembly language programs:

The program's header containing the start and end
addresses.

The MAIN routine is very similar to the CodySID
program's main routine. It has fewer things to do and
less to initialize, but the overall pattern is similar. We
initialize some variables, draw the screen, and then

KEYROW0 = $DA ; Keyboard row 0
KEYROW1 = $DB ; Keyboard row 1
KEYROW2 = $DC ; Keyboard row 2
KEYROW3 = $DD ; Keyboard row 3
KEYROW4 = $DE ; Keyboard row 4
KEYROW5 = $DF ; Keyboard row 5

SPIINP = $E0 ; SPI input byte
SPIOUT = $E1 ; SPI output byte

PRGMEM = $1000 ; Start of the program to burn into the EEPROM

CART_CLK = $01 ; Bit masks for 65C22 port B cartridge pins
CART_MOSI = $02
CART_MISO = $04
CART_CS = $08
CART_SIZE = $10

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL ADDR ; The actual program gets loaded at ADDR

491

scan the keyboard for menu item selections. If a menu
item is selected, we branch to that command and call
the appropriate routine.

The actual start of the program.

The KEYSCAN routine is also very similar. Again, we
don't do any keyboard debouncing because for our
particular use case, we don't need it. For general-
purpose input, however, it would be a necessity.

;
; MAIN
;
; Main loop of the programmer. Responsible for initialization, information display,
; and menu selection.
;
MAIN STZ PRGLEN ; Clear program length
 STZ PRGLEN+1

 JSR SHOWSCRN

_LOOP JSR KEYSCAN ; Scan the keyboard

 LDA KEYROW0 ; Pressed Q for quit?
 AND #%00001
 BNE _QUIT

 LDA KEYROW1 ; Pressed L for load?
 AND #%10000
 BNE _LOAD

 LDA KEYROW5 ; Pressed P for program?
 AND #%10000
 BNE _PROG

 BRA _LOOP ; Repeat main loop

_QUIT RTS ; Return to BASIC

_LOAD JSR CMDLOAD ; Run the load command
 BRA _LOOP

_PROG JSR CMDPROG ; Run the program command
 BRA _LOOP

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN PHA ; Preserve registers
 PHX

 STZ VIA_IORA ; Start at the first row and first key of the keyboard
 LDX #0

_LOOP LDA VIA_IORA ; Read the keys for the current row from the VIA port
 EOR #$FF
 LSR A
 LSR A
 LSR A

492

The keyboard-scanning routine.

The menu commands are significantly simpler than
in the SID player, and nearly all of the operations are
moved into subroutines closer to the action. CMDLOAD
loads and verifies the binary file coming in over the
serial link. CMDPROG programs the SPI EEPROM and
reads its data back for verification.

Routines for the menu commands.

The LOADBIN routine is very similar to the SID
player's LOADDATA routine. It starts at the beginning
of the memory buffer and waits for input data. Once a

 STA KEYROW0,X

 INC VIA_IORA ; Move on to the next keyboard row
 INX

 CPX #6 ; Do we have any rows remaining to scan?
 BNE _LOOP

 PLX ; Restore registers
 PLA

 RTS

;
; CMDLOAD
;
; Implements the menu option to load a binary file over the UART connection.
;
CMDLOAD JSR SHOWSCRN ; Clear screen

 JSR UARTON ; Receive the binary file
 JSR LOADBIN
 JSR UARTOFF

 JSR SHOWSCRN ; Redraw screen with file length

 JSR UARTON ; Verify the binary file
 JSR VERIBIN
 JSR UARTOFF

 RTS ; All done

;
; CMDPROG
;
; Implements the menu option to program the SPI EEPROM on the cartridge.
;
CMDPROG JSR SHOWSCRN ; Clear screen

 JSR PROGCART ; Program the cartridge

 JSR VERICART ; Verify the cartridge contents

 RTS ; All done

493

byte has been received, it enters a loop and continues
to read bytes until a timeout is exceeded. Under
normal operations the timeout would indicate the end
of the incoming file.

LOADBIN loads a binary file over the UART.

;
; LOADBIN
;
; Loads a binary file into memory.
;
LOADBIN LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM
 STA PRGPTR+1

 LDX #MSG_WAITBINA ; Display message about waiting for data
 JSR SHOWSTAT

_READ1 JSR UARTGET ; Read the first byte
 BCC _READ1

 JSR _SAVE ; Save it to memory

 LDX #MSG_RECVDATA ; Display message about receiving data
 JSR SHOWSTAT

 LDX #$FF ; Timeout counter

_READ2 DEX ; Wait for byte with timeout
 BEQ _DONE

 JSR UARTGET
 BCC _READ2

 JSR _SAVE ; Save data

 LDX #$FF ; Reset counter
 BRA _READ2

_DONE SEC ; Calculate program length

 LDA PRGPTR+0
 SBC #<PRGMEM
 STA PRGLEN+0

 LDA PRGPTR+1
 SBC #>PRGMEM
 STA PRGLEN+1

 LDA PRGPTR+0 ; Update end of program
 STA PRGTOP+0

 LDA PRGPTR+1
 STA PRGTOP+1

 RTS

_SAVE STA (PRGPTR) ; Store data

 INC PRGPTR+0 ; Increment address
 BNE _NEXT
 INC PRGPTR+1

_NEXT RTS

494

Similar to LOADBIN is the VERIBIN routine. This
routine verifies the content in the memory buffer is the
same as the content coming in over the UART. In this
situation, instead of storing each byte, we compare it
with the matching byte we already have to make sure
they're equal. Once we've come to the end of the file,
we also have to make sure we read the same number
of bytes both times.

;
; VERIBIN
;
; Verifies the binary file in memory.
;
VERIBIN LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM
 STA PRGPTR+1

 LDX #MSG_WAITREPE ; Display message about waiting for data
 JSR SHOWSTAT

_READ1 JSR UARTGET ; Read the first byte
 BCC _READ1

 JSR _VERIFY ; Check the byte against the memory
 BNE _FAILED

 LDX #MSG_VERIDATA ; Display message about verifying data
 JSR SHOWSTAT

 LDX #$FF ; Timeout counter

_READ2 DEX ; Wait for byte with timeout
 BEQ _DONE
 JSR UARTGET
 BCC _READ2

 LDX #$FF ; Reset counter

 JSR _VERIFY ; Check the byte
 BNE _FAILED

 BRA _READ2

_DONE LDA PRGPTR+0 ; Verify program length was the same
 CMP PRGTOP+0
 BNE _FAILED

 LDA PRGPTR+1
 CMP PRGTOP+1
 BNE _FAILED

 LDX #MSG_VERIFYOK ; Update status message
 JSR SHOWSTAT

 RTS

_VERIFY CMP (PRGPTR) ; Compare bytes
 PHP

 INC PRGPTR+0 ; Increment address
 BNE _NEXT
 INC PRGPTR+1

495

The VERIBIN routine verifies the program in memory.

Once the program has been loaded the remaining
task is to write the program into the EEPROM. The
PROGCART routine takes care of this, and it's actually
somewhat complicated. It has to send the instructions
to enable writing to the EEPROM, then begin a second
SPI transaction with the actual data and its start
address in the EEPROM.

There are some complications here. One is that
cartridges can either be small (64 kilobytes or less) or
large (greater than 64 kilobytes). Small cartridges
only need two bytes for an address but large
cartridges use three bytes. We check the size pin on
the expansion port to see what kind of cartridge the
programmer is set up for.

Another complication comes from a limitation in the
SPI EEPROM's writing protocol. Because of the
EEPROM's design, we have to start a new write
transaction on each 256-byte page. Because our
memory buffer is page-aligned, every time we wrap to
another page, we also close the current write
transaction and begin a new one. Between them we
must wait for the EEPROM to finish writing our data, so
we poll the EEPROM's status register in between.

_NEXT PLP ; Restore flags and return
 RTS

_FAILED STZ PRGLEN+0 ; Clear program length (bad file?)
 STZ PRGLEN+1

 LDX #MSG_VERIFYBAD ; Update status message
 JSR SHOWSTAT

 RTS ; All done

;
; PROGCART
;
; Writes the program in memory to the SPI EEPROM on the cartridge.
;

496

PROGCART LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM
 STA PRGPTR+1

 LDX #MSG_PROGDATA ; Display message about programming data
 JSR SHOWSTAT

 JSR _BEGIN ; Begin initial SPI transaction

_LOOP LDA PRGPTR+0 ; Ensure we're not at the top of the data
 CMP PRGTOP+0
 BNE _CONT

 LDA PRGPTR+1
 CMP PRGTOP+1
 BNE _CONT

 JSR _END ; Done programming

 LDX #MSG_CLEAR ; Clear status message
 JSR SHOWSTAT

 RTS

_CONT LDA (PRGPTR) ; Send the next byte to the cartridge
 JSR CARTXFER

 INC PRGPTR+0 ; Increment address
 BNE _LOOP
 INC PRGPTR+1

 JSR _END ; New page, need to start new transaction
 JSR _BEGIN

 BRA _LOOP

_BEGIN JSR CARTON ; Begin SPI transaction for write enable

 LDA #6 ; Write enable command
 JSR CARTXFER

 JSR CARTOFF ; End SPI transction for write enable

 JSR CARTON ; Begin SPI transaction for writing data

 LDA #2 ; Write starting address command
 JSR CARTXFER

 JSR CARTSIZE ; Check cartridge size
 BEQ _ADDR

 LDA #0 ; Write address highest byte, greater than 64K only
 JSR CARTXFER

_ADDR SEC ; Write address high byte
 LDA PRGPTR+1
 SBC #>PRGMEM
 JSR CARTXFER

 LDA #0 ; Write address low byte
 JSR CARTXFER

 RTS

_END JSR CARTOFF ; End previous transaction

 JSR CARTON ; New transaction to read status register

_WAIT LDA #5 ; Read status register command
 JSR CARTXFER

 LDA #0 ; Read the status register
 JSR CARTXFER

 AND #$01 ; Wait until previous write is completed

497

PROGCART handles SPI EEPROM programming at a
high level.

We also want to make sure there weren't any
glitches when we wrote to the EEPROM, so when we're
done, we use the VERICART routine to check it. A
simpler form of the PROGCART routine, it reads the
data back from the EEPROM and compares each byte
to the contents in the memory buffer.

 BNE _WAIT

 JSR CARTOFF ; End transaction and return

 RTS

;
; VERICART
;
; Reads the SPI EEPROM and compares it to the program in memory.
;
VERICART LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM
 STA PRGPTR+1

 LDX #MSG_VERIDATA ; Display message about verifying data
 JSR SHOWSTAT

 JSR CARTON ; Begin initial SPI transaction

 LDA #3 ; Read command
 JSR CARTXFER

 JSR CARTSIZE ; Check cartridge size
 BEQ _ADDR

 LDA #0 ; Read address highest byte, greater than 64K only
 JSR CARTXFER

_ADDR LDA #0 ; Read address high byte
 JSR CARTXFER

 LDA #0 ; Write address low byte
 JSR CARTXFER

_LOOP LDA PRGPTR+0 ; Ensure we're not at the top of the data
 CMP PRGTOP+0
 BNE _CONT

 LDA PRGPTR+1
 CMP PRGTOP+1
 BNE _CONT

 JSR CARTOFF ; Done reading

 LDX #MSG_VERIFYOK ; Verify passed
 JSR SHOWSTAT

 RTS

_CONT LDA #0 ; Read the next byte from the cartridge
 JSR CARTXFER

498

The VERICART routine checks the program contents
against the EEPROM.

While loading data or programming cartridges, we
want to update the current status message on the
screen. The SHOWSTAT routine lets us redraw just
that part of the screen without affecting anything else.

A simple routine to display a status message by
number.

A larger routine, SHOWSCRN clears the entire
screen and draws the menu. This is performed far less
frequently, only at startup and at particular stopping
points in the program.

 CMP (PRGPTR) ; Compare the bytes to verify
 BNE _FAILED

 INC PRGPTR+0 ; Increment address
 BNE _LOOP
 INC PRGPTR+1
 BRA _LOOP

_FAILED JSR CARTOFF ; Turn off SPI

 LDX #MSG_VERIFYBAD ; Display verification failed message
 JSR SHOWSTAT

 RTS

;
; SHOWSTAT
;
; Shows a message in the status bar at the bottom of the screen.
; The message number should be in the X register.
;
SHOWSTAT PHX ; Preserve message number

 LDX #0 ; Clear status bar
 LDY #11
 JSR MOVESCRN

 LDX #MSG_CLEAR
 JSR PUTMSG

 LDX #0 ; Print message
 LDY #11
 JSR MOVESCRN

 PLX
 JSR PUTMSG

 RTS

;

499

A rather long SHOWSCRN draws most of the user
interface.

The underyling UART routines for loading binary
files are identical to those in the SID player example in

; SHOWSCRN
;
; Shows the main screen.
;
SHOWSCRN JSR CLRSCRN

 LDX #0
 LDY #0
 JSR MOVESCRN

 LDX #MSG_CODYPROG
 JSR PUTMSG

 LDX #0
 LDY #1
 JSR MOVESCRN

 LDX #MSG_SUBTITLE
 JSR PUTMSG

 LDX #0
 LDY #3
 JSR MOVESCRN

 LDX #MSG_LENGTH
 JSR PUTMSG

 LDX #9
 LDY #3
 JSR MOVESCRN

 LDA PRGLEN+1
 JSR PUTHEX

 LDX #11
 LDY #3
 JSR MOVESCRN

 LDA PRGLEN+0
 JSR PUTHEX

 LDX #0
 LDY #5
 JSR MOVESCRN

 LDX #MSG_LOADMENU
 JSR PUTMSG

 LDX #0
 LDY #6
 JSR MOVESCRN

 LDX #MSG_PROGMENU
 JSR PUTMSG

 LDX #0
 LDY #7
 JSR MOVESCRN

 LDX #MSG_QUITMENU
 JSR PUTMSG

 RTS

500

the previous chapter. The UARTON routine is called
before beginning a UART operation.

UARTON turns on UART 1.

Its companion routine, UARTOFF, turns off the UART
at the end of a read operation.

UARTOFF shuts off UART 1.

Reading from the UART is handled by the UARTGET
routine. It checks to see if a byte is in the receive
buffer. If not, it fails fast, but if there is, it reads the

;
; UARTON
;
; Turns on UART 1.
;
UARTON PHA
 PHY

_INIT STZ UART1_RXTL ; Clear out buffer registers
 STZ UART1_TXHD

 LDA #$0F ; Set baud rate to 19200
 STA UART1_CNTL

 LDA #01 ; Enable UART
 STA UART1_CMND

_WAIT LDA UART1_STAT ; Wait for UART to start up
 AND #$40
 BEQ _WAIT

 PLY
 PLA

 RTS ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF PHA

 STZ UART1_CMND ; Clear bit to stop UART

_WAIT LDA UART1_STAT ; Wait for UART to stop
 AND #$40
 BNE _WAIT

 PLA

 RTS

501

byte and returns it in the accumulator. The carry flag is
used to indicate if a byte was read.

UARTGET polls the UART and returns a byte if
available.

SPI routines are contained in the various CART
routines that talk to the cartridge on the expansion
port. Because of the simple nature of the SPI protocol,
these routines are the same as those used to read a
cartridge in Cody BASIC. We just use them differently.

The only new routine is the CARTSIZE routine that
tests whether the cartridge is small or large. It does so
by examining the value of the matching I/O pin.

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET PHY

 LDA UART1_STAT ; Test no error bits set in the status register
 BIT #$06
 BNE _ERR

 LDA UART1_RXTL ; Compare current tail to current head position
 CMP UART1_RXHD
 BEQ _EMPTY

 TAY ; Read the next character from the buffer
 LDA UART1_RXBF,Y

 PHA ; Increment the receiver tail position
 INY
 TYA
 AND #$07
 STA UART1_RXTL
 PLA

 PLY
 SEC ; Set carry to indicate a character was read
 RTS

_EMPTY PLY
 CLC ; Clear carry to indicate no character read
 RTS

_ERR LDX #MSG_ERROR ; UART error, display error status message
 JSR SHOWSTAT

_DONE JMP _DONE

;
; CARTSIZE
;
; Checks the cartridge size as small (64K or less) or large (greater than 64K).

502

A simple routine to check a cartridge's size before
writing.

The CARTON routine begins an SPI transaction by
setting the appropriate pins on the expansion port.
Most importantly, it brings the SPI chip select pin from
high to low to initiate the transaction itself.

CARTON begins an SPI transaction.

CARTOFF brings the SPI chip select high to end the
current transaction.

CARTOFF ends the current SPI transaction.

The CARTXFER routine is more complicated and
handles the actual exchange of data. A byte is shifted

; Cartridges greater than 64K require an additional address byte.
;
CARTSIZE LDA VIA_IORB
 AND #CART_SIZE

 RTS

;
; CARTON
;
; Starts an SPI transation on the cartridge pins for the expansion port. The proper
; directions for 65C22 port B are set, outputs are set, and then the chip select is
; brought low.
;
; Calls to CARTON should be matched by a call to CARTOFF. The presence of a cartridge
; should be verified by a prior call to CARTCHECK.
;
CARTON LDA #(CART_CLK | CART_MOSI | CART_CS) ; Set port B directions
 STA VIA_DDRB

 LDA #CART_CS ; Start with SPI select high
 STA VIA_IORB

 LDA #0 ; Bring select low to begin a cycle
 STA VIA_IORB

 RTS

;
; CARTOFF
;
; Brings the chip select high at the end of an SPI transaction with a cartridge.
;
CARTOFF LDA #CART_CS ; Bring select high to end the transaction
 STA VIA_IORB

 RTS

503

out over the SPI pins while another byte is shifted in at
the same time. Rather than use the 65C22 VIA's shift
register (which has complications that we won't cover
here), we bit-bang the port directly. SPI data is sent
with the highest bit first, so we shift ot the left and look
at our carry bits.

The CARTXFER sends and receives a single SPI byte.

;
; CARTXFER
;
; Transfers a single byte during an SPI transaction with a cartridge. The value
; to send should be stored in the accumulator, and it will be replaced by the
; value received.
;
CARTXFER PHX

 STA SPIOUT

 STZ SPIINP

 LDX #8 ; 8 bits to read

_LOOP STZ VIA_IORB ; Bring the clock low

 LDA #0 ; Start with no data

 ROL SPIOUT ; Get output bit

 BCC _SEND

 ORA #CART_MOSI ; Output bit was a 1

_SEND STA VIA_IORB ; Put the bit on MOSI

 ORA #CART_CLK ; Bring the SPI clock high
 STA VIA_IORB

 ROL SPIINP ; Rotate SPI input for next bit

 LDA VIA_IORB ; Read the incoming MISO
 AND #CART_MISO

 BEQ _NEXT

 LDA SPIINP
 ORA #1
 STA SPIINP

_NEXT DEX ; Next loop (if any remain)
 BNE _LOOP

 PLX

 LDA SPIINP

 RTS

504

The other routines are copied verbatim from earlier
examples. MOVESCRN moves the current screen
pointer to a particular row and column.

A routine to position the next output on the screen.

Another routine you've seen before, CLRSCRN,
clears the entire screen by filling it with whitespace.

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 INY ; Increment pointer for each row
_LOOPY CLC
 LDA SCRPTR+0
 ADC #40
 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1
 DEY
 BNE _LOOPY

 CLC ; Add position on column
 TXA
 ADC SCRPTR+0
 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1

 RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 LDA #20 ; Clear screen by filling with whitespaces

 LDY #25 ; Loop 25 times on Y

_LOOPY LDX #40 ; Loop 40 times on X for each Y

_LOOPX STA (SCRPTR) ; Store zero

 INC SCRPTR+0 ; Increment screen position
 BNE _NEXT
 INC SCRPTR+1

_NEXT DEX ; Next X
 BNE _LOOPX

505

The screen-clearing routine.

The PUTMSG routine puts a string identified by a
message number onto the screen starting at the
current location.

PUTMSG prints a message on the screen.

The PUTCHR routine is used internally to copy each
individual character in the message.

PUTCHR plots the individual characters.

 DEY ; Next Y
 BNE _LOOPY

 RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG PHA
 PHY

 LDA MSGS_L,X ; Load the pointer for the string to print
 STA STRPTR+0
 LDA MSGS_H,X
 STA STRPTR+1

 LDY #0

_LOOP LDA (STRPTR),Y ; Read the next character (check for null)
 BEQ _DONE

 JSR PUTCHR ; Copy the character and move to next
 INY

 BRA _LOOP ; Next loop

_DONE PLY
 PLA

 RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR STA (SCRPTR) ; Copy the character

 INC SCRPTR+0 ; Increment screen position
 BNE _DONE
 INC SCRPTR+1

_DONE RTS

506

The PUTHEX routine plots the byte in the
accumulator as two hex digits. In the SID player this
routine was used a lot to show the current register
values. In this program we only need it to display the
program's length as a hex value for sanity checking.

PUTHEX prints a byte as two hex digits.

The message table in this program is different, so
our constants below are different.

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;
PUTHEX PHA
 PHX
 TAX
 JSR HEXTOASCII
 PHA
 TXA
 LSR A
 LSR A
 LSR A
 LSR A
 JSR HEXTOASCII
 PHA
 PLA
 JSR PUTCHR
 PLA
 JSR PUTCHR
 PLX
 PLA
 RTS
HEXTOASCII AND #$F
 CLC
 ADC #48
 CMP #58
 BCC _DONE
 ADC #6
_DONE RTS

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYPROG = 0
MSG_SUBTITLE = 1
MSG_LOADMENU = 2
MSG_PROGMENU = 3
MSG_QUITMENU = 4
MSG_WAITBINA = 5
MSG_WAITREPE = 6
MSG_RECVDATA = 7
MSG_PROGDATA = 8
MSG_VERIDATA = 9
MSG_VERIFYOK = 10
MSG_VERIFYBAD = 11
MSG_LENGTH = 12
MSG_CLEAR = 13

507

The constants for the messages in the string table.

The actual string contents of the messages, of
course, are also different. The text relates to the menu
options and status updates involved in programming
the SPI EEPROM in the cartridge.

The string literals for the program's messages.

The message table consists of the string addresses
split into low and high bytes. As in the other programs,
this allows a quick lookup of the string using an index.

MSG_ERROR = 14

;
; The strings displayed by the program.
;
STR_CODYPROG .NULL "CodyProg"
STR_SUBTITLE .NULL "The Cody Cartridge Programmer"
STR_LOADMENU .NULL "(L)oad binary"
STR_PROGMENU .NULL "(P)rogram cartridge"
STR_QUITMENU .NULL "(Q)uit"
STR_WAITBINA .NULL "Waiting for binary data..."
STR_WAITREPE .NULL "Waiting for repeat data to verify..."
STR_RECVDATA .NULL "Receiving data..."
STR_PROGDATA .NULL "Programming data..."
STR_VERIDATA .NULL "Verifying data..."
STR_VERIFYOK .NULL "Verify OK."
STR_VERIFYBAD .NULL "Verify FAILED."
STR_LENGTH .NULL "Length: $"
STR_CLEAR .NULL " "
STR_ERROR .NULL "ERROR"

;
; Low bytes of the string table addresses.
;
MSGS_L
 .BYTE <STR_CODYPROG
 .BYTE <STR_SUBTITLE
 .BYTE <STR_LOADMENU
 .BYTE <STR_PROGMENU
 .BYTE <STR_QUITMENU
 .BYTE <STR_WAITBINA
 .BYTE <STR_WAITREPE
 .BYTE <STR_RECVDATA
 .BYTE <STR_PROGDATA
 .BYTE <STR_VERIDATA
 .BYTE <STR_VERIFYOK
 .BYTE <STR_VERIFYBAD
 .BYTE <STR_LENGTH
 .BYTE <STR_CLEAR
 .BYTE <STR_ERROR

;
; High bytes of the string table addresses.
;
MSGS_H
 .BYTE >STR_CODYPROG
 .BYTE >STR_SUBTITLE

508

The low and high portions of the strings' addresses.

The program ends with the same boilerplate as the
others.

The end of the program.

USING THE PROGRAMMER

Build the programmer utility by running it through
64tass assembler on your PC. Just run 64tass --
mw65c02 --nostart -o codyprog.bin codyprog.asm.
These are the same steps as in the previous chapter for
assembly language programs.

Once you've done that, turn off the Cody Computer
and plug the cartridge programmer into the expansion
slot. Turn the Cody Computer back on and load the
programmer utility using the LOAD 1,1 command.
Remember that the second argument is also a 1
because the program is a binary and not a BASIC
program.

Once loaded we can begin programming a cartridge.
Press the L key to load a binary to the programmer,
then send the codybros.bin binary file you built in the
previous chapter. You will actually be prompted for the

 .BYTE >STR_LOADMENU
 .BYTE >STR_PROGMENU
 .BYTE >STR_QUITMENU
 .BYTE >STR_WAITBINA
 .BYTE >STR_WAITREPE
 .BYTE >STR_RECVDATA
 .BYTE >STR_PROGDATA
 .BYTE >STR_VERIDATA
 .BYTE >STR_VERIFYOK
 .BYTE >STR_VERIFYBAD
 .BYTE >STR_LENGTH
 .BYTE >STR_CLEAR
 .BYTE >STR_ERROR

LAST ; End of the entire program

.ENDLOGICAL

509

file twice, first for the load and the second time to
verify the contents are identical.

The programmer program running and waiting for a
binary file.

Once the binary is verified, press the P key to
program the cartridge. This will begin the
programming of the SPI EEPROM inserted into the DIP
socket on the programmer board. It will take a few
moments and then read the contents back to verify
that no errors occurred while programming.

Once done you can test out the cartridge. Turn off
the Cody Computer and reconnect JP3, the cartridge
detect, on the cartridge programmer board. Turn the
Cody Computer back on and watch the program load
from the cartridge.

510

The Cody Bros example from the previous chapter now
running as a cartridge.

CARTRIDGE CASE ASSEMBLY

Cartridges, particularly the more permanent kind,
can be built into a case. STL files are provided for a
case that will fit the cartridge PCB. Assembly is
relatively straightforward.

When building a cartridge PCB for use as an actual
cartridge rather than as a programmer, it's better if
you solder actual jumpers on the board rather than
using header pins and blocks. You would make the
same connections the jumper blocks would when the
programmer is used in cartridge mode (including the
JP3 cartridge-detect), but make them in a more
permanent fashion. However, even the PCB built as a
programmer will (barely) fit into the provided
cartridge case design.

511

For this step you'll need the following:

1 completed cartridge PCB (see above notes)
1 cartridge top (CartridgeTop.stl)
1 cartridge bottom (CartridgeBottom.stl)
1 4 M3 x 10mm self-tapping screw, round/pan
head (US #4 x 3/8")
Screwdriver

The cartridge halves are intended to be printed with
the outside parts against the print bed. For the top half
of the cartridge, it will require some supports for the
recessed label area. Removing these supports
shouldn't be too difficult, and with some care, any
damage from the removal should be hidden under the
label area.

To begin ensure that the finished PCB fits into the
cartridge bottom. The PCB should fit regardless of
whether it was built as a cartridge or a programmer.
Sanding may be required.

•
•
•
•

•

512

The cartridge case parts with board inserted. For a true
"cartridge" the PCB should be built as an actual
cartridge rather than a programmer, but it should fit
mechanically either way.

With the board in place, pop the top and bottom
halves of the cartridge together. Some sanding may
again be required to ensure a snug fit. Take the M3
screw and screw it into the cartridge through the back.

513

Inserting the M3 screw that holds the cartridge
together.

This should affix the two halves together as well as
secure the board. A recessed area on the cartridge is
suitable for affixing a permanent label. Additional
sanding or post-processing may be required to ensure
a smooth surface for affixing the label.

514

The finished cartridge waiting for a label.

515

Afterword

ONE GOOD LITTLE DUDE

He wasn't much of a dog, but he was a great little
kid. A few memories of the real Cody as we knew him.

This Used to Be the Future. Cody gazing at relics of the
space shuttle program. Pima Air and Space Museum,
Tucson, Arizona.

518

Model Behavior. Studying a wooden model of the
ESA's Jules Verne as docked with Zvezda. Ripley's
Believe-It-or-Not, Saint Augustine, Florida.

519

Star Trekkin'. Science Officer Cody conducting a
routine planetary survey near Kodachrome Basin State
Park. Devil's Garden, Utah.

520

Digitize Me, Daddy! Cody retracing the steps of Galaxy
Quest. Goblin Valley State Park, Utah.

521

Preparing for Launch. Cody watching as I fumble
around in a bag for a model rocket engine and igniter.
Bonneville Salt Flats, Utah.

522

Artiste. Cody and his mom taking a break from the
Commodore Amiga's Personal Paint. Folkston, Georgia.

523

Just a Wee Calculator. Cody with an early version of
the circuit that would grow into the Cody Computer.
Folkston, Georgia.

524

Design Review. Cody posing with a late revision of the
Cody Computer on a breadboard (literally). Mesa,
Arizona.

525

Shopping Trip. Cody and his mom in the
semiconductor aisle of a now-defunct Fry's Electronics.
Phoenix, Arizona.

526

Duplication. Cody watching our new Creality Ender 3
Pro print a tiny little dog for a test print. Mesa,
Arizona.

527

Appendices

APPENDIX A: MEMORY MAP

The Cody Computer's 64 kilobytes of memory
contains different RAM and ROM regions as well as
several memory-mapped peripherals. This memory
map will help you when designing the layout of your
own programs, particularly in assembly language. You
will need to know the addresses of the various
peripherals whether programming in Cody BASIC or in
assembly language.

Address Description

$0000 65C02 zero page variables

$0100 65C02 stack page

$9F00 65C22 Versatile Interface Adapter (VIA)
registers

$A000 Beginning of Propeller shared memory

$D000 Video Interface Device (VID) registers

$D040 Video Interface Device (VID) control bank

$D060 Video Interface Device (VID) data bank

$D080 Video Interface Device (VID) sprite banks

$D400 Sound Interface Device (SID) registers

$D480 UART 1 registers

$D4A0 UART 2 registers

$E000 Cody BASIC ROM (character set)

$E800 Cody BASIC ROM (BASIC interpreter)

$FFFF End of memory

530

65C02 ZERO PAGE VARIABLES

In Cody BASIC most of the 65C02 zero page is used
by the interpreter. Several of these memory locations
are intended for use by Cody BASIC programs through
the PEEK and POKE operations.

The ISRPTR address is relevant to assembly
language programs that wish to register an interrupt
handler. Cody BASIC already registers an interrupt
handler at this address on startup.

Address Description

$0000 SYS call A register (Cody BASIC)

$0001 SYS call X register (Cody BASIC)

$0002 SYS call Y register (Cody BASIC)

$0008 ISRPTR (2 bytes, assembly)

$000E INPUT prompt character code (Cody
BASIC)

$0010 Keyboard row 0 state (Cody BASIC)

$0011 Keyboard row 1 state (Cody BASIC)

$0012 Keyboard row 2 state (Cody BASIC)

$0013 Keyboard row 3 state (Cody BASIC)

$0014 Keyboard row 4 state (Cody BASIC)

$0015 Keyboard row 5 state (Cody BASIC)

$0016 Joystick 1 state (Cody BASIC)

$0017 Joystick 2 state (Cody BASIC)

$004B Boundary page for program memory
(Cody BASIC)

531

65C22 VERSATILE INTERFACE ADAPTER (VIA)
REGISTERS

The 65C22 is a 6502-family I/O chip currently in
production by the Western Design Center. Aside from
the UARTs implemented by the Propeller, all of the
Cody Computer's input and output is handled by this
chip. It's the modern version of the classic 6522 VIA
used in many vintage computers.

The below table lists the VIA registers as they exist
within the Cody Computer's memory map. Port A is
used internally for keyboard and joystick scanning
while port B is open for use on the expansion port.

For detailed documentation on the chip's functions,
refer to WDC's data sheet.

Address Description

$9F00 Input/output register B

$9F01 Input/output register A

$9F02 Data direction register B

$9F03 Data direction register A

$9F04 Timer 1 latch/counter (low byte)

$9F05 Timer 2 counter (high byte)

$9F06 Timer 1 latch (low byte)

$9F07 Timer 1 latch (high byte)

$9F08 Timer 2 latch/counter (low byte)

$9F09 Timer 2 counter (high byte)

$9F0A Shift register

$9F0B Auxiliary control register

$9F0C Peripheral control register

$9F0D Interrupt flag register

532

Address Description

$9F0E Interrupt enable registr

$9F0F Input/output register A (no handshake)

VIDEO INTERFACE DEVICE (VID) REGISTERS

The Cody VID is a software-implemented video
device built using the Propeller. It is inspired by, but
different from, the VIC-II and its multicolor graphics
mode.

Address Description

$D000 Blanking register (nonzero during
blanking interval)

$D001 Control register

Bit 0 disables screen output.
Bit 1 enables vertical scrolling (24 rows).
Bit 2 enables horizontal scrolling (38 columns).
Bit 3 enables row effects.
Bit 4 enables bitmap mode.

$D002 Color register

Bits 0-3 contain border color.
Bits 4-7 contain color memory location.

$D003 Base register

Bits 0-3 contain character memory location.
Bits 4-7 contain screen memory location.

$D004 Scroll register

•
•
•
•
•

•
•

•
•

533

Address Description

Bits 0-3 contain vertical scroll (0-7).
Bits 4-7 contain horizontal scroll (0-3).

$D005 Screen colors register

Bits 0-3 contain character color 2.
Bits 4-7 contain character color 3.

$D006 Sprite register

Bits 0-3 contain common sprite color.
Bits 4-7 contain current sprite bank.

The Video Interface Device also has two banks
responsible for implementing row effects. A row effect
changes part of the screen for one of the 25 character
rows and replaces the the raster interrupt effects used
on the Commodore 64. One bank controls the effect to
apply while the other bank contains the replacement
value.

Address Description

$D040 Row effect control bank (32 bytes)

Bits 0-4 contain row number.
Bits 5-6 contain destination (see below).
Bit 7 enables the effect.

Destinations can be the following:

00 overrides the base register.

•
•

•
•

•
•

•
•
•

•

534

Address Description

01 overrides the scroll register.
10 overrides the screen register.
11 overrides the sprite register.

$D060 Row effect data bank (32 bytes)

The VID has four different sprite banks that take up
the remainder of the page:

Address Description

$D080 Sprite bank 0

$D0A0 Sprite bank 1

$D0C0 Sprite bank 2

$D0E0 Sprite bank 3

Each entry in a sprite bank is a contiguous group of
four bytes. A single sprite bank has eight sprites, all of
which are set up exactly like the below table.

Offset Description

+0 Sprite x-coordinate (0 to 184)

+1 Sprite y-coordinate (0 to 242)

+2 Sprite colors

Bits 0-3 contain color 1.
Bits 4-7 contain color 2.

+3 Sprite location.

•
•
•

•
•

535

SOUND INTERFACE DEVICE (SID) REGISTERS

The Cody Computer has a sound interface device
based on the Commodore/MOS 6581. It is
implemented within the Propeller chip as a software
emulation. Not all SID features are supported and the
implementation is not an exact SID replacement.
Filters and combined waveforms, among other
features, are not implemented at all.

Refer to Chapter 8, Sound and Music Programming,
for an explanation of the frequency and ADSR values.

Address Description

$D400 Voice 1 frequency value (low byte)

$D401 Voice 1 frequency value (high byte)

$D402 Voice 1 pulse duty cycle (low byte)

$D403 Voice 1 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D404 Voice 1 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 3 oscillator.
Bit 2 enables ring modulation with voice 3.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

•
•

•
•
•
•
•
•
•
•

536

Address Description

$D405 Voice 1 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D406 Voice 1 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D407 Voice 2 frequency value (low byte)

$D408 Voice 2 frequency value (high byte)

$D409 Voice 2 pulse duty cycle (low byte)

$D40A Voice 2 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D40B Voice 2 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 1 oscillator.
Bit 2 enables ring modulation with voice 1.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D40C Voice 2 attack and decay register

Bits 0-3 contain the decay value.

•
•

•
•

•
•

•
•
•
•
•
•
•
•

•

537

Address Description

Bits 4-7 contain the attack value.

$D40D Voice 2 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D40E Voice 3 frequency value (low byte)

$D40F Voice 3 frequency value (high byte)

$D410 Voice 3 pulse duty cycle (low byte)

$D411 Voice 3 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D412 Voice 3 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 2 oscillator.
Bit 2 enables ring modulation with voice 2.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D413 Voice 3 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D414 Voice 1 sustain and release register

•

•
•

•
•

•
•
•
•
•
•
•
•

•
•

538

Address Description

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D415 Reserved

$D416 Reserved

$D417 Reserved

$D418 Volume control

Bits 0-3 contain the global volume.

$D419 Reserved

$D41A Reserved

$D41B Voice 3 oscillator (read)

$D41C Voice 3 envelope (read)

UART 1 REGISTERS

Cody Computer UART 1 is connected to the Prop
Plug port on the back of the computer. As with most
Cody Computer peripherals, it is implemented using
the Propeller. This device is generally used for serial
communications with your PC or for transferring files.
Bit rate options are copied from the 6551 ACIA:

$0 is not supported.
$1 for 50 BPS.
$2 for 75 BPS.
$3 for 110 BPS.
$4 for 135 BPS.
$5 for 150 BPS.
$6 for 300 BPS.

•
•

•

•
•
•
•
•
•
•

539

$7 for 600 BPS.
$8 for 1200 BPS.
$9 for 1800 BPS.
$A for 2400 BPS.
$B for 3600 BPS.
$C for 4800 BPS.
$D for 7200 BPS.
$E for 9600 BPS.
$F for 19200 BPS.

Address Description

$D480 Control register

Bits 0-3 contain the bit rate.

$D481 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes.

$D482 Status register

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

$D483 Reserved

$D484 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

•
•
•
•
•
•
•
•
•

•

•

•
•
•
•
•

•

540

Address Description

$D485 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D486 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D487 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D488 Receive ring buffer (8 bytes)

$D490 Transmit ring buffer (8 bytes)

UART 2 REGISTERS

Cody Computer UART 2 is identical in function to
UART 1. However, UART 2 is connected to the
expansion port.

Address Description

$D4A0 Control register

Bits 0-3 contain the bit rate.

$D4A1 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes.

$D4A2 Status register

•

•

•

•

•

541

Address Description

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

$D4A3 Reserved

$D4A4 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A5 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D4A6 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A7 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A8 Receive ring buffer (8 bytes)

$D4B0 Transmit ring buffer (8 bytes)

•
•
•
•
•

•

•

•

•

542

APPENDIX B: COLOR CODES

The color codes used by the Cody Computer's Video
Interface Device are the same as those from the
Commodore VIC-II chip. The actual colors used are
from the Propeller NTSC palette.

Code (dec) Code (hex) Color

0 $0 Black

1 $1 White

2 $2 Red

3 $3 Cyan

4 $4 Purple

5 $5 Green

6 $6 Blue

7 $7 Yellow

8 $8 Orange

9 $9 Brown

10 $A Light red

11 $B Dark gray

12 $C Gray

13 $D Light green

14 $E Light blue

15 $F Light gray

543

APPENDIX C: CODY BASIC

This appendix contains a brief reference for Cody
BASIC. For more information and examples refer to
Chapter 5: Using Cody BASIC and Chapter 6:
Advanced Cody BASIC.

LINE NUMBERS

All Cody BASIC statements in a program must have
a line number. A handful of statements and commands
can be evaluated immediately at the BASIC prompt,
but this is the exception and not the rule.

COMMENTS

Lines beginning with the REM (remark) statement
will be ignored. Each line incurs a small performance
penalty as the statement's token must be processed
and the rest of the line skipped over.

VARIABLES

Numeric variables are the letters A through Z. Each
variable can store a 16-bit signed integer from -32768
to 32767 inclusive. When used in certain situations,
such as POKE statements, numbers are interpreted as
their unsigned equivalents to address the entire Cody
Computer memory.

A numeric variable is actually the first element in a
numeric array of 128 values. A specific element can be
accessed by indexing with a number or numeric

544

expression, such as A(10). Arrays are declared by
default in Cody BASIC.

String variables are the letters A$ through Z$ (note
the trailing dollar sign character). Each string can store
up to 255 possible characters and a terminating null
character. Strings are declared by default.

Assignment is made using the = operator. Each
assignment must be on its own line and the type of the
expression must match the type of the variable. A
numeric variable must have a numeric expression on
the right side, while a string variable must have a
string expression on the right side instead.

NUMERIC EXPRESSIONS

Supported numeric operators are + (addition), -
(subtraction), * (multiplication) and / (division). Order
of operations is obeyed, with mulitplication and
division occurring before addition and subtraction.

Expressions can be grouped using ((left
parenthesis) and) (right parenthesis). A leading -
(unary minus) can be used to obtain the negative of a
number or expression.

STRING EXPRESSIONS

The only supported operator for strings is +
(concatenation). This operator is only supported in
very limited circumstances involving explicit string
expressions (assignment, PRINT, and the right side of
expressions in IF statements).

545

RELATIONAL EXPRESSIONS

Relational expressions are only used in IF
statements. Supported relational operators are < (less
than), > (greater than), <= (less than or equal), >=
(greater than or equal), = (equal), and <> (not equal).

For numbers a relational expression consists of two
numeric expressions with a relational operator. For
strings a relational expression consists of a string
variable on the left side and a string expression on the
right side.

MATHEMATICAL FUNCTIONS

Several mathematical functions are present in Cody
BASIC.

ABS(n) returns the absolute value of a number.
MOD(m, n) returns the result of m modulo n.
SQR(n) returns the integer square root of a
number.
RND() returns a pseudorandom number.
RND(n) seeds the pseudorandom generator with
a new value.

BITWISE FUNCTIONS

The typical bitwise operations are implemented as
Cody BASIC functions.

AND(m, n) returns the bitwise-and of two
numbers.
OR(m, n) returns the bitwise-or of two numbers.

•
•
•

•
•

•

•

546

XOR(m, n) returns the bitwise exclusive-or of two
numbers.
NOT(n) returns the bitwise negation of a number.

STRING FUNCTIONS RETURNING NUMBERS

Some functions that take a string variable argument
are used in numeric expressions.

ASC(s$) returns the number of the first character
in a string variable.
VAL(s$) parses a number from the start of a
string variable.
LEN(s$) returns the number of characters in a
string variable.

STRING FUNCTIONS RETURNING STRINGS

Other string functions return strings and are used in
string expressions.

CHR$(n,...,n) converts one or more numbers to
string characters.
STR$(n) converts a number to its string
representation.
SUB$(s$,m,n) returns a substring of length n
starting at m.

FORMATTING FUNCTIONS

Two functions can only be used to control
formatting in PRINT statements.

AT(x,y) moves the output to the specified
coordinates.

•

•

•

•

•

•

•

•

•

547

TAB(n) moves the output to a particular tab
column on screen.

OTHER FUNCTIONS

A couple of functions don't fit into a specific
category.

PEEK(n) returns the byte at a specific memory
address.
TI returns the current time count in jiffies (1/60th
of a second).

COMMANDS

Several commands are used to interact with
rudimentary Cody BASIC facilities.

NEW clears the program memory and starts a
new program.
LOAD m,n saves the current program on UART m
and mode n. Use 0 for BASIC programs and 1 for
binary programs.
SAVE n saves the current program on UART n.
RUN runs the current BASIC program starting at
the first line.
LIST lists the program.
LIST m lists the program starting with a
particular line.
LIST m,n lists the program between two line
numbers.

•

•

•

•

•

•
•

•
•

•

548

CONTROL STATEMENTS

Control statements manage the flow through a Cody
BASIC program.

IF r THEN s evaluates statement s if relational
expression r is true.
GOTO n jumps to a particular line in the
program.
GOSUB n calls a particular line with the intention
of RETURNing.
RETURN returns to the line after the last GOSUB.
FOR i=m TO n loops i from m to n with a
matching NEXT.
NEXT starts the next loop with the matching FOR.
END exits the current program.

INPUT AND OUTPUT STATEMENTS

Cody BASIC has several statements for structured
input and output.

INPUT v,...,v reads one-per-line numeric or string
values into one or more variables v.
PRINT prints a blank line.
PRINT e,...,e prints one or more numeric or string
expressions. The statement will move on to the
next line unless ; (semicolon) is at the end.
OPEN m,n redirects future INPUT and PRINT
statements to UART m with bit rate specifier n.
CLOSE closes a UART and directs back to the
keyboard and screen.

•

•

•

•
•

•
•

•

•
•

•

•

549

The most recent keyboard and joystick matrix scans
performed by the BASIC interpreter can be read from
zero page addresses 16 through 23. The input prompt
character can be changed by changing zero page
address 14.

DATA STATEMENTS

Cody BASIC supports a limited form of DATA
statements for literals. Data will be read from each
statement in the program starting at the beginning
and going to the end.

DATA n,..,n declares one or more numeric literals
separated by commas.
READ v,..,v reads one or more literals from DATA
into number variables.
RESTORE moves the data location back to the
beginning of the program.

OTHER STATEMENTS

Some statements don't easily fit into a specific
category.

POKE m,n pokes byte n into memory address m.
SYS n calls address n in assembly language.
Values for registers A, X, and Y can be passed in
the first three zero page variables.

•

•

•

•
•

550

ERRORS

Cody BASIC has limited error handling inspired by
Tiny BASIC.

LOGIC errors occur when a statement was
syntactically valid but wrong in context.
SYNTAX errors occur when a statement could not
be correctly parsed.
SYSTEM errors occur when a statement fails
because of low-level problems.

•

•

•

551

Image

APPENDIX D: CODSCII TABLE

The CODSCII character set is the default character
set used by the Cody Computer and Cody BASIC. It's
an extended ASCII character set with the top 128
values used for Commodore PETSCII characters and
custom control codes for colors and terminal
operations.

Dec Hex Description

0 $00 Null

1 $01 Start of heading

2 $02 Start of text

3 $03 End of text

4 $04 End of transmission

5 $05 Enquiry

6 $06 Acknowledge

7 $07 Bell

8 $08 Backspace

9 $09 Horizontal tab

10 $0A Line feed

11 $0B Vertical tab

12 $0C Form feed

13 $0D Carriage return

14 $0E Shift out

15 $0F Shift in

16 $10 Data link escape

552

17 $11 Device control 1 (XON)

18 $12 Device control 2

19 $13 Device control 3 (XOFF)

20 $14 Device control 4

21 $15 Negative acknowledge

22 $16 Synchronous idle

23 $17 End of transmission block

24 $18 Cancel

25 $19 End of medium

26 $1A Substitute

27 $1B Escape

28 $1C File separator

29 $1D Group separator

30 $1E Record separator

31 $1F Unit separator

32 $20 Whitespace

33 $21 Exclamation mark

34 $22 Double quotes

35 $23 Hash symbol

36 $24 Dollar sign

37 $25 Percent

38 $26 Ampersand

39 $27 Single quote

40 $28 Left parenthesis

41 $29 Right parenthesis

553

42 $2A Asterisk

43 $2B Plus

44 $2C Comma

45 $2D Minus

46 $2E Period

47 $2F Slash

48 $30 Zero

49 $31 One

50 $32 Two

51 $33 Three

52 $34 Four

53 $35 Five

54 $36 Six

55 $37 Seven

56 $38 Eight

57 $39 Nine

58 $3A Colon

59 $3B Semicolon

60 $3C Less than

61 $3D Equal

62 $3E Greater than

63 $3F Question mark

64 $40 At symbol

65 $41 Uppercase A

66 $42 Uppercase B

554

67 $43 Uppercase C

68 $44 Uppercase D

69 $45 Uppercase E

70 $46 Uppercase F

71 $47 Uppercase G

72 $48 Uppercase H

73 $49 Uppercase I

74 $4A Uppercase J

75 $4B Uppercase K

76 $4C Uppercase L

77 $4D Uppercase M

78 $4E Uppercase N

79 $4F Uppercase O

80 $50 Uppercase P

81 $51 Uppercase Q

82 $52 Uppercase R

83 $53 Uppercase S

84 $54 Uppercase T

85 $55 Uppercase U

86 $56 Uppercase V

87 $57 Uppercase W

88 $58 Uppercase X

89 $59 Uppercase Y

90 $5A Uppercase Z

91 $5B Left bracket

555

92 $5C Backslash

93 $5D Right bracket

94 $5E Caret

95 $5F Underscore

96 $60 Backquote

97 $61 Lowercase a

98 $62 Lowercase b

99 $63 Lowercase c

100 $64 Lowercase d

101 $65 Lowercase e

102 $66 Lowercase f

103 $67 Lowercase g

104 $68 Lowercase h

105 $69 Lowercase i

106 $6A Lowercase j

107 $6B Lowercase k

108 $6C Lowercase l

109 $6D Lowercase m

110 $6E Lowercase n

111 $6F Lowercase o

112 $70 Lowercase p

113 $71 Lowercase q

114 $72 Lowercase r

115 $73 Lowercase s

116 $74 Lowercase t

556

117 $75 Lowercase u

118 $76 Lowercase v

119 $77 Lowercase w

120 $78 Lowercase x

121 $79 Lowercase y

122 $7A Lowercase z

123 $7B Left brace

124 $7C Pipe

125 $7D Right brace

126 $7E Tilde

127 $7F Unused/Reserved

128 $80 Pound sign

129 $81 Up arrow

130 $82 Left arrow

131 $83 Horizontal line

132 $84 Spade

133 $85 Vertical line

134 $86 Horizontal line

135 $87 Horizontal line up 1

136 $88 Horizontal line up 2

137 $89 Horizontal line down 1

138 $8A Vertical line left 1

139 $8B Vertical line duplicate

140 $8C Quarter circle bottom left

141 $8D Quarter circle top right

557

142 $8E Quarter circle top left

143 $8F Box bottom left corner

144 $90 Diagonal down

145 $91 Diagonal up

146 $92 Box top left corner

147 $93 Box top right corner

148 $94 Dot

149 $95 Horizontal line down 2

150 $96 Heart

151 $97 Vertical line left 1 duplicate

152 $98 Quarter circle bottom right

153 $99 X

154 $9A Dot with hole

155 $9B Club

156 $9C Vertical line duplicate

157 $9D Diamond

158 $9E Cross

159 $9F Dotted left

160 $A0 Vertical line duplicate

161 $A1 Pi

162 $A2 Filled diagonal top right

163 $A3 Blank

164 $A4 Filled box left

165 $A5 Filled box bottom

166 $A6 Horizontal line top

558

167 $A7 Horizontal line bottom

168 $A8 Vertical line left

169 $A9 Dotted square

170 $AA Vertical line right

171 $AB Dotted bottom

172 $AC Diagonal filled top left

173 $AD Vertical line right duplicate

174 $AE T right

175 $AF Filled quarter box bottom right

176 $B0 Box top right

177 $B1 Box bottom left

178 $B2 Horizontal line bottom duplicate

179 $B3 Box bottom right

180 $B4 T up

181 $B5 T down

182 $B6 T left

183 $B7 Vertical line left duplicate

184 $B8 Filled left half duplicate

185 $B9 Filled right half duplicate

186 $BA Horizontal line top

187 $BB Horizontal partial fill top

188 $BC Horizontal partial fill bottom

189 $BD Box bottom right corner

190 $BE Filled box lower left

191 $BF Filled box top right

559

192 $C0 Box top left

193 $C1 Filled box top left

194 $C2 Checkered square

195 $C3 Unused/Reserved

196 $C4 Unused/Reserved

197 $C5 Unused/Reserved

198 $C6 Unused/Reserved

199 $C7 Unused/Reserved

200 $C8 Unused/Reserved

201 $C9 Unused/Reserved

202 $CA Unused/Reserved

203 $CB Unused/Reserved

204 $CC Unused/Reserved

205 $CD Unused/Reserved

206 $CE Unused/Reserved

207 $CF Unused/Reserved

208 $D0 Unused/Reserved

209 $D1 Unused/Reserved

210 $D2 Unused/Reserved

211 $D3 Unused/Reserved

212 $D4 Unused/Reserved

213 $D5 Unused/Reserved

214 $D6 Unused/Reserved

215 $D7 Unused/Reserved

216 $D8 Unused/Reserved

560

217 $D9 Unused/Reserved

218 $DA Unused/Reserved

219 $DB Unused/Reserved

220 $DC Unused/Reserved

221 $DD Unused/Reserved

222 $DE Clear screen

223 $DF Reverse field

224 $E0 Background black

225 $E1 Background white

226 $E2 Background red

227 $E3 Background cyan

228 $E4 Background purple

229 $E5 Background green

230 $E6 Background blue

231 $E7 Background yellow

232 $E8 Background orange

233 $E9 Background brown

234 $EA Background light red

235 $EB Background dark gray

236 $EC Background gray

237 $ED Background light green

238 $EE Background light blue

239 $EF Background light gray

240 $F0 Foreground black

241 $F1 Foreground white

561

242 $F2 Foreground red

243 $F3 Foreground cyan

244 $F4 Foreground purple

245 $F5 Foreground green

246 $F6 Foreground blue

247 $F7 Foreground yellow

248 $F8 Foreground orange

249 $F9 Foreground brown

250 $FA Foreground light red

251 $FB Foreground dark gray

252 $FC Foreground gray

253 $FD Foreground light green

254 $FE Foreground light blue

255 $FF Foreground light gray

562

	Table of Contents
	Introduction
	What's a Home Computer?
	Commodore as Inspiration
	KIM-1
	Commodore PET
	VIC-20
	Commodore 64
	Commodore Plus/4

	The Cody Computer Design
	Memory
	Input and Output
	Serial Ports
	Video
	Sound

	Comparisons and Context
	Introduction
	Mechanical Design
	Case Bottom
	Keyboard Module
	Case Top
	OpenSCAD Files

	Electronic Design
	Power Supply
	Propeller
	65C02
	RAM
	65C22 and I/O
	Keyboard

	Propeller Firmware
	cody_computer.spin
	cody_uart.spin
	cody_audio.spin
	cody_video.spin
	cody_line.spin

	Introduction
	Startup and Initialization
	Timer Interrupt
	Keyboard Scanning
	Error Handling
	Starting BASIC
	Starting a Cartridge Program

	Tokenization and Interpretation
	Tokenization
	Line Insertion and Deletion
	Interpretation

	Numeric and String Expressions
	Control and Data Statements
	IF Statements
	GOTO Statements
	GOSUB and RETURN Statements
	FOR and NEXT statements
	DATA and READ Statements

	Input and Output Statements
	OPEN and CLOSE Statements
	PRINT Statements
	INPUT Statements

	Loading and Saving Programs
	LOAD Statements
	SAVE Statements

	Serial Routines
	Screen Output
	Introduction
	Notes on 3D Printing
	Keyboard Assembly
	Making the Keycaps
	Making the Keyboard Cable
	Assembling the Keyboard

	Printed Circuit Board Assembly
	Installing Integrated Circuit Sockets
	Installing Diodes
	Installing Decoupling Capacitors
	Installing the Expansion Connector
	Installing Pull-Up Resistors
	Installing Power Supply Components
	Installing Propeller Components
	Installing Additional Rear Connectors
	Installing Keyboard and Joystick Connectors
	Power Test
	Firmware Programming
	Installing the Integrated Circuits

	Case Assembly
	Case Badge Assembly
	Power LED Assembly
	Case Top Assembly
	Case Bottom Assembly
	Installing the Keyboard
	Installing Magnets
	Final Assembly

	Initial Setup
	Introduction
	Using the Keyboard
	The Read-Eval-Print Loop
	Typing and Editing Programs
	Input and Output
	Variables, Numbers, and Strings
	Numbers and Number Variables
	Strings and String Variables

	Control Statements
	IF Statements
	GOTO Statements
	GOSUB and RETURN statements
	FOR and NEXT statements

	Loading and Saving Programs
	Saving a Program
	Loading a Program

	Understanding Error Messages
	Syntax Errors
	Logic Errors
	System Errors

	Introduction
	Working With Numbers
	Arithmetic Operations
	Mathematical Functions
	Bitwise Functions

	Text Manipulation and Strings
	String Concatenation
	String Comparisons
	Functions in String Expressions
	Additional String Functions

	Print Formatting
	Positioning the Cursor
	Aligning Output With Tabs
	Clearing the Screen
	Setting the Foreground Color
	Setting the Background Color
	Reversing Foreground and Background
	Printing Graphical Characters

	File Input and Output
	Writing to a File
	Reading from a File

	Including Data in Programs
	Timekeeping
	Reading and Writing Memory
	Writing to Memory
	Reading Memory

	Using Machine Code
	Programming Hints
	Documenting Your Programs
	Using Line Numbers
	An Example Program

	Introduction
	Changing the Border Color
	Working With Screen Memory
	Updating Screen Memory
	Relocating Screen Memory

	Working With Color Memory
	Updating Color Memory
	Relocating Color Memory

	Characters and Character Memory
	Characters in ROM
	Custom Characters
	Relocating Character Memory

	Waiting for Blanking
	Scrolling the Screen
	Fine Scrolling With Registers
	Combined Scrolling

	Moving Graphics With Sprites
	Displaying a Sprite
	Displaying Multiple Sprites

	Disabling Video Output
	Row Effects
	Row Effects Register Banks
	Screen Colors and Row Effects
	Sprite Colors and Row Effects
	Sprite Banks and Row Effects
	Scrolling with Row Effects
	Relocations Using Row Effects

	Bitmapped Graphics
	High Resolution Graphics
	Introduction
	Making a Sound
	Creating Sounds With Numbers
	Triangle Waves
	Sawtooth Waves
	Pulse Waves
	Noise
	Experimenting With Different Values

	Playing a Simple Song
	Sound Effects
	An Explosion
	An Alert Siren
	An Energy Beam
	A Commodore 64 Example

	A Practical Sound Program
	Ring Modulation
	Introduction
	Keyboard and Joystick Input
	Serial Input and Output
	Transmitting Data
	Receiving Data

	General-Purpose Input and Output
	Special Pins and Shift Registers
	SPI Communication and Cartridges
	Introduction
	The CodySID Music Player
	The PSID File Format
	The CodySID Program
	Building and Running CodySID
	Suggested SID Files

	The "Cody Bros." Demo
	The CodyBros Program
	Building and Running Cody Bros.

	Memory-Resident Programs
	Introduction
	Cartridge Design
	Cartridge Programmer Assembly
	Installing the Expansion Connector
	Installing the Socket and Capacitor
	Installing the Headers
	Inserting the IC and Jumpers

	SPI Programming in BASIC
	Simple SPI Communication
	A Test Program
	Writing to the EEPROM
	Reading the EEPROM
	Booting the Cartridge

	A Program for Programming
	The CodyProg Program
	Using the Programmer

	Cartridge Case Assembly
	One Good Little Dude
	Appendix A: Memory Map
	65C02 Zero Page Variables
	65C22 Versatile Interface Adapter (VIA) Registers
	Video Interface Device (VID) Registers
	Sound Interface Device (SID) Registers
	UART 1 Registers
	UART 2 Registers

	Appendix B: Color Codes
	Appendix C: Cody BASIC
	Line Numbers
	Comments
	Variables
	Numeric Expressions
	String Expressions
	Relational Expressions
	Mathematical Functions
	Bitwise Functions
	String Functions Returning Numbers
	String Functions Returning Strings
	Formatting Functions
	Other Functions
	Commands
	Control Statements
	Input and Output Statements
	Data Statements
	Other Statements
	Errors

	Appendix D: CODSCII Table

